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Output Label Sets 



Simple Structured Output 

!   We have seen methods for: binary Classifier or 

multiclassifier single label 

!   Multiclass-Multilabel is a structured output, i.e. a 

label subset is output 



From Binary to Multiclass classifiers 

!   Three different approaches: 

!   ONE-vs-ALL (OVA) 

!   Given the example sets, {E1, E2, E3, …} for the categories: {C1, 
C2, C3,…} the binary classifiers: {b1, b2, b3,…} are built. 

!   For b1, E1 is the set of positives and E2∪E3 ∪… is the set of 
negatives, and so on 

! For testing: given a classification instance x, the category is the 
one associated with the maximum margin among all binary 
classifiers 



From Binary to Multiclass classifiers 

!   ALL-vs-ALL (AVA) 
!   Given the examples: {E1, E2, E3, …} for the categories {C1, C2, 

C3,…}  

!   build the binary classifiers: 

   {b1_2, b1_3,…, b1_n, b2_3, b2_4,…, b2_n,…,bn-1_n}  

!   by learning on E1 (positives) and E2 (negatives), on E1 
(positives) and E3 (negatives) and so on… 

! For testing: given an example x,  

!   all the votes of all classifiers are collected 

!   where bE1E2 = 1 means a vote for C1 and  bE1E2 = -1 is a vote 
for C2 

!   Select the category that gets more votes 



From Binary to Multiclass classifiers 

!   Error Correcting Output Codes (ECOC) 

!   The training set is partitioned according to binary sequences 

(codes) associated with category sets.  

!   For example, 10101 indicates that the set of examples of 

C1,C3 and  C5 are used to train the C10101 classifier.  

!   The data of the other categories, i.e. C2 and C4 will be 

negative examples  

! In testing: the code-classifiers are used to decode one the original 
class, e.g. 

    C10101 = 1 and C11010 = 1 indicates that the instance belongs to C1 
That is, the only one consistent with the codes 



Designing Global Classifiers 

!   Each class has a parameter vector (wk,bk) 
!   x is assigned to class k iff 

!   For simplicity set bk=0  
(add a dimension and include it in wk) 

!   The goal (given separable data) is to choose wk  s.t. 



Multi-class SVM 

Primal problem: QP 



Structured Output Model 

!   Main idea: define scoring function which 

decomposes as sum of features scores k on 

“parts” p: 

!    Label examples by looking for max score: 

  

!   Parts = nodes, edges, etc. space of feasible 
outputs 



Structured Perceptron 



For each datapoint 

Averaged perceptron: 

Predict: 

Update: 

(Averaged) Perceptron  



Predict: 

Update: 

Feature encoding: 

Predict: 

Update: 

Example: multiclass setting 



Output of Ranked Example List 



Support Vector Ranking 

!   Given two examples we build one example (xi , xj) 

2.3. The Support Vector Machines 43

of errors should be the lowest possible. This trade-off between the separability

with highest margin and the number of errors can be specified by (a) intro-

ducing slack variables ξi in the inequality constraints of Problem 2.13 and (b)

adding the minimization the number of errors in the objective function. The

resulting optimization problem is











min 1
2 ||"w|| + C

∑m
i=1 ξ2

i

yi("w · "xi + b) ≥ 1 − ξi, ∀i = 1, ..,m

ξi ≥ 0, i = 1, ..,m

(2.21)











min 1
2 ||"w|| + C

∑m
i=1 ξ2

i

yk("w · ("xi − "xj) + b) ≥ 1 − ξk, ∀i, j = 1, ..,m

ξk ≥ 0, k = 1, ..,m2

(2.22)

yk = 1 if rank("xi) > rank( "xj), 0 otherwise, where k = i × m + j

whose the main characteristics are:

- The constraint yi("w · "xi + b) ≥ 1 − ξi allows the point "xi to violate the

hard constraint of Problem 2.13 of a quantity equal to ξi. This is clearly

shown by the outliers in Figure 2.14, e.g. "xi.

- If a point is misclassified by the hyperplane then the slack variable as-

sumes a value larger than 1. For example, Figure 2.14 shows the mis-

classified point xi and its associated slack variable ξi which is necessar-

ily > 1. Thus,
∑m

i=1 ξi is an upperbound to the number of errors. The

same property is held by the quantity,
∑m

i=1 ξ2
i , which can be used as an

alternative bound.

- The constant C tunes the trade-off between the classification errors and

the margin. The higher C is, the lower number of errors the optimal

solution commits. For C → ∞, Problem 2.22 approximates Problem

2.13.

- Similarly to the hard margin error probability upperbound, it can be

proven that minimizing ||"w|| + C
∑m

i=1 ξ2
i minimizes the error proba-

bility of classifiers which are not perfectly consistent with the training

data, e.g. they do not necessarily classify correctly all the training data.



Concept Segmentation and 
Classification task 

!   Given a transcription, i.e. a sequence of words, 

chunk and label subsequences with concepts 

!   Air Travel Information System (ATIS) 
!   Dialog systems answering user questions 

!   Conceptually annotated dataset 

!   Frames 



An example of concept annotation in 
ATIS 

!   User request: list TWA flights from Boston to 

Philadelphia 

!   The concepts are used to build rules for the dialog 

manager (e.g. actions for using the DB) 
!   from location 

!   to location 

!   airline code 



Our Approach  
(Dinarelli, Moschitti, Riccardi, SLT 2008) 

!   Use of Finite State Transducer to generate word 

sequences and concepts 

!   Probability of each annotation 

⇒ m best hypothesis can be generated 

!   Idea: use a discriminative model to choose the 

best one 
!   Re-ranking and selecting the top one 



Experiments 

!   Luna projects’ Corpus Wizard of OZ 



Re-ranking Model 

!   The FST generates the most likely concept 

annotations. 

!    These are used to build annotation pairs,          . 
!   positive instances if si more correct than sj, 

!   The trained binary classifier decides if si is more 

accurate than sj.  

!   Each candidate annotation si is described by a 

word sequence where each word is followed by 

its concept annotation.  

€ 

si, s j



Re-ranking framework 



Example 

!   I have a problem with the network card now 

si: I NULL have NULL a NULL problem 
PROBLEM-B with NULL my NULL monitor 
HW-B 

sj: I NULL have NULL a NULL problem HW-B 
with NULL my NULL monitor 



Flat tree representation 



Multilevel Tree 



Enriched Multilevel Tree 



Results 

Model Concept Error Rate 

SVMs 26.7 

FSA 23.2 

FSA+Re-Ranking 16.01 

≈ 30% of error reduction of 
the best model 



Structured Perceptron 
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The Impact of SSTK in Answer 
Classification 
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Mercer’s conditions (1) 



Mercer’s conditions (2) 

!   If the Gram matrix:  

    is positive semi-definite there is a mapping φ that 

produces the target kernel function 

), ji xxkG


(=



The lexical semantic kernel is not always 
a kernel 

!   It may not be a kernel so we can use M´·M, where M is the 
initial similarity matrix 



Efficient Evaluation (1) 

!   In [Taylor and Cristianini, 2004 book], sequence kernels with 
weighted gaps are factorized with respect to different 
subsequence sizes. 

!   We treat children as sequences and apply the same theory 

Dp 



Theory 

!   Kernel Trick  

!   Kernel Based Machines 

!   Basic Kernel Properties 

!   Kernel Types 


