
Using Machine Learning and Information Retrieval
Techniques to Improve Software Maintainability

Anna Corazza 1 and Sergio Di Martino 2 and Valerio Maggio 3 and
Alessandro Moschitti 4 and Andrea Passerini 5 and Giuseppe Scanniello 6 and Fabrizio Silvestri 7

Abstract. The software architecture plays a fundamental role in
the comprehension and maintenance of large and complex systems.
However, unlike classes or packages, this information is not explic-
itly represented in the code, giving rise to the definition of differ-
ent approaches to automatically recover the original architecture of
a system. Software architecture recovery (SAR) techniques aim at
extracting architectural information from the source code by often
involving clustering of program artifacts analyzed at different levels
of abstraction (e.g, classes or methods).

In this paper, we capitalize our expertise in Machine Learning,
Natural Language Processing and Information Retrieval to outline
promising research lines in the field of automatic SAR. In particular,
after presenting an extensive related work, we illustrate a concrete
proposal for solving two main subtasks of SAR, i.e., (I) software
clone detection and (II) clustering of functional modules according
to their lexical semantics. One interesting aspect of our proposed re-
search is the use of advanced approaches, such as kernel methods,
for exploiting structural representation of source code.

1 Introduction

Software maintenance is essential in the evolution of software sys-
tems and represents one of the most expensive, time consuming, and
challenging phase of the whole development process. As declared
in Lehman’s laws of Software Evolution [31], a software system
must be continuously adapted during its overall life cycle or it pro-
gressively becomes less satisfactory (Lehman’s first law). Thus, as
software applications are doomed to evolve and grow [13], all of
the applied changes and adaptations inevitably reduce their quality
(Lehman’s second law). Moreover, the cost and the effort necessary
for both the maintenance and the evolution operations (e.g., correc-
tive, adaptive, etc.) are mainly related to the effort necessary to com-
prehend the system and its source code [36]. Erlikh estimated that
the cost needed to perform such activities ranges from 85% to 90%
of the total cost of a software project [15].

According to Garlan [18], architectural information represent an
important resource for software maintainers to aid the comprehen-
sion, the analysis and the maintenance of large and complex systems.
In fact, software architectures provide models and views represent-

1 University of Naples “Federico II”- email: anna.corazza@unina.it
2 University of Naples “Federico II”- email: sergio.dimartino@unina.it
3 University of Naples “Federico II”- email: valerio.maggio@unina.it
4 University of Trento- email: moschitti@disi.unitn.it
5 University of Trento- email: passerini@disi.unitn.it
6 University of Basilicata- email: giuseppe.scanniello@unibas.it
7 ISTI Institute - CNR- email: fabrizio.silvestri@isti.cnr.it

ing the relationships among different software components accord-
ing to a particular set of concerns [40]. However, unlike classes or
packages, these information do not have an explicit representation in
the source code, and thus several approaches have been proposed in
the literature to support software architecture recovery (SAR) [13].
Many of these techniques derive architectural views of the subject
system from the source code by applying clustering analysis tech-
niques to software artifacts, considered at different levels of abstrac-
tion (i.e., classes or methods) [13]. These abstractions represent one
of the key aspect of such techniques as they allow to focus on spe-
cific maintenance tasks, providing different analysis perspectives. In
fact, even if the recovery process is always expressed in terms of a
clustering problem, the analysis of classes or methods leads to differ-
ent SAR analysis, namely the clustering of functional modules and
software clone detection respectively.

One of the typical tasks for the maintainers is to locate groups of
software artifacts that deals with a specific topic, in order to mod-
ify them. For instance, a maintainer could be interested in finding all
the classes that handle a given concept in the application domain, or
that provide related functionality. The greater part of the approaches
for architecture recovery [26, 34] applies clustering algorithms to
large software systems, to partition them into meaningful subsys-
tems. Files containing source code are placed in the same cluster
only in the case they implement related functions. A number of these
approaches generally attempt to discover clusters by analyzing struc-
tural dependencies between software artifacts [49, 1, 38, 5]. How-
ever, if the analysis is based on the sole structural aspect, a key source
of information about the analyzed software system may be lost, i.e.
the domain knowledge that developers embed in the source code lex-
icon. As a consequence, some efforts are being devoted to investigate
the use of lexical information for software clustering [29, 8, 7, 10].

On the other hand, the software clone detection task is focused on
the analysis and the identification of source code duplications. Du-
plicated source code is a phenomenon that occurs frequently in large
software systems [3]. Reasons why programmers duplicate code are
manifold. The most well known is a common bad programming prac-
tice, copying and pasting [43], that gives rise to software clones,
or simply clones. These clones heavily affect the reliability and the
maintainability of large software systems. The main issue in the man-
agement of clones is that errors in the original version must be fixed
in every clone. The identification of clones directly depends on the
degree of similarity between the two compared fragments: the less
their common instructions, the bigger the effort necessary to cor-
rectly detect them as clones [43]. In fact, programmers usually adapt
the copies to the new context by applying multiple modifications
such as adding new statements, renaming variables, etc. In this sce-



nario, it could be likely that some clones are not detected, thus af-
fecting the reliability of the system due to the presence of unfixed
bugs.

From the perspective of SAR techniques, the crucial part for both
the considered tasks concerns the definition of a proper similarity
measure to apply in the clustering analysis, which is able to exploit
the considered representation of software artifacts. To this aim, in
this paper we explore the possibility of defining novel techniques
for automatic software analysis that combine different methods gath-
ered from Information Retrieval (IR), Natural Language Processing
(NLP) and Machine Learning (ML) fields to automatically mine in-
formation from the source code. In particular, we investigate the ap-
plication of the so-called Kernel Methods [20, 39] to define similarity
measures able to exploit the structural representation of the source
code. These techniques provide flexible solutions able to analyze
large data set with an affordable computational efficiency. However
a trade-off is imposed on their effectiveness as they solely rely on the
quality of the analyzed data. To this aim, some part of our proposal
will be specifically focused on the definition of a publicly available
data set necessary for the assessment of the proposed approaches.

In the reminder of this paper, Section 2 provides an extensive state-
of-the-art for the two considered SAR tasks, i.e., the clustering of
functional modules and the software clone detection. Section 3 il-
lustrates our proposal for automatic clone detection whereas Sec-
tion 4 propose advanced machine learning methods, such as super-
vised clustering for SAR. Finally, Section 5 derives the conclusions.

2 State-of-the-Art in automatic SAR
A complete and extensive survey of SAR techniques is proposed
by Ducasse et al. [13] where authors provide an accurate taxonomy
of different approaches according to five distinct aspect, namely the
goals, the process, the inputs, the techniques and the outputs. In this
paper, we limit our analysis only to approaches and techniques for
automatic SAR involving clustering analysis techniques. In particu-
lar, we focus on two different SAR subtasks, related to the clustering
of functional modules (Section 2.1) and the identification of cloned
code (Section 2.2).

2.1 State-of-the-art of Software Clustering
methods

The definition of effective methods to automatically partition sys-
tems into meaningful subsystems, requires that several non trivial
issues have to be considered [26]: (i) the level of granularity for the
software entities to consider in the clustering; (ii) the information
used to compare software entities, and (iii) the clustering algorithm
to be exploited in order to group similar artifacts.

In Table 1, we summarize the state of the art regarding software
clustering for the recovery of software architectures.

To better provide a detailed overview of different approaches, in
the following we present the related literature with respect to the in-
formation exploited in the clustering process, namely structural in-
formation, lexical information, and their combinations.

Structural based approaches The works proposed by Wig-
gerts [49] and by Anquetil and Lethbridge [1] represent the first two
contributions to semi-automatic approaches for the clustering of soft-
ware entities. In particular, in [1] authors present a comparative study
of different hierarchical clustering algorithms based on structural in-
formation. However the proposed solutions require human decisions

Table 1. Overview of architecture recovery approaches

Approach Used Clustering Automatic or
Information Algorithm Semi-automatic

Anquetil structural Bunch; semi-automaticand Lethbridge [1] hierarchical
Mitchell structural hill climbing automaticand Mancoridis [38]

Doval et al. [12] structural genetic automaticalgorithm

Bittencourt
structural

edge
semi-

and Guerrero [5]
betweenness;

automatick-means;
modul. quality;
design struct.

matrix

Wu et al. [50] structural
hierarchical; semi-prog. compr. automaticpatterns;

Bunch
Tzerpos and Holt [46] structural hierarchical semi-automatic

Kuhn et al. [29] lexical hierarchical semi-automatic
Risi et al. [41] lexical k-means automatic
Corazza et al. lexical k-medoids; automatic[8, 7, 10] hierarchical

Maqbool lexical hierarchical semi-automaticand Babri [34] structural
Maletic lexical minimum semi-

and Marcus [33] structural spanning tree automatic
Scanniello et al. [45] lexical k-means automaticstructural

(e.g., cutting points of the dendrograms) to get the best partition of
software entities into clusters.

Maqbool and Babri in [34] highlight the features of hierarchical
clustering research in the context of software architecture recovery.
Special emphasis is posed on the analysis of different similarity and
distance measures that could be effectively used in clustering soft-
ware artifacts. The main contribution of the paper is, however, the
analysis of two clustering based approaches and their experimental
assessment. The discussed approaches try to reduce the number of
decisions to be taken during the clustering. They also conducted an
empirical evaluation of the clustering based approaches on four large
software systems.

Mitchell and Mancoridis in [38] present a novel clustering algo-
rithm, named Bunch. Buch produces system decompositions apply-
ing search based techniques in combination with several heuristics,
such as the coupling and cohesion of produced partitions, specif-
ically designed for the clustering of software artifacts. In particu-
lar, the coupling and the cohesion heuristics are defined in terms of
intra- e inter- clusters dependencies respectively. The evaluation of
the produced partitions has been conducted according to qualitative
and quantitative empirical investigations. Similarly, Dove et al. [12]
propose a structural approach based on genetic algorithms to group
software entities in clusters.

Clustering algorithms based on structural information have been
also used in the analysis of the software architecture evolu-
tion [5], [50]. Wu et al. in [50] present a comparative study of
a number of clustering algorithms: (a) hierarchical agglomerative
clustering algorithms based on the Jaccard coefficient and the sin-
gle/complete linkage update rules; (b) an algorithm based on pro-
gram comprehension patterns that tries to recover subsystems that
are commonly found in manually-created decompositions of large
software systems; and (c) a customized configuration of an algorithm
implemented in Bunch [38]. Similarly, Bittencourt and Guerrero [5]
present an empirical study to evaluate four widely known clustering
algorithms on a number of software systems implemented in Java
and C/C++. The analyzed algorithms are: Edge betweenness cluster-
ing, k-means clustering, modularization quality clustering, and de-
sign structure matrix clustering.



Lexical based approaches Software clustering approaches ex-
ploiting lexical information are based on the idea that the lexicon
provided by developers in the source code represent a key source of
information. In particular, such techniques mine relevant information
from source code identifiers and comments based on the assumption
that related artifacts are those that share the same vocabulary.

The approach proposed by Kuhn et al. [29] constitutes one of
the first proposals in this direction defining an automatic technique
based on the application of the Latent Semantic Indexing (LSI)
method [11]. The approach is language independent and mines the
lexical information gathered from source code comments. In addi-
tion, the approach enables software engineers to identify topics in
the source code by means of labeling of the identified clusters.

Similarly, Risi et al. [41] propose an approach that uses the LSI
and the k-means clustering algorithm to form groups of software en-
tities that implement similar functionality. A variant based on fold-in
and fold-out is introduced as well. This approach can be used to au-
tomatically recover the architectural view of a software system and
provides an important contribution on the analysis of computational
costs necessary to assess the validity of a clustering recovery tech-
nique.

Corazza et al. [8] propose a clustering based approach that consid-
ers the source code text as structured in different zones providing dif-
ferent relevance of information. In particular, the relevance of each
zone is automatically weighted thanks to the definition of a prob-
abilistic generative model and the application of the Expectation-
Maximization (EM) algorithm. Related artifacts are then grouped
accordingly using a customization of the k-medoids clustering al-
gorithm. More recently the same authors propose an investigation on
the effectiveness of the EM algorithm in combination with different
code zones [7] and different clustering algorithms [10].

Approaches based on lexical and structural information
Maletic and Marcus in [33] propose an approach based on the com-
bination of lexical and structural information to support compre-
hension tasks within the maintenance and reengineering of software
systems. From the lexical point of view they consider problem and
development domains. On the other hand, the structural dimension
refers to the actual syntactic structure of the program along with the
control and dataflow that it represents. Software entities are com-
pared using LSI, while file organization is used to get structural in-
formation. To group programs in clusters a simple graph theoretic
algorithm is used. The algorithm takes as input an undirected graph
(the graph obtained computing the cosine similarity of the two vector
representations of all the source code documents) and then constructs
a Minimal Spanning Tree (MST). Clusters are identified pruning the
edges of the MST with a weight larger than a given threshold. To as-
sess the effectiveness of the approach some case studies on a version
of Mosaic are presented and discussed.

Scanniello et al. [45] present a two phase approach for recover-
ing hierarchical software architectures of object oriented software
systems. The first phase uses structural information to identify soft-
ware layers [44]. To this end, a customization of the Kleinberg al-
gorithm [24] is used. The second phase uses lexical information ex-
tracted from the source code to identify similarity among pairs of
classes and then partitions each identified layer into software mod-
ules. The main limitation of this approach is that it is only suitable
for software systems exhibiting a classical tiered architecture.

Table 2. Considered Clone Detection Approaches

Approach Used Information Technique
Ducasse et al. [14] Textual String matchingJohnson [22]

Baker [2] Token Pattern matching
Kamiya et al. [23] Suffix-tree matching

Yang [51]

Syntactic

Dynamic Programming
Baxter et al. [3] Tree Matching

Koschke et al. [27] Suffix-tree AST
Bulychev et al. [6] Anti-unification (NLP)

Jiang et al. [21] LSH
Komondoor and Horwitz [25]

Structural
PDG Slicing

Krinke [28] PDG Heuristics
Gabel et al. [17] PDG Slicing

Leitão [32]

Combined

Software metrics
Wahler et al. [48] Frequent Item-sets
Corazza et al. [9] Tree Kernels (ML)

Roy and Cordy [42] Code Transformation
and Line Comparison

2.2 State-of-the-art of Clone detection techniques

In this section we summarize research in the area of clone detection,
grouping the proposals according to the features they exploit to iden-
tify similarities among software artifacts (see Table 2). Note that our
goal here is not to provide an extensive analysis of the clone detec-
tion approaches presented in the literature but to provide an overview
of most important techniques together with a general background on
the problem, necessary to introduce the proposal presented in Sec-
tion 3. An exhaustive survey of clone detection tools and techniques
is provided in [43].

Textual based approaches Ducasse et al. [14] propose a
language-independent approach to detect code clones, based on line-
based string matching and visual presentation of the cloned code. A
different approach is presented by Johnson [22] where the author ap-
plies a string matching technique based on fingerprints to identify
exact repetitions of text in the source code of large software systems.

The main feature of these techniques relies in their efficiency and
scalability, easily applicable to the analysis of large software sys-
tems. However, their detection capabilities are very limited and only
restricted to very similar textual duplications (line by line). As a mat-
ter of fact these approaches are scarcely usable in practice.

Token based approaches Baker [2] suggests an approach to iden-
tify duplications and near-duplications (i.e., copies with slightly
modifications) in large software systems. The proposed approach
finds source code copies that are substantially the same except for
global substitutions. Similarly, Kamiya et al. [23] use a suffix-tree
matching algorithm to compute token-by-token matching among
source code fragments. The authors adopt optimization techniques
that mainly normalize token sequences. This is due to the fact that
the underlying algorithm may be expensive when used on large soft-
ware systems.

The main drawback of these approaches is that they completely
disregard the syntactic structure of the analyzed source code, simi-
larly to textual based techniques. As a consequence, these solutions
may detect a large number of false clones, usually not corresponding
to any actual syntactic unit.

Syntactic based approaches Syntactic based approaches exploit
the information provided by Abstract Syntax Trees (AST) to identify
similar code fragments. Such techniques are more robust to modifica-
tions in code fragments than textual and token based technique. How-
ever, they may possibly fail in case modifications concerns the inver-



sion or the substitution of entire code blocks: the so-called gapped-
clones [28].

Yang [51] uses dynamic programming to find differences between
two versions of the same source file. A similar approach is presented
by Baxter et al. [3]. It is based on a tree matching algorithm to com-
pare sub-trees of an AST of a given software system. On the other
hand, Koschke et al. [27] describe an approach to detect clones based
on suffix trees of serialized ASTs. The main contribution of this work
is that software clones can be identified in linear time and space. A
different approach is presented by Bulychev et al. [6], where authors
propose a clone detection technique based on the anti-unification al-
gorithm, widely used in Natural Language processing tasks. A novel
approach for detecting similar trees has been presented by Jiang et
al. [21] in their tool Deckard. In their approach, certain character-
istic vectors are computed to approximate the structure of ASTs in
a Euclidean space. Locality sensitive hashing (LSH) is then used to
cluster similar vectors using the Euclidean distance metric.

Structural based approaches Structural based approaches gather
information from control and dependency graphs to identify clones.
In particular these techniques apply algorithms to identify isomor-
phic sub-graphs within a graph built considering control and data
flow dependencies (i.e., the program dependence graphs, PDG) of
the software system to analyze.

Komondoor and Horwitz [25] propose an approach based on
program slicing techniques, applied on PDGs. On the other hand,
Krinke [28] propose a heuristic based approach to identify isomor-
phic sub-graphs. More recently, Gabel et al. [17] propose a PDG-
based technique that maps slices of PDGs to syntax subtrees and ap-
plies the Deckard clone detection tool [21].

The main advantage of these techniques is that they do not de-
pend on the particular textual representation of the code, allowing to
detect also functional duplications, in addition to the textual based
ones considered by previous approaches. However the identification
of isomorphic sub-graphs is a NP-hard problem and only approxi-
mated solutions may be provided.

Combined approaches In the literature techniques that combine
different artifacts representation have been defined. For example,
Leitão [32] combines syntactic and semantic techniques using func-
tions that consider various aspects of software systems (e.g., similar
call sub-graphs, commutative operators, user-defined equivalences).

Differently, Wahler et al. [48] present an approach based on a data
mining technique to detect clones. This approach uses the concept of
frequent item-sets on the XML representation of the software system
to be analyzed. Morevover, Corazza et al [9] propose an approach
for software clone detection based on the application of Tree Kernel
functions to compare source code fragment according to their syntac-
tic structure and the associated lexical information. The effectiveness
of the approach has been assessed in comparative experiments with
another pure syntactic based approach. Finally, Roy and Cordy [42]
present an approach based on source transformations and text line
comparison to find clones.

3 Clone Detection
As briefly introduced in Section 1, the definition of clones [3] states
that two code fragments form a clone if they are similar according
to some similarity function. However, such similarity can be based
either on their program text, or on their functionality (independent of
their text) [43].

In the literature, all these kinds of code similarities correspond to
the following taxonomy of clones [43]:

Type 1 : An exact copy of consecutive code fragments without mod-
ifications (except for white spaces and comments).

Type 2 : Syntactically identical fragments except for variations in
identifiers, literals, and variable types in addition to Type-1s vari-
ations;

Type 3 : Copied fragments with further modifications such as
changed, added, or deleted statements in addition to Type-2s vari-
ations.

Type 4 : Code fragments that perform similar functionality but are
implemented by different syntactic variants.

According to this classification, only Type 1 clones are represented
by exactly the same set of instructions, while the other three types in-
volve lexical and syntactic variations between the two fragments. As
a consequence, an effective similarity measure has to combine both
the syntactic and lexical information. Thus, the input representation
is the first crucial point to consider when designing a machine learn-
ing based clone detector. In addition, annotated data are needed to
train the considered techniques. In the rest of this section we discuss
these two points in depth and also the assessment protocol.

3.1 Code Similarities and Kernel Methods
Kernel methods [20] have shown to be effective in approaches con-
sidering the similarity between complex input structures. In particu-
lar, tree kernels have been widely used in fields including natural lan-
guage processing [39] and bioinformatics [47], applied to parse and
phylogenetic trees respectively. Thus, considering the source code, it
seems rather intuitive to apply tree kernels to Abstract Syntax Trees
(ASTs) of the source code. However, as the sole syntactic informa-
tion is not sufficient to decide whether two code fragments are clones
or not, we enriched the information present in each (internal) node of
the AST by annotating them with the lexemes gathered from the cor-
responding leaf nodes. Preliminary results are reported in [9].

Such approach can not be applied in detecting Type 4 clones as
their similarity is independent of the corresponding program text. As
in this case the information about the program behavior becomes rel-
evant for the identification of clones, we consider the source code as
represented by the Program Dependency Graph (PDG) onto which
we apply a graph kernel method to detect similar subgraphs. A PDG
is a representation of a function in which nodes correspond to sim-
ple statements and control flow predicates, and edges encode data
and control dependencies [17]. However, the main drawback of these
kernels with respect to the previous ones regards the computational
effort needed in performing the similarity evaluation. As a conse-
quence, it is necessary to find a good trade-off between such com-
putational cost and the information taken into account in the com-
parison of PDGs. To this aim, we consider Weighted Decomposition
Kernels (WDK) [37] as they enable to define criteria to reduce the
total number of comparisons. We generate the PDGs for source code
written in the C language by using the Code Surfer tool.8

3.2 Training data
A crucial problem in adopting machine learning approaches regards
the necessity to arrange two different set of annotated data, namely
the training and the assessment set respectively. Unfortunately, this

8 http://www.grammatech.com



kind of data set are harder to get in case of clone detection as the
manual annotation process is too expensive for large systems. There-
fore, in order to alleviate such problem, the generally adopted solu-
tion consider the definition of a pooling process where the manual
check is performed on a limited set of data gathered from different
clone detection tools. An example of such process is provided in [4].
However, the effect of such procedure is that there is no guarantee
of completeness and only a precision measure can be evaluated, by
manually checking the output of the system. Moreover, the so ob-
tained data are not effective for training, as they tend to simulate
the system used to generate them, rather than addressing the actual
clones.

Given such situation, only unsupervised machine learning, i.e.
clustering, can be proposed. However, clustering can not be expected
to be accurate enough for this application, as only the similarity def-
inition can be exploited to guide the algorithm. As an alternative, we
explore the use of simulated data to build a training set and apply su-
pervision to detect the clones. The data set is produced as a variation
of a given software project where clones are modified and injected
by following predefined probability distributions. In this way, we can
control the quality of the training set, without imposing any restric-
tion on its size. A classifier employing the necessary kernels can then
be trained to filter the data produced by the clustering step.

3.3 Parameter Setting and Experimental
assessment

To understand the effectiveness of the proposal, an extensive experi-
mental assessment is needed. In particular, a lot of parameters need
to be set regarding the different input representations, the probability
distributions used in the training set generation and the kernel param-
eters. Given this scenario a k-fold cross validation protocol seems to
be appropriate. As this preprocessing step is performed on a fully la-
beled data set, precision, recall and F-measure are used to estimate
the effectiveness of the considered configurations.

Once the best configuration has been identified, it will be used to
replicate the few available datasets in the literature, in order to com-
pare the proposal with the state-of-the-art. As previously discussed,
since not all the gold positives are labelled, both the recall and F-
measure are underestimated.

4 Architecture Recovery
Recovering the architecture of a software system requires to group
together portions of code jointly performing a certain function and
identifying the structural organization of these functional modules.
The problem can be naturally formalized in terms of hierarchical
clustering (see Section 2). Within such framework, we aim at im-
proving over existing approaches by leveraging over the following
aspects:

1) exploiting the rich structure characterizing software projects, in
terms of hierarchical structuring of the code and relationships given
by e.g. function calls. As already discussed for the clone detection
problem (see Section 3), kernel methods are a natural candidate for
learning problems involving richly structured objects. We will thus
develop structured kernels on AST and PDG testing them in terms
of capacity to recover similarity between related fragments. We will
also employ kernel learning approaches [19], where the similarity
measure is not fully specified a-priori, but is learned from examples
as a combination of similarity patterns. Logic kernels [30] are par-
ticularly promising in this context, as they allow to encode arbitrary

domain knowledge concerning relationships between code fragments
from which similarity measures are to be learned.

2) exploiting all available information, in terms of existing full or
partial architecture documentation, in order to improve performance
of predictive algorithms. The few existing fully documented software
systems can be used as gold standards representing how a correct ar-
chitecture recovery should appear. The problem can be framed in
terms of supervised clustering [16]: gold standards are examples of
inputs (the code) and desired outputs (its architectural organization),
used to train a predictive machine trying to approximate the desired
output when fed with the code. In so doing, the predictor adapts the
similarity measure to improve the approximation. When presented
with a new piece of code, the trained machine clusters it using the
learned similarity measure. We plan to extend this supervised clus-
tering paradigm, mostly developed for flat clustering, to produce a
hierarchy of clusters. Partial architecture documentation can also be
used in a similar fashion by turning the supervised learning problem
into a semi-supervised one: the algorithm is trained to output a full
architectural representation which is consistent with the partial in-
formation available, possibly accounting for inconsistencies due to
labeling errors or ambiguity.

5 Conclusions
In this paper, we presented an extensive related work in the field of
automatic SAR. We also illustrated our experience and proposal for
using advanced Machine Learning, Natural Language Processing and
Information Retrieval for automatic SAR.

In particular, we discussed innovative approaches, i.e., kernel
methods, to detect the similarity between complex input structures
such as source code represented in terms of Abstract Syntax Trees.
We also proposed hybrid methods exploiting Program dependency
graphs in machine learning algorithms (MLA) based on graph ker-
nels. Since MLA require training data, we outlined possible ap-
proaches to gather it, ranging from manual annotation to artificial
data generation. In this respect, we also discussed innovative MLA
for learning object similarities, which are able to integrate back-
ground knowledge by means of logic predicates.

Finally, we proposed new supervised clustering methods which
can automatically learn how to recover software architectures.

REFERENCES
[1] N. Anquetil, C. Fourrier, and T. C. Lethbridge, ‘Experiments with clus-

tering as a software remodularization method’, in In Proceedings of the
6th Working Conference on Reverse Engineering, pp. 235–255, Wash-
ington, DC, USA, (1999). IEEE Computer Society.

[2] B. Baker, ‘On finding duplication and near-duplication in large software
systems’, in IEEE Proceedings of the Working Conference on Reverse
Engineering, (1995).

[3] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna,
and Lorraine Bier, ‘Clone detection using abstract syntax trees’, in Pro-
ceedings of the International Conference on Software Maintenance, pp.
368–377. IEEE Press, (1998).

[4] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke, and Et-
tore Merlo, ‘Comparison and evaluation of clone detection tools’, IEEE
Trans. Software Eng., 33(9), 577–591, (2007).

[5] R. A. Bittencourt and D. D. S. Guerrero, ‘Comparison of graph clus-
tering algorithms for recovering software architecture module views’,
in Proceedings of the European Conference on Software Maintenance
and Reengineering, pp. 251–254, Washington, DC, USA, (2009). IEEE
Computer Society.

[6] Peter Bulychev and Marius Minea, ‘Duplicate code detection using
anti-unification.’, in Spring/Summer Young Researcher’s Colloquium,
(2008).



[7] A. Corazza, S. Di Martino, V. Maggio, and G. Scanniello, ‘Investi-
gating the use of lexical information for software system clustering’,
in Proceedings of the 15th European Conference on Software Main-
tenance and Reengineering, CSMR ’11, pp. 35–44, Washington, DC,
USA, (2011). IEEE Computer Society.

[8] A. Corazza, S. Di Martino, and G. Scanniello, ‘A probabilistic based
approach towards software system clustering’, Proceedings of the Euro-
pean Conference on Software Maintenance and Reengineering, 88–96,
(2010).

[9] Anna Corazza, Sergio Di Martino, Valerio Maggio, and Giuseppe Scan-
niello, ‘A tree kernel based approach for clone detection’, in Proceed-
ings of the 2010 IEEE International Conference on Software Mainte-
nance, ICSM ’10, pp. 1–5, Washington, DC, USA, (2010). IEEE Com-
puter Society.

[10] Anna Corazza, Sergio Martino, Valerio Maggio, and Giuseppe Scan-
niello, ‘Combining machine learning and information retrieval tech-
niques for software clustering’, in Eternal Systems, eds., Alessandro
Moschitti and Riccardo Scandariato, volume 255 of Communications
in Computer and Information Science, 42–60, Springer Berlin Heidel-
berg, (2012).

[11] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, ‘Indexing by latent semantic analysis’, Journal of the
American Society of Information Science, 41(6), 391–407, (1990).

[12] D. Doval, S. Mancoridis, and B. S. Mitchell, ‘Automatic clustering of
software systems using a genetic algorithm’, in Proceedings of the Soft-
ware Technology and Engineering Practice, pp. 73–82, Washington,
DC, USA, (1999). IEEE Computer Society.

[13] S. Ducasse and D. Pollet, ‘Software architecture reconstruction: A
process-oriented taxonomy’, Software Engineering, IEEE Transactions
on, 35(4), 573 –591, (july-aug. 2009).

[14] S. Ducasse, M. Rieger, and S. Demeyer, ‘A language independent ap-
proach for detecting duplicated code’, in Proceedings of the Interna-
tional Conference on Software Maintenance, pp. 109–118, (1999).

[15] Len Erlikh, ‘Leveraging legacy system dollars for e-business’, IT Pro-
fessional, 2, 17–23, (2000).

[16] Thomas Finley and Thorsten Joachims, ‘Supervised clustering with
support vector machines’, in Proceedings of the 22nd international con-
ference on Machine learning, ICML ’05, pp. 217–224, New York, NY,
USA, (2005). ACM.

[17] Mark Gabel, Lingxiao Jiang, and Zhendong Su, ‘Scalable detection of
semantic clones’, in Proceedings of the 30th international conference
on Software engineering, ICSE ’08, pp. 321–330, New York, NY, USA,
(2008). ACM.

[18] David Garlan, ‘Software architecture: a roadmap’, in Proceedings of
the Conference on The Future of Software Engineering, ICSE ’00, pp.
91–101, New York, NY, USA, (2000). ACM.

[19] Mehmet Gönen and Ethem Alpaydin, ‘Multiple kernel learning algo-
rithms’, J. Mach. Learn. Res., 999999, 2211–2268, (July 2011).

[20] Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola, ‘Ker-
nel methods in machine learning’, Annals of Statistics, 36(3), 1171–
1220, (2008).

[21] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane
Glondu, ‘Deckard: Scalable and accurate tree-based detection of code
clones’, in Proceedings of the 29th international conference on Soft-
ware Engineering, ICSE ’07, pp. 96–105, Washington, DC, USA,
(2007). IEEE Computer Society.

[22] J. Howard Johnson, ‘Identifying redundancy in source code using fin-
gerprints’, in Proc. Conf. Centre for Advanced Studies on Collaborative
research (CASCON), pp. 171–183. IBM Press, (1993).

[23] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue, ‘Ccfinder: A
multilinguistic token-based code clone detection system for large scale
source code.’, IEEE Trans. Software Eng., 28(7), 654–670, (2002).

[24] J. M. Kleinberg, ‘Authoritative sources in a hyperlinked environment’,
Journal of the ACM, 46, 604–632, (September 1999).

[25] R. Komondoor and S. Horwitz, ‘Using slicing to identify duplication in
source code’, in Proceedings of the International Symposium on Static
Analysis, pp. 40–56, (July 2001).

[26] R. Koschke, ‘Atomic architectural component recovery for program un-
derstanding and evolution’, Softwaretechnik-Trends, (2000).

[27] Rainer Koschke, Raimar Falke, and Pierre Frenzel, ‘Clone detection us-
ing abstract syntax suffix trees’, in WCRE ’06: Proceedings of the 13th
Working Conference on Reverse Engineering, pp. 253–262, Washing-
ton, DC, USA, (2006). IEEE Computer Society.

[28] Jens Krinke, ‘Identifying Similar Code with Program Dependence

Graphs’, in Proc. Working Conf. Reverse Engineering (WCRE), pp.
301–309. IEEE Computer Society Press, (2001).

[29] A. Kuhn, S. Ducasse, and T. Gı́rba, ‘Semantic clustering: Identifying
topics in source code’, Information and Software Technology, 49, 230–
243, (March 2007).

[30] Niels Landwehr, Andrea Passerini, Luc Raedt, and Paolo Frasconi,
‘Fast learning of relational kernels’, Mach. Learn., 78(3), 305–342,
(March 2010).

[31] Meir M. Lehman, ‘Programs, life cycles, and laws of software evolu-
tion’, Proc. IEEE, 68(9), 1060–1076, (September 1980).

[32] António Menezes Leitão, ‘Detection of redundant code using r2d2’,
Software Quality Journal, 12(4), 361–382, (2004).

[33] J. I. Maletic and A. Marcus, ‘Supporting program comprehension using
semantic and structural information’, in Proceedings of the 23rd Inter-
national Conference on Software Engineering, ICSE ’01, pp. 103–112,
Washington, DC, USA, (2001). IEEE Computer Society.

[34] O. Maqbool and H. Babri, ‘Hierarchical clustering for software archi-
tecture recovery’, IEEE Transactions on Software Engineering, 33(11),
759–780, (2007).

[35] Andrian Marcus and Jonathan I. Maletic, ‘Identification of high-level
concept clones in source code’, in ASE, pp. 107–114, (2001).

[36] A. Von Mayrhauser, ‘Program comprehension during software mainte-
nance and evolution’, IEEE Computer, 28, 44–55, (1995).

[37] Sauro Menchetti, Fabrizio Costa, and Paolo Frasconi, ‘Weighted de-
composition kernels’, in Proceedings of the 22nd international confer-
ence on Machine learning, ICML ’05, pp. 585–592, New York, NY,
USA, (2005). ACM.

[38] B. S. Mitchell and S. Mancoridis, ‘On the automatic modularization of
software systems using the bunch tool’, IEEE Transactions on Software
Engineering, 32, 193–208, (March 2006).

[39] Alessandro Moschitti, Roberto Basili, and Daniele Pighin, ‘Tree Ker-
nels for Semantic Role Labeling’, in Computational Linguistics, pp.
193–224, Cambridge, MA, USACambridge, MA, USA, (2008). MIT
Press.

[40] Lih ren Jen and Yuh jye Lee, ‘Working group. ieee recommended prac-
tice for architectural description of software-intensive systems’, IEEE
Architecture, 1471–2000, (2000).

[41] Michele Risi, Giuseppe Scanniello, and Genoveffa Tortora, ‘Using
fold-in and fold-out in the architecture recovery of software systems’,
Formal Asp. Comput., 24(3), 307–330, (2012).

[42] Chanchal Kumar Roy and James R. Cordy, ‘Nicad: Accurate detection
of near-miss intentional clones using flexible pretty-printing and code
normalization’, in ICPC, pp. 172–181, (2008).

[43] Chanchal Kumar Roy, James R. Cordy, and Rainer Koschke, ‘Com-
parison and evaluation of code clone detection techniques and tools: A
qualitative approach’, Sci. Comput. Program., 74(7), 470–495, (2009).

[44] G. Scanniello, A. D’Amico, C. D’Amico, and T. D’Amico, ‘Architec-
tural layer recovery for software system understanding and evolution’,
Software Practice and Experience, 40, 897–916, (September 2010).

[45] G. Scanniello, A. D’Amico, C. D’Amico, and T. D’Amico, ‘Using
the kleinberg algorithm and vector space model for software system
clustering’, in Proceedings of the IEEE 18th International Conference
on Program Comprehension, ICPC’10, pp. 180–189, Washington, DC,
USA, (2010). IEEE Computer Society.

[46] V. Tzerpos and R. C. Holt, ‘On the stability of software clustering algo-
rithms’, in Proceedings of the 8th International Workshop on Program
Comprehension, pp. 211–218, (2000).

[47] Jean-Philippe Vert, ‘A Tree Kernel to analyse phylogenetic profiles’,
Bioinformatics, 18(suppl 1), S276–284, (2002).

[48] Vera Wahler, Dietmar Seipel, Jurgen Wolff v. Gudenberg, and Gre-
gor Fischer, ‘Clone detection in source code by frequent itemset tech-
niques’, in SCAM ’04: Proceedings of the Source Code Analysis
and Manipulation, Fourth IEEE International Workshop, pp. 128–135,
Washington, DC, USA, (2004). IEEE Computer Society.

[49] T. A. Wiggerts, ‘Using clustering algorithms in legacy systems remod-
ularization’, in Proceedings of the Fourth Working Conference on Re-
verse Engineering (WCRE ’97), pp. 33–43, Washington, DC, USA,
(1997). IEEE Computer Society.

[50] A. E. Wu, J. Hassan and R. C. Holt, ‘Comparison of clustering algo-
tithms in the context of software evolution’, in Proceedings of the 21st
IEEE International Conference on Software Maintenance, pp. 525–
535. IEEE Computer Society, (2005).

[51] Wuu Yang, ‘Identifying syntactic differences between two programs’,
Software - Practice and Experience, 21(7), 739–755, (July 1991).


