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Summary 

   Support Vector Machines 
   Hard-margin SVMs 
   Soft-margin SVMs 



Communications 

   No lecture tomorrow (neither Dec. 8) 

   ML Exams 
   12 January 2011 at 9:00, 
   26 January 2011 at 9:00 

   Exercise in Lab 
   A201 (Polo scientifico e tecnologico)  
   Wednesday 15 and 22 December, 2011 
   Time: 8.30-10.30 
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IDEA 1: Select the 
hyperplane with 
maximum margin 
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Support Vector Machine Classifiers 
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Support Vector Machines 
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We need to solve 
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Support Vector Machines 
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There is a scale for 
which k=1.  

The problem transforms 
in: 
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Final Formulation 
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Optimization Problem 

   Optimal Hyperplane: 

   Minimize 

   Subject to 

   The dual problem is simpler 
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Lagrangian Definition 
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Dual Optimization Problem 



Dual Transformation 

   To solve the dual problem we need to evaluate: 

   Given the Lagrangian associated with our problem 

   Let us impose the derivatives to 0, with respect to   w



Dual Transformation (cont’d) 

   and wrt b 

   Then we substituted them in the Lagrange function 



Final Dual Problem 



Khun-Tucker Theorem 

   Necessary and sufficient conditions to optimality 



Properties coming from constraints 

   Lagrange constraints: 

   Karush-Kuhn-Tucker constraints 

   Support Vectors have     not null 

   To evaluate b, we can apply the following equation 
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Warning! 

   On the graphical examples, we always consider 
normalized hyperplane (hyperplanes with normalized 
gradient) 

   b in this case is exactly the distance of the hyperplane 
from the origin  

   So if we have an equation not normalized we may have 

   and b is not the distance   
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 x ⋅  w '+b = 0 with  x = x,y( ) and  w '= 1,1( )



Warning! 

   Let us consider a normalized gradient 

    

€ 

  w = 1/ 2,1/ 2( )
x,y( ) ⋅ 1/ 2,1/ 2( ) + b = 0⇒ x / 2 + y / 2 = −b

⇒ y = −x − b 2

   Now we see that -b is exactly the distance.  

   For x =0, we have the intersection with           . This 
distance projected on      is -b 
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Soft Margin SVMs 
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   slack variables are 
added 

Some errors are allowed 
but they should penalize 
the objective function 

iξ



Soft Margin SVMs 
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The new constraints are 

The objective function 
penalizes the incorrect 
classified examples 

C is the trade-off 
between margin and the 
error 
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Dual formulation 

   By deriving wrt   
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 w ,
 
ξ  and b



Partial Derivatives 



Substitution in the objective function 

        of Kronecker  ijδ



Final dual optimization problem 



Soft Margin Support Vector Machines 

   The algorithm tries to keep ξi low and maximize the margin 

   NB: The number of error is not directly minimized (NP-complete 
problem); the distances from the hyperplane are minimized 

   If C→∞, the solution tends to the one of the hard-margin algorithm 

   Attention !!!: if C = 0 we get          = 0, since  

   If C increases the number of error decreases. When C tends to 
infinite the number of errors must be 0, i.e. the hard-margin 
formulation 
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Robusteness of Soft vs. Hard Margin SVMs 
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Soft vs Hard Margin SVMs 

   Soft-Margin has ever a solution 

   Soft-Margin is more robust to odd examples 

   Hard-Margin does not require parameters 



Parameters   

   C: trade-off parameter 

   J: cost factor 
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Theoretical Justification 



Definition of Training Set error 

   Training Data 

   Empirical Risk (error) 

   Risk (error) 

{ }1: ±→NRf
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( x 1,y1),....,(
 x m ,ym )∈ RN × ±1{ }
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f ( x ) − y dP( x ,y)∫



Error Characterization (part 1) 

   From PAC-learning Theory (Vapnik): 

    where d is theVC-dimension, m is the number of 
examples, δ  is a bound on the probability to get such 
error and α is a classifier parameter.                                                

€ 

R(α) ≤ Remp (α) +ϕ( dm , log(δ )m )

ϕ( dm , log(δ )m ) = d (log 2md +1)− log(δ4 )
m



There are many versions for different bounds 



Error Characterization (part 2) 



Ranking, Regression 
and 

Multiclassification 



The Ranking SVM  
[Herbrich et al. 1999, 2000; Joachims et al. 2002] 

   The aim is to classify instance pairs as correctly ranked or 
incorrectly ranked 
   This turns an ordinal regression problem back into a binary 

classification problem 

   We want a ranking function f such that 

xi > xj iff f(xi) > f(xj) 

   … or at least one that tries to do this with minimal error 

   Suppose that f is a linear function  

f(xi) = wxi 

• Sec. 15.4.2 



The Ranking SVM  

   Ranking Model: f(xi)�

€ 

f (xi )

• Sec. 15.4.2 



The Ranking SVM  

   Then (combining the two equations on the last slide): 

xi > xj iff wxi − w xj > 0 

xi > xj iff w(xi − xj) > 0 

   Let us then create a new instance space from such 
pairs:            zk = xi − xk 

yk = +1, −1 as xi ≥ , < xk 

• Sec. 15.4.2 



Support Vector Ranking 

   Given two examples we build one example (xi , xj) 
€ 

−1



Support Vector Regression (SVR) 

 Constraints: 
+ε 

-ε 
0

 Solution: 

x 

f(x) 



Support Vector Regression (SVR) 
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Support Vector Regression 

   yi is not -1 or 1 anymore, now it is a value 

   ε is the tollerance of our function value 



From Binary to Multiclass classifiers 

   Three different approaches: 

   ONE-vs-ALL (OVA) 

   Given the example sets, {E1, E2, E3, …} for the categories: {C1, C2, 
C3,…} the binary classifiers: {b1, b2, b3,…} are built. 

   For b1, E1 is the set of positives and E2∪E3 ∪… is the set of negatives, 
and so on 

   For testing: given a classification instance x, the category is the one 
associated with the maximum margin among all binary classifiers 



From Binary to Multiclass classifiers 

   ALL-vs-ALL (AVA) 
   Given the examples: {E1, E2, E3, …} for the categories {C1, C2, C3,…}  

   build the binary classifiers: 

   {b1_2, b1_3,…, b1_n, b2_3, b2_4,…, b2_n,…,bn-1_n}  

   by learning on E1 (positives) and E2 (negatives), on E1 
(positives) and E3 (negatives) and so on… 

   For testing: given an example x,  

   all the votes of all classifiers are collected 

   where bE1E2 = 1 means a vote for C1 and  bE1E2 = -1 is a vote 
for C2 

   Select the category that gets more votes 



From Binary to Multiclass classifiers 

   Error Correcting Output Codes (ECOC) 
   The training set is partitioned according to binary sequences (codes) 

associated with category sets.  

   For example, 10101 indicates that the set of examples of 

C1,C3 and  C5 are used to train the C10101 classifier.  

   The data of the other categories, i.e. C2 and C4 will be 

negative examples  

   In testing: the code-classifiers are used to decode one the original class, 
e.g. 

    C10101 = 1 and C11010 = 1 indicates that the instance belongs to C1 
That is, the only one consistent with the codes 



SVM-light: an implementation of SVMs 

   Implements soft margin 

   Contains the procedures for solving optimization 
problems 

   Binary classifier 

   Examples and descriptions in the web site:  

    http://www.joachims.org/  

    (http://svmlight.joachims.org/) 
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Exercise 

   1. The equations of SVMs for Classification, Ranking 
and Regression (you can get them from my slides). 

   2. The perceptron algorithm for Classification, 
Ranking and Regression (the last two you have to 
provide by looking at what you wrote in point (1)). 

   3. The same as point (2) by using kernels (write the 
kernel definition as introduction of this section). 


