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Recently, many researches in natural lan- | / | \
guage learning have considered the repre- v ‘\\/I\JF\ _________ : PP\‘;.

. . . - _ Arg_ 0 I N
sentation of complex linguistic phenom b N IN N
ena by means of structural kernels. In

particular, tree kernels have been used to Predicate

represent verbal subcategorization frame Arg. 1 Arg. M

(SCF) information for predicate argument

classification. As the SCF is a relevant Figure 1:A predicate argument structure in a parse-tree rep-
clue to learn the relation between syn-  resentation.

tax and semantic, the classification algo-
rithm accuracy was remarkable enhanced.
In this article, we extend such work by
studying the impact of the SCF tree kernel
on both PropBank and FrameNet seman-
tic roles. The experiments with Support
Vector Machines (SVMs) confirm a strong
link between the SCF and the semantics of
the verbal predicates as well as the bene-
fit of using kernels in diverse and complex
test conditions, e.g. classification of un-
seen verbs.

with the semantic shallow information embodied by
the verbal predicat® rentand its three arguments:
Arg0, Argl and ArgM. The SCF of such verb, i.e.
NP-PP, provides a synthesis of the predicate argu-
ment structure.

Currently, the systems which aim to derive se-
mantic shallow information from texts recognize the
SCF of a target verb and represent it as a flat feature
(e.g. (Xue and Palmer, 2004; Pradhan et al., 2004))
in the learning algorithm. To achieve this goal, a lex-
icon which describes the SCFs for each verb, is re-
quired. Such a resource is difficult to find especially
for specific domains, thus, several methods to auto-
matically extract SCF have been proposed (Korho-
Some theories of verb meaning are based on synen, 2003). In (Moschitti, 2004), an alternative to
tactic properties, e.g. the alternations of verb arguhe SCF extraction was proposed, i.e. the SCF ker-
ments (Levin, 1993). In turn, Verb Subcategorizanel (SK). The subcategorization frame of verbs was
tion Frame (SCF) characterizes different syntactignplicitly represented by means of the syntactic sub-
alternations, thus, it plays a central role in the linkirees which include the predicate with its arguments.
ing theory between verb semantics and their syntadhe similarity between such syntactic structures was
tic structures. evaluated by means of convolution kernels.

Figure 1 shows the parse tree for the sentence Convolution kernels are machine learning ap-
"John rented a room in Boston" along proaches which aim to describe structured data in
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terms of its substructures. The similarity betweei®VMs using standard features and the proposed ker-
two structures is carried out by kernel functionsiels. Finally, Section 5 summarizes the conclusions.
which determine the number of common substruc-

tures without evaluating the overall substructur@ Parsing of Semantic Roles and Semantic
space. Thus, if we associate two SCFs with two Arguments

subtrees, we can measure their similarity with suclPh " . that relate t dicat
functions applied to the two trees. This approach ere are two main resources that refale to predicate
Ig;}rgument structures: PropBank (PB) and FrameNet

N). PB is a 300,000 word corpus annotated with
predicative information on top of the Penn Treebank

representations (e.g. tidP-PP of Figure 1). The .
subtrees associated with SCF group the verbs Whi(?hWall Street Journal texts. For any given pred-
icate, the expected arguments are labeled sequen-

have similar syntactic realizations, in turn, accord-;
ing to Levin’s theories, this would suggest that the)té?”y frcim r,]Arg 0 to Arg 9’| Argf?han;iBArgl\g.. Tfse
are semantically related. igure 1 shows an example of the predicate an-

A preliminary study on the benefit of such ker_notatlon. Predicates in PB are only embodied by

nels was measured on the classification accuracy v?rbls w ?ﬁ rg?‘s TOEF oft;hedtlla\me'\s/lArg O.'S d‘?'“*’i:g‘
semantic arguments in (Moschitti, 2004). In such rg 1 1S thedirect objeciand Argvi may Indicatéo-

work, the improvement on the PropBank argument%atlons asnour example.. )
FrameNet also describes predicate/argument

(Kingsbury and Palmer, 2002) classification sug-

gests thatS K adds information to the prediction struct'Furets bltﬂ for th:IS dpl;rpose It _:_Jﬁes ”ICTfr Se-
of semantic structures. On the contrary, the perfoFf'alrl ICc struclures called lrames. — These latler are
ematic representations of situations involving

mance decrease on the FrameNet data classificati%(m fici ) i 4 rol , hich
shows the limit of such approach, i.e. when the Syn\{arlous participants, properties and roles, in whic

tactic structures are shared among several semanqiéNord may be typically used. Frame elements or
rolesSK seems to be useless. semantic roles are argumen'_[s qf target words that

In this article, we use Support Vector Machine<an be verbs or nouns or adjectives. In FrameNet,
(SVMs) to deeply analyze the role 6% in the au- the argument names are local to the target frames.

tomatic predicate argument classification. The mA:—m example, assuming thaltachis the target word

jor novelty of the article relates to the extensive ex‘f-’mdAtt"’IChIngIS the target frame, a typical sentence

perimentation carried out on the PropBank (ngsgnnotatlon 's the following.

bury and Palmer, 2002) and FrameNet (Fillmore, [4,.,; They] attach 74 [tem themselves ]

1982) corpora with diverse levels of task complexfco,nnector  With their mouthparts ] and then

ity, e.g. test instances of unseen predicates (typielease a digestive enzyme secretion which

cal of free-text processing). The results show thatats into the skin

(1) once a structural representation of a linguistic

object, e.g. SCF, is available we can use convolu- Several machine learning approaches for argu-

tion kernels to study its connections with anothefent identification and classification have been de-

linguistic phenomenon, e.g. the semantic predicateloped, e.g. (Gildea and Jurastky, 2002; Gildea and

arguments. (2) The tree kernels automatically deriv@almer, ; Gildea and Hockenmaier, 2003; Pradhan et

the features (structures) which support also a sort &, 2004). Their common characteristic is the adop-

back-off estimation in case of unseen verbs. (3) Thiéon of feature spaces that model predicate-argument

structural features are in general robust in all testingfructures in a flat feature representation. In the next

conditions. section we present the common parse tree-based ap-
The remainder of this article is organized as folProach to this problem.

lows: Section 2 defines the Predicate Argument Ex- ) )

traction problem and the standard solution to solvéL Predicate Argument Extraction

it. In Section 3 we present our kernels wherea&iven a sentence in natural language, all the predi-

in Section 4 we show comparative results amongates associated with the verbs have to be identified

tition than the traditional method based on flat SC



along with their arguments. This problem can b&Vord Head Word Governing Category Position
divided into two subtasks: (a) the detection of th@ndVoice For example, th&hrase Typéndicates
target argument boundaries, i.e. all its compoundhe syntactic type of the phrase labeled as a predi-
ing words, and (b) the classification of the argumentate argument, e.g. NP folrg; in Figure 1. The
type, e.g.Arg0 or ArgM in PropBank orAgentand Parse Tree Patltontains the path in the parse tree
Goalin FrameNet. between the predicate and the argument phrase, ex-

The standard approach to learn both the detectigmessed as a sequence of non-terminal labels linked
and the classification of predicate arguments is surby direction (up or down) symbols, e.3/ T VP |
marized by the following steps: NPfor Arg; in Figure 1. ThePredicate Words the
surface form of the verbal predicate, exgnt for all
arguments.

In the next section we describe the SVM approach
2. let P and A be the set of predicates and theand the basic kernel theory for the predicate argu-

set of parse-tree nodes (i.e. the potential argiipent classification.

ments), respectively;

1. Given a sentence from thigining-set gener-
ate a full syntactic parse-tree;

2.3 Learning with Support Vector Machines

3. for each paikp,a> € P x A: Given a vector space iR" and a set of positive and

e extract the feature representation get,; negative points, SVMs classify vectors according to
« if the subtree rooted im covers exactly & Separating hyperplané/(7) = @ x ¥ +b = 0,
the words of one argument of put F, , wherew € R™ andb € R are learned by applying
in T+ (positive examples) otherwisé Ioutthe Structural Risk Minimization principlévapnik,
itin 7~ (negative examples). 1995). _ )
To apply the SVM algorithm to Predicate Argu-
For instance, in Figure 1, for each combination ofnent Classification, we need a function 7 — R
the predicataent with the nodesN, S, VP, V, NP, o map our features spage= {fi, .., f|]_-|} and our
PP, DorIN the instanced’... . are generated. In predicate/argument pair representatiép,, = F,
case the node exactly covers "Paul”, "a room” or into ®", such that:
"in Boston”, it will be a positive instance otherwise
it will be a negative one, e.d%cns. - F, — ¢(F,) = (¢1(F2), -, dn(F))
+ - i i i
. TheT™ andT s_ets San be re-organized as POSIE om the kernel theory we have that:
tive T, and negativd,, . examples for each argu-

arg;
ment;. glyn this way, an individual ONE-vs-ALL clas- H(Z) = ( Z aij’i) F4b=
sifier for each argumetitcan be trained. We adopted im=1.1
this solution as it is simple and effective (Pradhan et
al., 2004). In the classification phase, given a sen- > ifi-T+b= > op(F) - ¢(F.) +b.
tence of thetest-set all its F), , are generated and =1+ =1
classified by each individual classifi€f. As a final Where, F; Vi € {1,..,1} are the training instances
decision, we select the argument associated with tig@d the produckr(F;, ) =<¢(F;) - ¢(F;)> is

maximum value among the scores provided by thie kernel function associated with the mapping

individual classifiers. The simplest mapping that we can apply is
o(F,) = Z = (21,...,2n) Wherez; = 1if f; € F,
2.2 Standard feature space andz; = 0 otherwise, i.e. the characteristic vector

The discovery of relevant features is, as usual, @f the setF, with respect taF. If we choose the
complex task, nevertheless, there is a common cosealar product as a kernel function we obtain the lin-
sensus on the basic features that should be adoptedr kernelKr,(F,, F,) = & - Z.

These standard features, firstly proposed in (Gildea Another function that has shown high ac-
and Jurasfky, 2002), refer to a flat information deeuracy for the predicate argument classification
rived from parse trees, i.ePhrase TypePredicate (Pradhan et al.,, 2004) is the polynomial kernel:



Sentence Parse-Tree  Fioox Freaa the target verbal predicate defines the target Sub-

categorization Frame Structure (SCFS). For exam-

ple, Figure 2 shows the parse tree of the sentence
Arg 0 VP/ Arg 0

. /\ VP "John took the book and read its title" to-
PRP VP C‘C VP \ /\ 1
AN A \e % \»  gether with two SCFS structures;,,, and Fj.c.q
Jom VB NP and VB NP |k R 1 \d ~e1 associated with the two predicateskandread re-
ok rJadPR/pQNN spectively. Note that SCFS includes also the external

m\ b\ ) 1‘ l_\“ argument (i.e. the subject) although some linguistic
theories do not consider it being part of the SCFs.
Figure 2:Subcategorization frame structure for two predicate Once the semantic representation is defined, we
argument structures. need to design a tree kernel function to estimate the
similarity between our objects.

AN N N N .
2 N N Vp\vp ne " 3.2 The tree kernel function
V‘B L /N /VP\ The main idea of tree kernels is to model a
o s ™ VB/ \NP v e K (T, T) function which computes the number of
v " AN | ek T the common substructures between two tfEgand
ve R T,. For example, Figure 3 shows all the fragments

Figure 3:All 10 valid fragments of the SCFS associated W|thOf the argument Structute,,.x, (see Figure 2) which
will be matched against the fragment of another

SCFS.

Given the set of fragment§fi, fo,..} = F ex-
tracted from all SCFSs of the training set, we define
the indicator functior/;(n) which is equal 1 if the
?arget fi is rooted at node: and 0 otherwise. It fol-
‘lows that:

the arguments of,. Of Figure 2.

Kpoly(Fy, Fy) = (c + & - 2)%, wherec is a constant
andd is the degree of the polynom.

The interesting property is that we do not need t
evaluate the function to compute the above vector;
only the K(Z, 7) values are required. This allows
us to definsa eff)icient classifiers in a huge (possible K(Th,T3) = Z Z A(ni,ng) (1)
infinite) feature set, provided that the kernel is pro- mENTy n2€NT,
cessed in an efficient way. In the next section, we where Ny, and Np, are the sets of thd3’s
introduce the convolution kernel that we used to repand 75's nodes, respectively and\(ny,ns) =

resent subcategorization structures. lejl I;(n1)I;(n2). This latter is equal to the num-
ber of common fragments rooted in the andn.
nodes. We can compute as follows:

The convolution kernel that we have experimented 1. if the productions at; and ny are different
was devised in (Moschitti, 2004) and is character-  thenA(n;,n2) = 0;
ized by two aspects: the semantic space of the sub_ i the productions at; andn. are the same,
categorization structures and the kernel functionthat  andn, andn, have only leaf children (i.e. they
measure their similarities. are pre-terminals symbols) thel(n;, ny) =
L
. ) 3. if the productions at; andns are the same,
We cons_lder the predicate argument structures an- andn; andn, are not pre-terminals then
notated in PropBank or FrameNet as our semantic
space. As we assume that semantic structures are
correlated to syntactic structures, we used a ker-
nel that selects semantic information according to
the syntactic structure of a predicate. The subparseheres € {0,1}, nc(nq) is the number of the chil-
tree which describes the subcategorization frame dfen ofn; and¢}, is the j-th child of the noden.

3 Subcategorization Frame Kernel S K)

3.1 Subcategorization Frame Structure (SCFS)

A(ni,n2) H (1+A(d,.d,) (2



Note that, as the productions are the samig;) = andSK.
nc(nz).

The above kernel has the drawback of assigning For the experiments we adopted two corpora
higher weights to larger structufesTo overcome PropBank (PB) and FrameNet (FN). PB, avail-
this problem we can scale the relative importance @fle atwww.cis.upenn.edu/  ~ace, is used along
the tree fragments using a parametein the con- With the Penn TreeBank 2w{w.cis.upenn.edu
ditions 2 and 3 as follows:A(n,,n,) = A and /~treebank ) (Marcus et al., 1993). Th_is corpus
Alng,n,) = )\an(nz)(o, F A ). contains about 53,700 sentences and a fixed split be-

The set of frz;grlnents that tr)glog?gs to SCEs afiveen training and testing which has been used in

derived by human annotators according to semafither researches, e.g. (Pradhan et al., 2004; Gildea

tic considerations, thus they generate a seman@d Paimer, ). In this split, Sections from 02 to 21
subcategorization frame kernebk). We also are used for training, section 23 for testing and sec-
note that SK estimates the similarity betweentions 1 and 22 as development set. We considered all

two SCFSs by counting the number of fragment42 2rguments fromrg0to Args, ArgAandArgMfor
that are in common. For example, in Figure 22 total of 123,918 and 7,426 arguments in the train-

K1 (¢(Froon), $(Freaa)) is quite high (i.e. 6 out 10 Ing and test sets, respectively. It is worth noting that

substructures) as the two verbs have the same syfi.11€ experiments we used the gold standard parsing

tactic realization. from the Penn TreeBank, thus our kernel structures
In other words the fragments encode semantic if'€ derived with high precision.

formation which is measured WyK. This provides The second corpus was obtained by extract-

the argument classifiers with important clues abodfd from FrameNet ww.icsi.berkeley.edu/

the possible set of arguments suited for a target verdramenet ) all 24,558 sentences from 40 frames

bal predicate. To support this hypothesis the ned! e Senseval aifp:/mwww.senseval.org ) Au-

section presents the experiments on the predicate Jpmatic Labeling of Semantic Role task. We con-
gument type of FrameNet and ProbBank. sidered 18 of the most frequent roles for a total of

37,948 arguments Only verbs are selected to be
4 The Experiments predicates in our evaluations. Moreover, as there is
_ _ , no fixed split between training and testing, we ran-
A clustering algorithm which USQSK would group domly selected 30% of the sentences for testing and
together verbs that show a similar syntactic Struczno, for validation-set respectively. Both training

ture_. To study the pro%e?rtle_s of s_u;:hhclustzr_s_ we Ie)é'nd testing sentences were processed using Collins’
perimentedS X’ in combination with the traditiona parser (Collins, 1997) to generate parse-tree auto-

kernel used forthe predlcatg argument Class'f'cat'opnatically. This means that our shallow semantic
As the polynomial kernel with degre&=was shown parser for FrameNet is fully automated.

to be the most accurate for the argument classifica-
tion (Pradhan et al., 2004; Moschitti, 2004) we us@.1 The Classification set-up

it to build two kernel combinations: The evaluations were carried out with the SVM-

e Poly+ SK: ‘f[?;;z;‘ +’Y%, i.e. the sum be- light-TK software (Moschitti, 2004) available at

tween the normalized polynomial kernel (seéP://ai-nip.info.uniromaz.it/moschitti/ .
Section 2.3) and the normalizet 2. which encodes the tree kernels in the SVM-light
« X software (Joachims, 1999).
oly X . . .
e Poly x SK: WW i.e. the normal-  The classification performance was measured us-

ized product between the polynomial kerneing the F; measuré for the individual arguments
* IWith a similar aim and to have a similarity score between Oand the accura}cy for the final multi-class classifer.
and 1, we also apply the normalization in the kernel space, i.d.NiS latter choice allows us to compare the results

K'(Ty, Tp) = ot T SWe manoe: i
VE(T1,T1)x K (T2, T2) We mapped together roles having the same name

’To normalize a kemelK (#,7) we can divide it by *F assigns equal importance to PrecisiBrand RecallR,

K(Z,7) x K(Z, 7). ie F = 2




with previous literature works, e.g. (Gildea and A™9S All Verbs Disjoint Verbs

) . | Poly | +SK | XSK | Poly | +SK | xSK
Jurasfky, 2002; Pradhan et al., 2004; Gildea a Uag0 [ 908 | 946 947 | 868 | 909 | 9Ll

Palmer, ). Argl | 91.1 | 929 | 941 | 81.7 | 86.8 | 88.3
For the evaluation of SVMs, we used the defaultArg2 | 80.0 | 77.4 | 82.0 | 49.9 | 495 | 47.6
regularization parameter (e.g?, = 1 for normal- ﬁ:gj %:g gg:g ?2:1‘ 28'3 2%'9 23'6
ized kernels) and we tried a few cost-factor valuesargm | 95.4 | 96.1 | 96.3 | 90.3 | 93.4 | 93.7
(e, j € {1,2,3,5,7,10,100}) to adjust the rate [Acc. | 905 [ 92.4 [ 932 [ 82.1 | 86.3 | 86.9 |
between Precision and Recall. We chose the pa-
rameters by evaluating the SVMs using thg,,
kernel (degree = 3) over thealidation-set BothA  [Role | All Verbs [ Disjoint Verbs |
(see Section 3.2) ang parameters were evaluate Poly | +SK | xSK | Poly | +SK | xSK
in a similar way by maximizing the performance of agent | 91.7 /1 94.4 1 94.0 | 82.5 | 84.8 | 84.7

: cause | 57.4 | 60.6 | 56.4 | 29.1 | 28.1 | 26.9
SVM usingPoly+SK We found that the best values| jeqree | 77.1 | 77.2 | 609 | 406 | 446 | 226

Table 1:Kernel accuracies on PropBank.

were 0.4 and 0.3, respectively. depict. | 85.8 | 86.2 | 859 | 73.6 | 74.0 | 71.2
instrum. | 67.1 | 69.1 | 646 | 13.3 | 13.0 | 12.8
Acc. [ 855 86.2 | 85.0 | 72.8 | 746 | 742 |

To study the impact of the subcategorization framle
kernel we experimented the three modélsiy, Table 2:Kernel accuracies on 18 FrameNet semantic roles.
Poly + SK and Poly x SK on different training
conditions. disjoint subset for testing. In these conditions, the
First, we run the above models using all the verbampact of S K is amplified: on PBSK x Poly out-
predicates available in the training and test sets. TaerformsPoly by 4.8% (86.9% vs. 82.1%), whereas,
bles 1 and 2 report thé} measure and the global on FN, SK increasesoly of about 2%, i.e. 74.6%
accuracy for PB and FN, respectively. Column %/s. 72.8%. These results suggest that (a) when test-
shows the accuracy dPoly (90.5%) which is sub- set verbs are not observed during training, the clas-
stantially equal to the accuracy obtained in (Pradsification task is harder, e.g. 82.1% vs. 90.5% on
han et al., 2004) on the same training and test sé&B and (b) the syntactic structures of the verbs, i.e.
with the same SVM model. Columns 3 and 4he SCFSs, allow the SVMs to better generalize on
show that the kernel combinatiod®ly + SK and unseen verbs.
Poly x SK remarkably improvePoly accuracy, To verify that the kernel representation is supe-
i.e. 2.7% (93.2% vs. 90.5%) whereas on FN onlyior to the traditional representation we carried out
Poly + SK produces a small accuracy increase, i.en experiment using a flat feature representation of
0.7% (86.2% vs. 85.5%). the SCFs, i.e. we used the syntactic frame feature
This outcome is lower since the FN classificatiordescribed (Xue and Palmer, 2004) in placeSaf .
requires dealing with a higher variability of its se-The result as well as other literature findings, e.g.
mantic roles. For example, in ProbBank most of th€Pradhan et al., 2004) show an improvement on PB
time, the PBArg0 andArgl corresponds to thieg-  of about 0.7% only. Evidently flat features cannot
ical subjectandlogical direct object respectively. derive the same information of a convolution kernel.
On the contrary, the FKCauseand Agentroles are Finally, to study how the verb complexity impacts
often both associated with tHegical subjectand on the usefulness f K, we carried out additional
share similar syntactic realizations, making SCF8xperiments with different verb sets. One dimension
less effective to distinguish between them. Moreef complexity is the frequency of the verbs in the
over, the training data available for FrameNet isarget corpus. Infrequent verbs are associated with
smaller than that used for PropBank, thus, the trgeredicate argument structures poorly represented in
kernel may not have enough examples to generalizéae training set thus they are more difficult to clas-
correctly. sify. Another dimension of the verb complexity is
Second, we carried out other experiments usinigpe number of different SCFs that they show in dif-
a subset of the total verbs for training and anothderent contexts. Intuitively, the higher is the number
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Figure 4:The impact of SCF on the classification accuracy of the semantic arguments and semantic roles according to the verb
complexity.

of verb’s SCF types the more difficult is the classifiverb isenoughcomplexSK always produces use-
cation of its arguments. ful information independently of the number of the

Figure 4.a, reports the accuracy along with th&raining set instances. On the one hand, a h_igh num-
trend line plot of Poly and SK + Poly according ber of .ver_b instances reduces the complexity of the
to subsets of different verb frequency. For exampkg,,lassmcatlon tas_k. On the other hand,_ as the num-
the label 1-5 refers to the class of verbal predicatd?er Of verb type increases the complexity of the task
whose frequency ranges from 1 to 5. The associatd@fFreases as well.
accuracy is evaluated on the portions of the training A Similar behavior can be noted on the FN data
and test-sets which contain only the verbs in Suca:igure 4.e) even if the not so strict correlation be-
class. We note thaf K improvesPoly for any verb tWeen syntax and semantics prevesifs to produce
frequency. Such improvement decreases when thigh improvements. Figure 4.f shows the impact of
frequency becomes very high, i.e. when there are/ on theAgentrole. We note that, thé; increases
many training instances that can suggest the corré®ore than the global accuracy (Figure 4.e) as the
classification. A similar behavior is shown in FigureAgentmost of the time corresponds to Arg0. This is

4.b where thé?, measure for Arg0 of PB is reported. confirmed by the Table 2 which shows an improve-

. : t for theAgentof up to 2% whenSK i d
Figures 4.c and 4.d illustrate the accuracy and thmerl or theAgentof up to 2% whenSK s use

Fy measure for all arguments and Arg0 of PB acz_ﬁong with the polynomial kernel.

cording to the number of SCF types, respectivel)s Conclusive Remarks

We observe that the Semantic Kernel does not pro-

duce any improvement on the verbs which are synn this article, we used Support Vector Machines
tactically expressed by only one type of SCF. As théSVMs) to deeply analyze the role of the subcat-
number of SCF types increases () Poly + SK egorization frame kernelS(K) in the automatic
outperformsPoly for any verb class, i.e. when the predicate argument classification of PropBank and
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