
MACHINE LEARNING

 Alessandro Moschitti

Department of information and communication technology
University of Trento

Email: moschitti@dit.unitn.it

Support Vector Machines

Summary

   Support Vector Machines
   Hard-margin SVMs
   Soft-margin SVMs

Communications

   No lecture tomorrow (neither Dec. 8)

   ML Exams
   12 January 2011 at 9:00,
   26 January 2011 at 9:00

   Exercise in Lab
   A201 (Polo scientifico e tecnologico)
   Wednesday 15 and 22 December, 2011
   Time: 8.30-10.30

Which hyperplane choose?

Classifier with a Maximum Margin

Var1

Var2

Margin

Margin

IDEA 1: Select the
hyperplane with
maximum margin

Support Vector

Var1

Var2

Margin

Support Vectors

Support Vector Machine Classifiers

Var1

Var2 kbxw −=+⋅

kbxw =+⋅

0=+⋅ bxw
kk

w

The margin is equal to
2 k
w

Support Vector Machines

Var1

Var2 kbxw −=+⋅

kbxw =+⋅

0=+⋅ bxw
kk

w

The margin is equal to
2 k
w

We need to solve

€

max
2 k

|| w ||

w ⋅

x + b ≥ +k, if x is positive

w ⋅

x + b ≤ −k, if x is negative

Support Vector Machines

Var1

Var2 1w x b⋅ + = −

1w x b⋅ + =

0=+⋅ bxw
11

w

There is a scale for
which k=1.

The problem transforms
in:

€

max
2

|| w ||

w ⋅

x + b ≥ +1, if x is positive

w ⋅

x + b ≤ −1, if x is negative

Final Formulation

€

⇒

€

max
2

|| w ||

w ⋅

x i + b ≥ +1, yi =1

w ⋅

x i + b ≤ −1, yi = -1

€

max
2

|| w ||
yi(

w ⋅

x i + b) ≥1

€

min
|| w ||
2

yi(

w ⋅

x i + b) ≥1

€

min
|| w ||2

2
yi(

w ⋅

x i + b) ≥1

€

⇒

€

⇒

€

⇒

Optimization Problem

   Optimal Hyperplane:

   Minimize

   Subject to

   The dual problem is simpler

€

τ (w) =
1
2
 w 2

yi ((
 w ⋅ x i) + b) ≥1,i =1,...,m

Lagrangian Definition

€

≤

Dual Optimization Problem

Dual Transformation

   To solve the dual problem we need to evaluate:

   Given the Lagrangian associated with our problem

   Let us impose the derivatives to 0, with respect to w

Dual Transformation (cont’d)

   and wrt b

   Then we substituted them in the Lagrange function

Final Dual Problem

Khun-Tucker Theorem

   Necessary and sufficient conditions to optimality

Properties coming from constraints

   Lagrange constraints:

   Karush-Kuhn-Tucker constraints

   Support Vectors have not null

   To evaluate b, we can apply the following equation

€

ai
i=1

m

∑ yi = 0 w = α i
i=1

m

∑ yi

 x i

€

α i ⋅ [yi (
 x i ⋅
 w + b) −1]= 0, i =1,...,m

iα

Warning!

   On the graphical examples, we always consider
normalized hyperplane (hyperplanes with normalized
gradient)

   b in this case is exactly the distance of the hyperplane
from the origin

   So if we have an equation not normalized we may have

   and b is not the distance

€

 x ⋅ w '+b = 0 with x = x,y() and w '= 1,1()

Warning!

   Let us consider a normalized gradient

€

 w = 1/ 2,1/ 2()
x,y() ⋅ 1/ 2,1/ 2() + b = 0⇒ x / 2 + y / 2 = −b

⇒ y = −x − b 2

   Now we see that -b is exactly the distance.

   For x =0, we have the intersection with . This
distance projected on is -b

€

−b 2

€

 w

Soft Margin SVMs

Var1

Var2 1w x b⋅ + = −

1w x b⋅ + =

0=+⋅ bxw
11

w

iξ
 slack variables are
added

Some errors are allowed
but they should penalize
the objective function

iξ

Soft Margin SVMs

Var1

Var2 1w x b⋅ + = −

1w x b⋅ + =

0=+⋅ bxw
11

w

iξ

The new constraints are

The objective function
penalizes the incorrect
classified examples

C is the trade-off
between margin and the
error

€

yi(

w ⋅

x i + b) ≥1−ξ i

∀

x i where ξ i ≥ 0

€

min
1
2
|| w ||2 +C ξ ii∑

Dual formulation

   By deriving wrt

€

 w ,

ξ and b

Partial Derivatives

Substitution in the objective function

   of Kronecker ijδ

Final dual optimization problem

Soft Margin Support Vector Machines

   The algorithm tries to keep ξi low and maximize the margin

   NB: The number of error is not directly minimized (NP-complete
problem); the distances from the hyperplane are minimized

   If C→∞, the solution tends to the one of the hard-margin algorithm

   Attention !!!: if C = 0 we get = 0, since

   If C increases the number of error decreases. When C tends to
infinite the number of errors must be 0, i.e. the hard-margin
formulation

|||| w

€

min
1
2
|| w ||2 +C ξ ii∑

€

yi(

w ⋅

x i + b) ≥1−ξ i ∀

x i

ξ i ≥ 0

€

yib ≥1−ξ i ∀
 x i

Robusteness of Soft vs. Hard Margin SVMs

iξ

Var1

Var2
0=+⋅ bxw

ξi

Var1

Var2
0=+⋅ bxw

Soft Margin SVM Hard Margin SVM

Soft vs Hard Margin SVMs

   Soft-Margin has ever a solution

   Soft-Margin is more robust to odd examples

   Hard-Margin does not require parameters

Parameters

   C: trade-off parameter

   J: cost factor

€

min
1
2
|| w ||2 +C ξ ii∑ = min 1

2
|| w ||2 +C+ ξ ii∑

+
+ C− ξ ii∑

−

€

= min 1
2
|| w ||2 +C J ξ ii∑

+
+ ξ ii∑

−

Theoretical Justification

Definition of Training Set error

   Training Data

   Empirical Risk (error)

   Risk (error)

{ }1: ±→NRf

€

(x 1,y1),....,(
 x m ,ym)∈ RN × ±1{ }

€

Remp [f]= 1
m

1
2 f (x i) − yi

i=1

m

∑

€

R[f]= 1
2

f (x) − y dP(x ,y)∫

Error Characterization (part 1)

   From PAC-learning Theory (Vapnik):

 where d is theVC-dimension, m is the number of
examples, δ is a bound on the probability to get such
error and α is a classifier parameter.

€

R(α) ≤ Remp (α) +ϕ(dm , log(δ)m)

ϕ(dm , log(δ)m) = d (log 2md +1)− log(δ4)
m

There are many versions for different bounds

Error Characterization (part 2)

Ranking, Regression
and

Multiclassification

The Ranking SVM
[Herbrich et al. 1999, 2000; Joachims et al. 2002]

   The aim is to classify instance pairs as correctly ranked or
incorrectly ranked
   This turns an ordinal regression problem back into a binary

classification problem

   We want a ranking function f such that

xi > xj iff f(xi) > f(xj)

   … or at least one that tries to do this with minimal error

   Suppose that f is a linear function

f(xi) = wxi

• Sec. 15.4.2 

The Ranking SVM

   Ranking Model: f(xi)�

€

f (xi)

• Sec. 15.4.2 

The Ranking SVM

   Then (combining the two equations on the last slide):

xi > xj iff wxi − w xj > 0

xi > xj iff w(xi − xj) > 0

   Let us then create a new instance space from such
pairs: zk = xi − xk

yk = +1, −1 as xi ≥ , < xk

• Sec. 15.4.2 

Support Vector Ranking

   Given two examples we build one example (xi , xj)
€

−1

Support Vector Regression (SVR)

 Constraints:
+ε

-ε
0

 Solution:

x

f(x)

Support Vector Regression (SVR)

+ε

-ε
0

x

f(x)

€

1
2
wTw + C ξ i + ξ i

*()
i=1

N

∑

 Minimise:

 Constraints: ξ

ξ*

Support Vector Regression

   yi is not -1 or 1 anymore, now it is a value

   ε is the tollerance of our function value

From Binary to Multiclass classifiers

   Three different approaches:

   ONE-vs-ALL (OVA)

   Given the example sets, {E1, E2, E3, …} for the categories: {C1, C2,
C3,…} the binary classifiers: {b1, b2, b3,…} are built.

   For b1, E1 is the set of positives and E2∪E3 ∪… is the set of negatives,
and so on

   For testing: given a classification instance x, the category is the one
associated with the maximum margin among all binary classifiers

From Binary to Multiclass classifiers

   ALL-vs-ALL (AVA)
   Given the examples: {E1, E2, E3, …} for the categories {C1, C2, C3,…}

   build the binary classifiers:

 {b1_2, b1_3,…, b1_n, b2_3, b2_4,…, b2_n,…,bn-1_n}

   by learning on E1 (positives) and E2 (negatives), on E1
(positives) and E3 (negatives) and so on…

   For testing: given an example x,

   all the votes of all classifiers are collected

   where bE1E2 = 1 means a vote for C1 and bE1E2 = -1 is a vote
for C2

   Select the category that gets more votes

From Binary to Multiclass classifiers

   Error Correcting Output Codes (ECOC)
   The training set is partitioned according to binary sequences (codes)

associated with category sets.

   For example, 10101 indicates that the set of examples of

C1,C3 and C5 are used to train the C10101 classifier.

   The data of the other categories, i.e. C2 and C4 will be

negative examples

   In testing: the code-classifiers are used to decode one the original class,
e.g.

 C10101 = 1 and C11010 = 1 indicates that the instance belongs to C1
That is, the only one consistent with the codes

SVM-light: an implementation of SVMs

   Implements soft margin

   Contains the procedures for solving optimization
problems

   Binary classifier

   Examples and descriptions in the web site:

 http://www.joachims.org/

 (http://svmlight.joachims.org/)

References

   A tutorial on Support Vector Machines for Pattern Recognition
   Downloadable article (Chriss Burges)

   The Vapnik-Chervonenkis Dimension and the Learning Capability of Neural
Nets
   Downloadable Presentation

   Computational Learning Theory
(Sally A Goldman Washington University St. Louis Missouri)
   Downloadable Article

   AN INTRODUCTION TO SUPPORT VECTOR MACHINES
 (and other kernel-based learning methods)
 N. Cristianini and J. Shawe-Taylor Cambridge University Press
   Check our library

   The Nature of Statistical Learning Theory
Vladimir Naumovich Vapnik - Springer Verlag (December, 1999)
   Check our library

