
Natural Language Processing
and Information Retrieval

 Alessandro Moschitti

Department of information and communication technology
University of Trento

Email: moschitti@dit.unitn.it

Kernel Methods

Linear Classifier

€

f (x) =

x ⋅

w + b = 0, x , w ∈ ℜn ,b∈ ℜ

!   The equation of a hyperplane is

!   is the vector representing the classifying example

!   is the gradient of the hyperplane

!   The classification function is

x

w

() sign(())h x f x=

! Mapping vectors in a space where they are linearly
separable

x

x

x

x

o

o

o
o

The main idea of Kernel Functions

)(xx

φ→

)x(φ

)x(φ
)x(φ

)x(φ
)(oφ

)(oφ

)(oφ
)(oφ

φ

A mapping example

! Given two masses m1 and m2 , one is constrained

! Apply a force fa to the mass m1

! Experiments

! Features m1 , m2 and fa

! We want to learn a classifier that tells when a mass m1 will
get far away from m2

2
21

21),,(
r
mmCrmmf =

! If we consider the Gravitational Newton Law

! we need to find when f(m1 , m2 , r) < fa

A mapping example (2)

))(),...,(()(),...,(11 xxxxxx nn

φφφ =→=

! The gravitational law is not linear so we need to change
space

)ln,ln,ln,(ln),,,(),,,(2121 rmmfzyxkrmmf aa =→

zyxcrmmCrmmf 2ln2lnlnln),,(ln 2121 −++=−++=

(ln m1,ln m2,-2ln r)⋅ (x,y,z)- ln fa + ln C = 0, we can decide
without error if the mass will get far away or not

! As

0lnln2lnlnln 21 =−+−− Crmmfa

! We need the hyperplane

A kernel-based Machine
Perceptron training

€

 w 0 ←

0 ;b0 ← 0;k ← 0;R← max1≤ i≤ l || x i ||

do
 for i = 1 to
 if yi (

 w k ⋅
 x i + bk) ≤ 0 then

 w k +1 =
 w k +ηyi

 x i
 bk +1 = bk +ηyi R

2

 k = k + 1
 endif
 endfor
while an error is found
return k,(w k ,bk)

! Each step of perceptron only training data is added with a

certain weight

! So the classification function

! Note that data only appears in the scalar product

Dual Representation for Classification

€

 w = α j
j=1..
∑ y j

 x j

€

sgn(w ⋅ x + b) = sgn α j
j=1..
∑ y j

 x j ⋅
 x + b

%

&
' '

(

)
* *

Dual Representation for Learning

! as well as the updating function

! The learning rate only affects the re-scaling of the
hyperplane, it does not affect the algorithm, so we can
fix 1.η =

η

€

if yi(α j
j=1..
∑ y j

x j ⋅

x i + b) ≤ 0 then α i =α i +η

! We can rewrite the classification function as

! As well as the updating function

! The learning rate does not affect the algorithm so we set it to
1.η =

η

Dual Perceptron algorithm and Kernel
functions

€

h(x) = sgn(w φ ⋅ φ(
 x) + bφ) = sgn(α j

j=1..
∑ y jφ(

 x j) ⋅ φ(
 x) + bφ) =

= sgn(α j
i=1..
∑ y jk(

 x j ,
 x) + bφ)

€

if yi α j
j=1..
∑ y jk(x j ,

 x i) + bφ
%

&
' '

(

)
* * ≤ 0 allora α i =α i +η

Dual optimization problem of SVMs

Kernels in Support Vector Machines

!   In Soft Margin SVMs we maximize:

!   By using kernel functions we rewrite the problem as:

Kernel Function Definition

!   Kernels are the product of mapping functions such as

€

 x ∈ ℜn,

φ (x) = (φ1(

 x),φ2(x),...,φm (x))∈ ℜm

The Kernel Gram Matrix

!   With KM-based learning, the sole information used from
the training data set is the Kernel Gram Matrix

!   If the kernel is valid, K is symmetric definite-positive .

Ktraining =

k(x1,x1) k(x1,x2) ... k(x1,xm)
k(x2,x1) k(x2,x2) ... k(x2,xm)
...

k(xm,x1) k(xm,x2) ... k(xm,xm)

!

"

#
#
#
#
#

$

%

&
&
&
&
&

Valid Kernels

Valid Kernels cont’d

!   If the matrix is positive semi-definite then we can find a
mapping φ implementing the kernel function

Mercer’s Theorem (finite space)

!   Let us consider

!

K = K(
!
x i,
!
x j)()

i, j=1

n

!   K symmetric ⇒ ∃ V: for Takagi factorization of a

complex-symmetric matrix, where:

!   Λ is the diagonal matrix of the eigenvalues λt of K

!   are the eigenvectors, i.e. the columns of V

!   Let us assume lambda values non-negative

!

K = V" # V

!

!
v
t
 = v

ti()
i=1

n

!

" :
!
x

i
 # $

t
v

ti()
t =1

n

% &n
, i =1,..,n

Mercer’s Theorem
(sufficient conditions)

€

Φ(x i) ⋅ Φ(x j) = λtvti
t=1

n

∑ vtj = VΛ ' V ()ij = K ij = K(x i,
 x j)

!   Therefore

 ,

!   which implies that K is a kernel function

Mercer’s Theorem
(necessary conditions)

!

!
z

2

=
!
z "
!
z = # $ V

!
v

s
$ V
!
v

s
=
!
v

s
' V # # $ V

!
v

s
=

!
v

s
' K
!
v

s
=
!
v

s
' %

s

!
v

s
= %

s

!
v

s

2

< 0

!   Suppose we have negative eigenvalues λs and

eigenvectors the following point

!   has the following norm:

this contradicts the geometry of the space.

!

!
v
s

!

!
z = v

si
"(
!
x

i
)

i=1

n

= v
si

$
t
v

ti()
t

=
i=1

n

% & V
!
v

s

Is it a valid kernel?

!   It may not be a kernel so we can use M´·M

Valid Kernel operations

!   k(x,z) = k1(x,z)+k2(x,z)

!   k(x,z) = k1(x,z)*k2(x,z)

!   k(x,z) = α k1(x,z)

!   k(x,z) = f(x)f(z)

!   k(x,z) = k1(φ(x),φ(z))

!   k(x,z) = x'Bz

Basic Kernels for unstructured data

!   Linear Kernel

!   Polynomial Kernel

!   Lexical kernel

!   String Kernel

Linear Kernel

!   In Text Categorization documents are word vectors

!   The dot product counts the number of features in

common

!   This provides a sort of similarity

!

"(d
x
) =
!
x = (0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,1)

 buy acquisition stocks sell market

zx
!!
!

!

"(d
z
) =
!
z = (0,..,1,..,0,..,1,..,0,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

 buy company stocks sell

Feature Conjunction (polynomial Kernel)

!   The initial vectors are mapped in a higher space

!   More expressive, as encodes

 Stock+Market vs. Downtown+Market features

!   We can smartly compute the scalar product as

)1,2,2,2,,(),(2121
2
2

2
121 xxxxxxxx →><Φ

),()1()1(
1222

)1,2,2,2,,()1,2,2,2,,(
)()(

22
2211

22112121
2
2

2
2

2
1

2
1

2121
2
2

2
12121

2
2

2
1

zxKzxzxzx
zxzxzzxxzxzx

zzzzzzxxxxxx
zx

Poly

=+⋅=++=
=+++++=

=⋅=
=Φ⋅Φ

)(21xx

Document Similarity

industry

telephone

 market

company

product

Doc 1 Doc 2

Lexical Semantic Kernel [CoNLL 2005]

!   The document similarity is the SK function:

!   where s is any similarity function between words, e.g.

WordNet [Basili et al.,2005] similarity or LSA [Cristianini et

al., 2002]

!   Good results when training data is small

€

SK (d1,d2) = s(w1,w2)
w1 ∈d1 ,w2 ∈d2

∑

Using character sequences

zx
!!
!

!

"("bank") =
!
x = (0,..,1,..,0,..,1,..,0,......1,..,0,..,1,..,0,..,1,..,0)

!   counts the number of common substrings

 bank ank bnk bk b

!

"("rank") =
!
z = (1,..,0,..,0,..,1,..,0,......0,..,1,..,0,..,1,..,0,..,1)

 rank ank rnk rk r

!

!
x "
!
z = #("bank") " #("rank") = k("bank","rank")

String Kernel

!   Given two strings, the number of matches between their

substrings is evaluated

!   E.g. Bank and Rank

!   B, a, n, k, Ba, Ban, Bank, Bk, an, ank, nk,..

!   R, a , n , k, Ra, Ran, Rank, Rk, an, ank, nk,..

!   String kernel over sentences and texts

!   Huge space but there are efficient algorithms

Formal Definition

, where

, where

i1 +1

Kernel between Bank and Rank

An example of string kernel computation

Efficient Evaluation

!   Dynamic Programming technique

!   Evaluate the spectrum string kernels

!   Substrings of size p

!   Sum the contribution of the different spectra

Efficient Evaluation

An example: SK(“Gatta”,”Cata”)

!   First, evaluate the SK with size p=1, i.e. “a”,

“a”,”t”,”t”,”a”,”a”

!   Store this in the table

€

 SKp=1

Evaluating DP2

!   Evaluate the weight of the string of size p in case a

character will be matched

!   This is done by multiplying the double summation by the

number of substrings of size p-1

Evaluating the Predictive DP on strings of
size 2 (second row)

!   Let’s consider substrings of size 2 and suppose that:
!   we have matched the first “a”

!   we will match the next character that we will add to the two strings

!   We compute the weights of matches above at different string

positions with some not-yet known character “?”

!   If the match occurs immediately after “a” the weight will be λ1+1

x λ1+1 = λ4 and we store just λ2 in the DP entry in [“a”,”a”]

Evaluating the DP wrt different positions
(second row)

!   If the match for “gatta” occurs after “t” the weight will be λ1+2

(x λ2 = λ5) since the substring for it will be with “a☐?”

!   We write such prediction in the entry [“a”,”t”]

!   Same rationale for a match after the second “t”: we have

the substring “a☐☐?” (matching with “a?” from “catta”) for

a weight of λ3+1 (x λ2)

Evaluating the DP wrt different positions
(third row)

!   If the match occurs after “t” of “cata”, the weight will be λ2+1

(x λ2 = λ5) since it will be with the string “a☐?”, with a weight

of λ3

!   If the match occurs after “t” of both “gatta” and “cata”, there

are two ways to compose substring of size two: “a☐?” with

weight λ4 or “t?” with weight λ2 ⇒ the total is λ2+λ4

Evaluating the DP wrt different positions
(third row)

!   The final case is a match after the last “t” of both “cat” and

“gatta”

!   There are three possible substrings of “gatta”:
!   “a☐☐?”, “t☐?”, “t?” for “gatta” with weight λ3 , λ2 or λ, respectively.

!   There are two possible substrings of “cata”

!   “a☐?”, “t?” with weight λ2 and λ

!   Their match gives weights: λ5 , λ3, λ2 ⇒ by summing: λ5 + λ3 + λ2

Evaluating SK of size 2 using DP2

!   The number (weight) of

substrings of size 2 between

“gat” and “cat” is λ4 = λ2

([“a”,”a”] entry of DP) x λ2(cost

of one character), where a =

“t” and b = “t”.

!   Between “gatta” and “cata” is

λ7 + λ5 + λ4, i.e the matches of

“a☐☐a”, “t☐a”, “ta” with

“a☐a” and “ta”.

€

 SKp= 2

String Kernels for OCR

Pixel Representation

Sequence of bits

L1 00011100
. 00111100
. 00101100
. 00001100

 00001100
L8 00001100

€

SK(ima ,imb) = SK(La
i ,Lb

i)
i=1..8
∑

Results

!   Using columns+rows+diagonals

Tree kernels

!   Subtree, Subset Tree, Partial Tree kernels

!   Efficient computation

Main Idea of Tree Kernels

Example of a syntactic parse tree

!   “John delivers a talk in Rome”

S → N VP

VP → V NP PP

PP → IN N

N → Rome

N

Rome

S

N

NP

D N

VP

V John

in

 delivers

a talk

PP

IN

The Syntactic Tree Kernel (STK)
[Collins and Duffy, 2002]

NP

D N

VP

V

delivers

a talk

NP

D N

VP

V

delivers

a

NP

D N

VP

V

delivers

NP

D N

VP

V NP

VP

V

The overall fragment set

The overall fragment set

NP

D

VP

a

Children are not divided

Explicit kernel space

zx
!!
!

!

"(T
x
) =
!
x = (0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)

!   counts the number of common substructures

!

"(T
z
) =
!
z = (1,..,0,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

Efficient evaluation of the scalar product

!

!
x "
!
z = #(T

x
) " #(T

z
) = K(T

x
,T

z
) =

 =
nx $Tx

% &(n
x
,n

z
)

nz $Tz

%

Efficient evaluation of the scalar product

!   [Collins and Duffy, ACL 2002] evaluate Δ in O(n2):

€

Δ(nx,nz) = 0, if the productions are different else
Δ(nx,nz) =1, if pre-terminals else

Δ(nx ,nz) = (1+ Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx)

∏

!

!
x "
!
z = #(T

x
) " #(T

z
) = K(T

x
,T

z
) =

 =
nx $Tx

% &(n
x
,n

z
)

nz $Tz

%

Other Adjustments

!   Normalization

!

"(n
x
,n

z
) = #, if pre-terminals else

"(n
x
,n

z
) = # (1+ "(ch(n

x
, j),ch(n

z
, j)))

j=1

nc(nx)

$

!

" K (T
x
,T

z
) =

K(T
x
,T

z
)

K(T
x
,T

x
) #K(T

z
,T

z
)

!   Decay factor

SubTree (ST) Kernel [Vishwanathan and Smola, 2002]

NP

D N

a talk

D N

a talk

NP

D N

VP

V

delivers

a talk

V

delivers

Evaluation

!   Given the equation for STK

€

Δ(nx,nz) = 0, if the productions are different else
Δ(nx,nz) =1, if pre-terminals else

Δ(nx,nz) = (1+ Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx)

∏

Evaluation

€

Δ(nx,nz) = 0, if the productions are different else
Δ(nx,nz) =1, if pre-terminals else

Δ(nx,nz) = (Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx)

∏

!   Given the equation for STK

Fast Evaluation of STK [Moschitti, EACL 2006]

where P(nx) and P(nz) are the production rules used

at nodes nx and nz

€

K (Tx ,Tz) = Δ(nx ,nz)
nx ,nz ∈NP
∑

NP = nx ,nz ∈ Tx ×Tz :Δ(nx ,nz) ≠ 0{ } =

 = nx ,nz ∈ Tx ×Tz :P(nx) = P(nz){ },

Algorithm

Running Time Complexity

!   We order the production rules used in Tx and Tz, at

loading time

!   At learning time we may evaluate NP in

 |Tx|+|Tz | running time

!   If Tx and Tz are generated by only one production rule ⇒
O(|Tx|×|Tz |)…

Running Time Complexity

!   We order the production rules used in Tx and Tz, at

loading time

!   At learning time we may evaluate NP in

 |Tx|+|Tz | running time

!   If Tx and Tz are generated by only one production rule ⇒
O(|Tx|×|Tz |)…Very Unlikely!!!!

Labeled Ordered Tree Kernel

NP

D N

VP

V

 gives

a talk

NP

D N

VP

V

a talk

NP

D N

VP

a talk

NP

D N

VP

a

NP

D

VP

a

NP

D

VP

NP

N

VP

NP

N

NP NP

D N
D

NP

…

VP

!   STK satisfies the constraint “remove 0 or all children at a

time”.

!   If we relax such constraint we get more general

substructures [Kashima and Koyanagi, 2002]

Weighting Problems

!   Both matched pairs give the same

contribution.

!   Gap based weighting is needed.

!   A novel efficient evaluation has to

be defined

NP

D N

VP

V

 gives

a talk

NP

D N

VP

V

a talk

NP

D N

VP

V

 gives

a talk

 gives

JJ

 good

NP

D N

VP

V

 gives

a talk

JJ

 bad

Partial Trees, [Moschitti, ECML 2006]

NP

D N

VP

V

brought

a cat

NP

D N

VP

V

a cat

NP

D N

VP

a cat

NP

D N

VP

a

NP

D

VP

a

NP

D

VP

NP

N

VP

NP

N

NP NP

D N
D

NP

…

VP

!   STK + String Kernel with weighted gaps on Nodes’

children

Partial Tree Kernel

!   By adding two decay factors we obtain:

Efficient Evaluation (1)

!   In [Taylor and Cristianini, 2004 book], sequence kernels with
weighted gaps are factorized with respect to different
subsequence sizes.

!   We treat children as sequences and apply the same theory

Dp

Efficient Evaluation (2)

!   The complexity of finding the subsequences is

!   Therefore the overall complexity is

 where ρ is the maximum branching factor (p = ρ)

Running Time of Tree Kernel Functions

SVM-light-TK Software

!   Encodes ST, STK and combination kernels

 in SVM-light [Joachims, 1999]

!   Available at http://dit.unitn.it/~moschitt/

!   Tree forests, vector sets

!   The new SVM-Light-TK toolkit will be released asap (email

me to have the current version)

Practical Example on Question
Classification

!   Definition: What does HTML stand for?

!   Description: What's the final line in the Edgar Allan Poe
poem "The Raven"?

!   Entity: What foods can cause allergic reaction in people?

!   Human: Who won the Nobel Peace Prize in 1992?

!   Location: Where is the Statue of Liberty?

!   Manner: How did Bob Marley die?

!   Numeric: When was Martin Luther King Jr. born?

!   Organization: What company makes Bentley cars?

Question Classifier based on Tree Kernels

!   Question dataset (http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/)

[Lin and Roth, 2005])
!   Distributed on 6 categories: Abbreviations, Descriptions, Entity,

Human, Location, and Numeric.

!   Fixed split 5500 training and 500 test questions

!   Cross-validation (10-folds)

!   Using the whole question parse trees
!   Constituent parsing

!   Example

 “What is an offer of direct stock purchase plan ?”

Data Format

!   “What does HTML stand for?”

!   1 |BT| (SBARQ (WHNP (WP What))(SQ (AUX does)(NP
(NNP S.O.S.))(VP (VB stand)(PP (IN for))))(. ?))|ET|

Trees + Feature Vectors

!   “What does HTML stand for?”

!   1 |BT| (SBARQ (WHNP (WP What))(SQ (AUX does)(NP
(NNP S.O.S.))(VP (VB stand)(PP (IN for))))(. ?))|ET|

 2:1 21:1.4421347148614654E-4 23:1 31:1 36:1 39:1 41:1
46:1 49:1 52:1 66:1 152:1 246:1 333:1 392:1 |EV|

Basic Commands

!   Training and classification

!   ./svm_learn -t 5 train.dat model!

!   ./svm_classify test.dat model!

Conclusions

!   Dealing with noisy and errors of NLP modules require

robust approaches

!   SVMs are robust to noise and Kernel methods allows for:
!   Syntactic information via STK

!   Shallow Semantic Information via PTK

!   Word/POS sequences via String Kernels

!   When the IR task is complex, syntax and semantics are

essential

⇒ Great improvement in Q/A classification

!   SVM-Light-TK: an efficient tool to use them

SVM-light-TK Software

!   Encodes ST, SST and combination kernels

 in SVM-light [Joachims, 1999]

!   Available at http://dit.unitn.it/~moschitt/

!   Tree forests, vector sets

!   New extensions: the PT kernel will be released

asap

Data Format

!   “What does Html stand for?”

!   1 |BT| (SBARQ (WHNP (WP What))(SQ (AUX does)(NP (NNP
S.O.S.))(VP (VB stand)(PP (IN for))))(. ?))

|BT| (BOW (What *)(does *)(S.O.S. *)(stand *)(for *)(? *))

|BT| (BOP (WP *)(AUX *)(NNP *)(VB *)(IN *)(. *))

|BT| (PAS (ARG0 (R-A1 (What *)))(ARG1 (A1 (S.O.S. NNP)))(ARG2
(rel stand)))

|ET| 1:1 21:2.742439465642236E-4 23:1 30:1 36:1 39:1 41:1 46:1 49:1
66:1 152:1 274:1 333:1

|BV| 2:1 21:1.4421347148614654E-4 23:1 31:1 36:1 39:1 41:1 46:1 49:1
52:1 66:1 152:1 246:1 333:1 392:1 |EV|

Basic Commands

!   Training and classification
!   ./svm_learn -t 5 -C T train.dat model

!   ./svm_classify test.dat model

!   Learning with a vector sequence
!   ./svm_learn -t 5 -C V train.dat model

!   Learning with the sum of vector and kernel

sequences
!   ./svm_learn -t 5 -C + train.dat model

Custom Kernel

!   Kernel.h

!   double custom_kernel(KERNEL_PARM
*kernel_parm, DOC *a, DOC *b);

!   if(a->num_of_trees && b->num_of_trees && a-
>forest_vec[i]!=NULL && b->forest_vec[i]!
=NULL){// Test if one the i-th tree of
instance a and b is an empty tree

Custom Kernel: tree-kernel

!   k1= // summation of tree kernels
tree_kernel(kernel_parm, a, b, i, i)/
Evaluate tree kernel between the two i-th
trees.

sqrt(tree_kernel(kernel_parm, a, a, i, i) *
tree_kernel(kernel_parm, b, b, i, i));
Normalize respect to both i-th trees.

Custom Kernel: Polynomial kernel

!   if(a->num_of_vectors && b->num_of_vectors
&& a->vectors[i]!=NULL && b->vectors[i]!
=NULL){ Check if the i-th vectors are
empty.

!   k2= // summation of vectors
basic_kernel(kernel_parm, a, b, i, i)/
Compute standard kernel (selected according
to the "second_kernel" parameter).

Custom Kernel: Polynomial kernel

!   sqrt(

 basic_kernel(kernel_parm, a, a, i, i) *
basic_kernel(kernel_parm, b, b, i, i)

); //normalize vectors

!   return k1+k2;

Conclusions

!   Kernel methods and SVMs are useful tools to
design language applications

!   Kernel design still require some level of expertise

!   Engineering approaches to tree kernels
!   Basic Combinations
!   Canonical Mappings, e.g.

!   Node Marking
!   Merging of kernels in more complex kernels

!   State-of-the-art in SRL and QC

!   An efficient tool to use them

Thank you

References

!   Alessandro Moschitti, Silvia Quarteroni, Roberto Basili and Suresh Manandhar,
Exploiting Syntactic and Shallow Semantic Kernels for Question/Answer Classification,
Proceedings of the 45th Conference of the Association for Computational Linguistics
(ACL), Prague, June 2007.

!   Alessandro Moschitti and Fabio Massimo Zanzotto, Fast and Effective Kernels for
Relational Learning from Texts, Proceedings of The 24th Annual International
Conference on Machine Learning (ICML 2007), Corvallis, OR, USA.

!   Daniele Pighin, Alessandro Moschitti and Roberto Basili, RTV: Tree Kernels for
Thematic Role Classification, Proceedings of the 4th International Workshop on
Semantic Evaluation (SemEval-4), English Semantic Labeling, Prague, June 2007.

!   Stephan Bloehdorn and Alessandro Moschitti, Combined Syntactic and Semanitc
Kernels for Text Classification, to appear in the 29th European Conference on
Information Retrieval (ECIR), April 2007, Rome, Italy.

!   Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti, and Alessandro Moschitti,
Efficient Kernel-based Learning for Trees, to appear in the IEEE Symposium on
Computational Intelligence and Data Mining (CIDM), Honolulu, Hawaii, 2007

An introductory book on SVMs, Kernel
methods and Text Categorization

References

!   Roberto Basili and Alessandro Moschitti, Automatic Text
Categorization: from Information Retrieval to Support Vector Learning,
Aracne editrice, Rome, Italy.

!   Alessandro Moschitti,
Efficient Convolution Kernels for Dependency and Constituent
Syntactic Trees. In Proceedings of the 17th European Conference on
Machine Learning, Berlin, Germany, 2006.

!   Alessandro Moschitti, Daniele Pighin, and Roberto Basili,
Tree Kernel Engineering for Proposition Re-ranking, In Proceedings of
Mining and Learning with Graphs (MLG 2006), Workshop held with
ECML/PKDD 2006, Berlin, Germany, 2006.

!   Elisa Cilia, Alessandro Moschitti, Sergio Ammendola, and Roberto
Basili,
Structured Kernels for Automatic Detection of Protein Active Sites. In
Proceedings of Mining and Learning with Graphs (MLG 2006),
Workshop held with ECML/PKDD 2006, Berlin, Germany, 2006.

References

!   Fabio Massimo Zanzotto and Alessandro Moschitti,
Automatic learning of textual entailments with cross-pair similarities. In
Proceedings of COLING-ACL, Sydney, Australia, 2006.

!   Alessandro Moschitti,
Making tree kernels practical for natural language learning. In Proceedings
of the Eleventh International Conference on European Association for
Computational Linguistics, Trento, Italy, 2006.

!   Alessandro Moschitti, Daniele Pighin and Roberto Basili.
Semantic Role Labeling via Tree Kernel joint inference. In Proceedings of
the 10th Conference on Computational Natural Language Learning, New
York, USA, 2006.

!   Alessandro Moschitti, Bonaventura Coppola, Daniele Pighin and Roberto
Basili, Semantic Tree Kernels to classify Predicate Argument Structures. In
Proceedings of the the 17th European Conference on Artificial Intelligence,
Riva del Garda, Italy, 2006.

References

!   Alessandro Moschitti and Roberto Basili,
A Tree Kernel approach to Question and Answer Classification in
Question Answering Systems. In Proceedings of the Conference on
Language Resources and Evaluation, Genova, Italy, 2006.

!   Ana-Maria Giuglea and Alessandro Moschitti,
Semantic Role Labeling via FrameNet, VerbNet and PropBank. In
Proceedings of the Joint 21st International Conference on
Computational Linguistics and 44th Annual Meeting of the Association
for Computational Linguistics (COLING-ACL), Sydney, Australia, 2006.

!   Roberto Basili, Marco Cammisa and Alessandro Moschitti,
Effective use of wordnet semantics via kernel-based learning. In
Proceedings of the 9th Conference on Computational Natural
Language Learning (CoNLL 2005), Ann Arbor(MI), USA, 2005

References

!   Alessandro Moschitti, Ana-Maria Giuglea, Bonaventura Coppola and
Roberto Basili. Hierarchical Semantic Role Labeling. In Proceedings of
the 9th Conference on Computational Natural Language Learning
(CoNLL 2005 shared task), Ann Arbor(MI), USA, 2005.

!   Roberto Basili, Marco Cammisa and Alessandro Moschitti,
A Semantic Kernel to classify texts with very few training examples. In
Proceedings of the Workshop on Learning in Web Search, at the 22nd
International Conference on Machine Learning (ICML 2005), Bonn,
Germany, 2005.

!   Alessandro Moschitti, Bonaventura Coppola, Daniele Pighin and
Roberto Basili.
Engineering of Syntactic Features for Shallow Semantic Parsing. In
Proceedings of the ACL05 Workshop on Feature Engineering for
Machine Learning in Natural Language Processing, Ann Arbor (MI),
USA, 2005.

References

!   Alessandro Moschitti, A study on Convolution Kernel for Shallow
Semantic Parsing. In proceedings of ACL-2004, Spain, 2004.

!   Alessandro Moschitti and Cosmin Adrian Bejan, A Semantic Kernel for
Predicate Argument Classification. In proceedings of the CoNLL-2004,
Boston, MA, USA, 2004.

!   M. Collins and N. Duffy, New ranking algorithms for parsing and
tagging: Kernels over discrete structures, and the voted perceptron. In
ACL02, 2002.

!   S.V.N. Vishwanathan and A.J. Smola. Fast kernels on strings and
trees. In Proceedings of Neural Information Processing Systems, 2002.

References

!   AN INTRODUCTION TO SUPPORT VECTOR MACHINES
 (and other kernel-based learning methods)
 N. Cristianini and J. Shawe-Taylor Cambridge University Press

!   Xavier Carreras and Llu´ıs M`arquez. 2005. Introduction to the
CoNLL-2005 Shared Task: Semantic Role Labeling. In proceedings
of CoNLL’05.

!   Sameer Pradhan, Kadri Hacioglu, Valeri Krugler, Wayne Ward,
James H. Martin, and Daniel Jurafsky. 2005. Support vector learning
for semantic argument classification. to appear in Machine Learning
Journal.

Algorithm

The Impact of SSTK in Answer
Classification

64

64.5

65

65.5

66

66.5

67

67.5

68

68.5

69

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
j

F1
-m
ea
su
re Q(BOW)+A(BOW)

Q(BOW)+A(PT,BOW)

Q(PT)+A(PT,BOW)

Q(BOW)+A(BOW,PT,PAS)

Q(BOW)+A(BOW,PT,PAS_N)

Q(PT)+A(PT,BOW,PAS)

Q(BOW)+A(BOW,PAS)

Q(BOW)+A(BOW,PAS_N)

Mercer’s conditions (1)

Mercer’s conditions (2)

!   If the Gram matrix:

 is positive semi-definite there is a mapping φ that

produces the target kernel function

), ji xxkG

(=

The lexical semantic kernel is not always
a kernel

!   It may not be a kernel so we can use M´·M, where M is the
initial similarity matrix

Efficient Evaluation (1)

!   In [Taylor and Cristianini, 2004 book], sequence kernels with
weighted gaps are factorized with respect to different
subsequence sizes.

!   We treat children as sequences and apply the same theory

Dp

