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Linear Classifier 
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f (  x ) =
 
x ⋅
 
w + b = 0,    x ,  w ∈ ℜn ,b∈ ℜ

!   The equation of a hyperplane is 

!      is the vector representing the classifying example 

!      is the gradient of the hyperplane 

!   The classification function is 
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! Mapping vectors in a space where they are linearly 
separable 
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The main idea of Kernel Functions 
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A mapping example 

! Given two masses m1 and m2 , one is constrained 

! Apply a force fa to the mass m1   

! Experiments 

! Features m1 , m2 and  fa 

! We want to learn a classifier that tells when a mass m1 will 
get far away from m2  
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! If we consider the Gravitational Newton Law 

! we need to find when f(m1 , m2 , r) < fa 



A mapping example (2) 

))(),...,(()(),...,( 11 xxxxxx nn


φφφ =→=

! The gravitational law is not linear so we need to change 
space 

)ln,ln,ln,(ln),,,(),,,( 2121 rmmfzyxkrmmf aa =→

zyxcrmmCrmmf 2ln2lnlnln),,(ln 2121 −++=−++=

(ln m1,ln m2,-2ln r)⋅ (x,y,z)- ln fa + ln C = 0, we can decide 
without error if the mass will get far away or not 

! As 

0lnln2lnlnln 21 =−+−− Crmmfa

! We need the hyperplane 



A kernel-based Machine 
Perceptron training 
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 w 0 ←
 
0 ;b0 ← 0;k ← 0;R← max1≤ i≤ l ||  x i ||

do
       for i =  1 to 
         if yi (

 w k ⋅
 x i + bk ) ≤ 0 then

                   w k +1 =
 w k +ηyi

 x i
                  bk +1 = bk +ηyi R

2

                 k = k + 1
        endif
      endfor
while an error is found
return k,(  w k ,bk ) 



      
! Each step of perceptron only training data is added with a 

certain weight 

! So the classification function 

! Note that data only appears in the scalar product 
 
 

Dual Representation for Classification 
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 w = α j
j=1..
∑ y j

 x j
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sgn(  w ⋅  x + b) = sgn α j
j=1..
∑ y j

 x j ⋅
 x + b
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Dual Representation for Learning 
 
! as well as the updating function  

! The learning rate      only affects the re-scaling of the 
hyperplane, it does not affect the algorithm, so we can 
fix 1.η =

η
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if yi( α j
j=1..
∑ y j

 
x j ⋅
 
x i + b) ≤ 0 then α i =α i +η



     
! We can rewrite the classification function as 

 
! As well as the updating function 

! The learning rate     does not affect the algorithm so we set it to 
1.η =

η

Dual Perceptron algorithm and Kernel 
functions 
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h(x) = sgn(  w φ ⋅ φ(
 x ) + bφ ) = sgn( α j

j=1..
∑ y jφ(

 x j ) ⋅ φ(
 x ) + bφ ) =

= sgn( α j
i=1..
∑ y jk(

 x j ,
 x ) + bφ )
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if yi α j
j=1..
∑ y jk(  x j ,

 x i) + bφ
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* * ≤ 0 allora α i =α i +η



Dual optimization problem of SVMs 



Kernels in Support Vector Machines  

!   In Soft Margin SVMs we maximize: 

!   By using kernel functions we rewrite the problem as: 



Kernel Function Definition 

!   Kernels are the product of mapping functions such as 
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 x ∈ ℜn,     
 
φ ( x ) = (φ1(

 x ),φ2( x ),...,φm (  x ))∈ ℜm



The Kernel Gram Matrix 

!   With KM-based learning, the sole information used from 
the training data set is the Kernel Gram Matrix 

 

!   If the kernel is valid, K is symmetric definite-positive . 

Ktraining =

k(x1,x1) k(x1,x2 ) ... k(x1,xm )
k(x2,x1) k(x2,x2 ) ... k(x2,xm )
... ... ... ...

k(xm,x1) k(xm,x2 ) ... k(xm,xm )
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Valid Kernels 



Valid Kernels cont’d 

!   If the matrix is positive semi-definite then we can find a 
mapping φ implementing the kernel function 



Mercer’s Theorem (finite space) 

!   Let us consider 
  

! 

K =  K(
! 
x i,
! 
x j )( )

i, j=1

n

!   K symmetric ⇒ ∃ V:                      for Takagi factorization of a 

complex-symmetric matrix, where:  

!   Λ is the diagonal matrix of the eigenvalues λt of K  

!                          are the eigenvectors, i.e. the columns of V 

!   Let us assume lambda values non-negative 

! 

K = V" # V 
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Mercer’s Theorem 
(sufficient conditions) 
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Φ(  x i) ⋅ Φ( x j ) = λtvti
t=1

n

∑ vtj = VΛ ' V ( )ij = K ij = K( x i,
 x j )

     

!   Therefore 

                                                                    ,  

!   which implies that K is a kernel function       



Mercer’s Theorem 
(necessary conditions) 

  

! 

! 
z 

2

=
! 
z "
! 
z = # $ V 

! 
v 

s
# $ V 
! 
v 

s
=
! 
v 

s
' V # # $ V 

! 
v 

s
=

 
! 
v 

s
' K
! 
v 

s
=  
! 
v 

s
' %

s

! 
v 

s
= %

s

! 
v 

s

2

< 0

!   Suppose we have negative eigenvalues λs and 

eigenvectors       the following point 

                                                                

!   has the following norm: 

 

this contradicts the geometry of the space. 
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Is it a valid kernel? 

!   It may not be a kernel so we can use M´·M 



Valid Kernel operations 

!   k(x,z) = k1(x,z)+k2(x,z) 

!   k(x,z) = k1(x,z)*k2(x,z) 

!   k(x,z) = α k1(x,z) 

!   k(x,z) = f(x)f(z) 

!   k(x,z) = k1(φ(x),φ(z)) 

!   k(x,z) = x'Bz 



Basic Kernels for unstructured data 

!   Linear Kernel 

!   Polynomial Kernel 

!   Lexical kernel 

!   String Kernel 



Linear Kernel 

!   In Text Categorization documents are word vectors 

!   The dot product            counts the number of features in 

common 

!   This provides a sort of similarity 

  

! 

"(d
x
) =
! 
x = (0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,1)

                         buy       acquisition     stocks          sell     market

zx
!!
!

  

! 

"(d
z
) =
! 
z = (0,..,1,..,0,..,1,..,0,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

                         buy   company            stocks          sell     



Feature Conjunction (polynomial Kernel) 

!   The initial vectors are mapped in a higher space 

!   More expressive, as            encodes  

      Stock+Market vs. Downtown+Market features 

!   We can smartly compute the scalar product as 
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Document Similarity 

industry 

telephone 

 market 

company 

product 

Doc 1 Doc 2 



Lexical Semantic Kernel [CoNLL 2005] 

!   The document similarity is the SK function: 

!   where s is any similarity function between words, e.g. 

WordNet [Basili et al.,2005] similarity or LSA [Cristianini et 

al., 2002] 

!   Good results when training data is small 

€ 

SK (d1,d2 ) = s(w1,w2 )
w1 ∈d1 ,w2 ∈d2

∑



Using character sequences 

zx
!!
!

  

! 

"("bank") =
! 
x = (0,..,1,..,0,..,1,..,0,......1,..,0,..,1,..,0,..,1,..,0)

!            counts the number of common substrings 

 bank       ank           bnk          bk          b 

  

! 

"("rank") =
! 
z = (1,..,0,..,0,..,1,..,0,......0,..,1,..,0,..,1,..,0,..,1)

 rank               ank                  rnk          rk            r 

  

! 

! 
x "
! 
z = #("bank") " #("rank") = k("bank","rank")



String Kernel 

!   Given two strings, the number of matches between their 

substrings is evaluated 

!   E.g. Bank and Rank 

!   B, a, n, k, Ba, Ban, Bank, Bk, an, ank, nk,.. 

!   R, a , n , k, Ra, Ran, Rank, Rk, an, ank, nk,.. 

!   String kernel over sentences and texts 

!   Huge space but there are efficient algorithms 



Formal Definition 

,  where 

,  where 

i1 +1 



Kernel between Bank and Rank 



An example of string kernel computation 



Efficient Evaluation 

!   Dynamic Programming technique 

!   Evaluate the spectrum string kernels 

!   Substrings of size p 

!   Sum the contribution of the different spectra 



Efficient Evaluation 



An example: SK(“Gatta”,”Cata”) 

!   First, evaluate the SK with size p=1, i.e. “a”, 

“a”,”t”,”t”,”a”,”a” 

!   Store this in the table 

€ 

  SKp=1  



Evaluating DP2 

!   Evaluate the weight of the string of size p in case a 

character will be matched  

!   This is done by multiplying the double summation by the 

number of substrings of size p-1 



Evaluating the Predictive DP on strings of 
size 2 (second row) 

!   Let’s consider substrings of size 2 and suppose that: 
!   we have matched the first “a” 

!   we will match the next character that we will add to the two strings 

!   We compute the weights of matches above at different string 

positions with some not-yet known character “?” 

!   If the match occurs immediately after “a” the weight will be λ1+1 

x λ1+1 = λ4 and we store just λ2 in the DP entry in [“a”,”a”] 



Evaluating the DP wrt different positions 
(second row) 

!   If the match for “gatta” occurs after “t” the weight will be λ1+2  

(x λ2 = λ5) since the substring for it will be with “a☐?”  

!    We write such prediction in the entry [“a”,”t”] 

!   Same rationale for a match after the second “t”: we have 

the substring “a☐☐?”  (matching with “a?” from “catta”) for 

a weight of λ3+1  (x λ2) 



Evaluating the DP wrt different positions 
(third row) 

!   If the match occurs after “t” of “cata”, the weight will be λ2+1  

(x λ2 = λ5 ) since it will be with the string “a☐?”, with a weight 

of λ3  

!   If the match occurs after “t” of both “gatta” and “cata”, there 

are two ways to compose substring of size two: “a☐?” with 

weight λ4 or “t?” with weight λ2 ⇒ the total is λ2+λ4  



Evaluating the DP wrt different positions 
(third row) 

!   The final case is a match after the last “t” of both “cat” and 

“gatta” 

!    There are three possible substrings of “gatta”: 
!   “a☐☐?”, “t☐?”, “t?” for “gatta” with weight λ3 , λ2 or λ, respectively. 

!   There are two possible substrings of “cata” 

!    “a☐?”, “t?” with weight λ2 and λ 

!   Their match gives weights: λ5 , λ3, λ2  ⇒ by summing: λ5 + λ3 + λ2 



Evaluating SK of size 2 using DP2 

!   The number (weight) of 

substrings of size 2 between 

“gat” and “cat” is λ4 = λ2 

([“a”,”a”] entry of DP) x λ2(cost 

of one character), where a = 

“t” and   b = “t”. 

!   Between “gatta” and “cata” is 

λ7 + λ5 + λ4, i.e the matches of 

“a☐☐a”, “t☐a”, “ta” with 

“a☐a” and “ta”. 
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  SKp= 2  



String Kernels for OCR 



Pixel Representation  



Sequence of bits 

L1   00011100 
.    00111100 
.    00101100 
.    00001100 

   00001100 
L8   00001100 

 

€ 

SK(ima ,imb ) = SK(La
i ,Lb

i )
i=1..8
∑



Results 

!   Using columns+rows+diagonals 



Tree kernels 

!   Subtree, Subset Tree, Partial Tree kernels 

!   Efficient computation 



Main Idea of Tree Kernels 



Example of a syntactic parse tree 

!   “John delivers a talk in Rome” 

S → N VP 

VP → V NP PP 

PP → IN N 

N → Rome 

N 

Rome 

S 

N 

NP 

D N 

VP 

V John 

in 

 delivers  

a talk 

PP 

IN 



The Syntactic Tree Kernel (STK)  
[Collins and Duffy, 2002] 
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The overall fragment set 



The overall fragment set 

NP 

D 

VP 

a 

Children are not divided 



Explicit kernel space 

zx
!!
!

  

! 

"(T
x
) =
! 
x = (0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)

!            counts the number of common substructures 

  

! 

"(T
z
) =
! 
z = (1,..,0,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,0,..,1,..,0,..,0)



Efficient evaluation of the scalar product 
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x "
! 
z = #(T
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) " #(T
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Efficient evaluation of the scalar product 

!   [Collins and Duffy, ACL 2002] evaluate Δ in O(n2): 
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Δ(nx,nz ) = 0,  if the productions are different else
Δ(nx,nz ) =1,   if pre-terminals else

Δ(nx ,nz ) = (1+ Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx )

∏

  

! 

! 
x "
! 
z = #(T

x
) " #(T

z
) = K(T

x
,T

z
) =

                    =
nx $Tx

% &(n
x
,n

z
)

nz $Tz

%



Other Adjustments 

!   Normalization 
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"(n
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nc(nx )
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!   Decay factor 



SubTree (ST) Kernel [Vishwanathan and Smola, 2002] 
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Evaluation 

!   Given the equation for STK 
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Δ(nx,nz ) = 0,  if the productions are different else
Δ(nx,nz ) =1,   if pre-terminals else

Δ(nx,nz ) = (1+ Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx )

∏



Evaluation 

  

€ 

Δ(nx,nz ) = 0,  if the productions are different else
Δ(nx,nz ) =1,   if pre-terminals else

Δ(nx,nz ) = (Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx )

∏

!   Given the equation for STK 



Fast Evaluation of STK [Moschitti, EACL 2006] 

where P(nx) and P(nz) are the production rules used 

at nodes nx and nz 

 

 

  

€ 

K (Tx ,Tz ) =  Δ(nx ,nz )
nx ,nz ∈NP
∑

NP = nx ,nz ∈ Tx ×Tz :Δ(nx ,nz ) ≠ 0{ } =

     = nx ,nz ∈ Tx ×Tz :P(nx ) = P(nz ){ },



Algorithm 



Running Time Complexity 

!   We order the production rules used in Tx and Tz,  at 

loading time 

!   At learning time we may evaluate NP in  

    |Tx|+|Tz | running time 

!   If Tx and Tz are generated by only one production rule ⇒ 
O(|Tx|×|Tz | )… 



Running Time Complexity 

!   We order the production rules used in Tx and Tz,  at 

loading time 

!   At learning time we may evaluate NP in  

    |Tx|+|Tz | running time 

!   If Tx and Tz are generated by only one production rule ⇒ 
O(|Tx|×|Tz | )…Very Unlikely!!!! 



Labeled Ordered Tree Kernel 
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!   STK satisfies the constraint “remove 0 or all children at a 

time”. 

!   If we relax such constraint we get more general 

substructures [Kashima and Koyanagi, 2002] 



Weighting Problems 

!   Both matched pairs give the same 

contribution. 

!   Gap based weighting is needed. 

!   A novel efficient evaluation has to 

be defined 
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Partial Trees, [Moschitti, ECML 2006] 
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!   STK + String Kernel with weighted gaps on Nodes’ 

children 



Partial Tree Kernel 

!   By adding two decay factors we obtain: 



Efficient Evaluation (1) 

!   In [Taylor and Cristianini, 2004 book], sequence kernels with 
weighted gaps are factorized with respect to different 
subsequence sizes. 

!   We treat children as sequences and apply the same theory 

Dp 



Efficient Evaluation (2) 

!   The complexity of finding the subsequences is                         

!   Therefore the overall complexity is 

    where ρ  is the maximum branching factor (p = ρ) 



Running Time of Tree Kernel Functions 



SVM-light-TK Software 

!   Encodes ST, STK and combination kernels  

    in SVM-light [Joachims, 1999] 

!   Available at http://dit.unitn.it/~moschitt/ 

!   Tree forests, vector sets 

!   The new SVM-Light-TK toolkit will be released asap (email 

me to have the current version) 



Practical Example on Question 
Classification 

!   Definition: What does HTML stand for?     

!   Description: What's the final line in the Edgar Allan Poe 
poem "The Raven"?   

!   Entity: What foods can cause allergic reaction in people? 

!   Human: Who won the Nobel Peace Prize in 1992?    

!   Location: Where is the Statue of Liberty?     

!   Manner: How did Bob Marley die?      

!   Numeric: When was Martin Luther King Jr. born?    

!   Organization: What company makes Bentley cars?   



Question Classifier based on Tree Kernels 

!   Question dataset (http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/)   

[Lin and Roth, 2005]) 
!   Distributed on 6 categories: Abbreviations, Descriptions, Entity, 

Human, Location, and Numeric. 

!   Fixed split 5500 training and 500 test questions  

!   Cross-validation (10-folds) 

!   Using the whole question parse trees 
!   Constituent parsing 

!   Example 

        “What is an offer of direct stock purchase plan ?” 

 





Data Format 

!   “What does HTML stand for?” 

!   1  |BT| (SBARQ (WHNP (WP What))(SQ (AUX does)(NP 
(NNP S.O.S.))(VP (VB stand)(PP (IN for))))(. ?))|ET| 

 



Trees + Feature Vectors 

!   “What does HTML stand for?” 

!   1  |BT| (SBARQ (WHNP (WP What))(SQ (AUX does)(NP 
(NNP S.O.S.))(VP (VB stand)(PP (IN for))))(. ?))|ET| 

 2:1 21:1.4421347148614654E-4 23:1 31:1 36:1 39:1 41:1 
46:1 49:1 52:1 66:1 152:1 246:1 333:1 392:1 |EV|  



Basic Commands 

!   Training and classification 

!   ./svm_learn -t 5 train.dat model!

!   ./svm_classify test.dat model!



Conclusions 

!   Dealing with noisy and errors of NLP modules require 

robust approaches 

!   SVMs are robust  to noise and Kernel methods allows for: 
!   Syntactic information via STK 

!   Shallow Semantic Information via PTK 

!   Word/POS sequences via String Kernels  

!   When the IR task is complex, syntax and semantics are 

essential 

⇒ Great improvement in Q/A classification 

!   SVM-Light-TK: an efficient tool to use them 



SVM-light-TK Software 

!   Encodes ST, SST and combination kernels  

    in SVM-light [Joachims, 1999] 

!   Available at http://dit.unitn.it/~moschitt/ 

!   Tree forests, vector sets 

!   New extensions: the PT kernel will be released 

asap 



Data Format 

!   “What does Html stand for?” 

!   1  |BT| (SBARQ (WHNP (WP What))(SQ (AUX does)(NP (NNP 
S.O.S.))(VP (VB stand)(PP (IN for))))(. ?))  

|BT|    (BOW (What *)(does *)(S.O.S. *)(stand *)(for *)(? *))  

|BT|    (BOP (WP *)(AUX *)(NNP *)(VB *)(IN *)(. *))  

|BT|   (PAS (ARG0 (R-A1 (What *)))(ARG1 (A1 (S.O.S. NNP)))(ARG2 
(rel stand)))  

|ET| 1:1 21:2.742439465642236E-4 23:1 30:1 36:1 39:1 41:1 46:1 49:1 
66:1 152:1 274:1 333:1  

|BV| 2:1 21:1.4421347148614654E-4 23:1 31:1 36:1 39:1 41:1 46:1 49:1 
52:1 66:1 152:1 246:1 333:1 392:1 |EV|  



Basic Commands 

!   Training and classification 
!   ./svm_learn -t 5 -C T train.dat model 

!   ./svm_classify test.dat model 

!   Learning with a vector sequence 
!   ./svm_learn -t 5 -C V train.dat model 

!   Learning with the sum of vector and kernel 

sequences 
!   ./svm_learn -t 5 -C + train.dat model 



Custom Kernel 

!   Kernel.h 

!   double custom_kernel(KERNEL_PARM 
*kernel_parm, DOC *a, DOC *b); 

!   if(a->num_of_trees && b->num_of_trees && a-
>forest_vec[i]!=NULL && b->forest_vec[i]!
=NULL){// Test if one the i-th tree of 
instance a and b is an empty tree 



Custom Kernel: tree-kernel 

!    k1=  // summation of tree kernels             
tree_kernel(kernel_parm, a, b, i, i)/  
Evaluate tree kernel between the two i-th 
trees.             

sqrt(tree_kernel(kernel_parm, a, a, i, i) *                   
tree_kernel(kernel_parm, b, b, i, i));  
Normalize respect to both i-th trees. 



Custom Kernel: Polynomial kernel 

!   if(a->num_of_vectors && b->num_of_vectors 
&& a->vectors[i]!=NULL && b->vectors[i]!
=NULL){ Check if the i-th vectors are 
empty.  

!   k2=   // summation of vectors             
basic_kernel(kernel_parm, a, b, i, i)/ 
Compute standard kernel (selected according 
to the "second_kernel" parameter).              



Custom Kernel: Polynomial kernel 

!   sqrt( 

  basic_kernel(kernel_parm, a, a, i, i) *                   
basic_kernel(kernel_parm, b, b, i, i) 

  ); //normalize vectors 

!   return k1+k2; 



Conclusions 

!   Kernel methods and SVMs are useful tools to 
design language applications 

!   Kernel design still require some level of expertise 

!   Engineering approaches to tree kernels 
!   Basic Combinations 
!   Canonical Mappings, e.g. 

!   Node Marking 
!   Merging of kernels in more complex kernels 

!   State-of-the-art in SRL and QC 

!   An efficient tool to use them 



Thank you 
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Mercer’s conditions (1) 



Mercer’s conditions (2) 

!   If the Gram matrix:  

    is positive semi-definite there is a mapping φ that 

produces the target kernel function 

), ji xxkG


(=



The lexical semantic kernel is not always 
a kernel 

!   It may not be a kernel so we can use M´·M, where M is the 
initial similarity matrix 



Efficient Evaluation (1) 

!   In [Taylor and Cristianini, 2004 book], sequence kernels with 
weighted gaps are factorized with respect to different 
subsequence sizes. 

!   We treat children as sequences and apply the same theory 

Dp 


