Automatic learning of textual entailments with cross-pair similarities
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Abstract approaches, the hypothesBs and H, are very
similar and seem to be similarly relatedfp. This
suggests that we should study the properties and
differences of such two examples (negative and
positive) to derive more accurate entailment mod-
els. For example, if we consider the following en-
tailment:

Ts = H3?

In this paper we define a novel similarity
measure between examples of textual en-
tailments and we use it as a kernel func-
tion in Support Vector Machines (SVMs).
This allows us to automatically learn the
rewrite rulesthat describe a non trivial set
of entailment cases. The experiments with & : :

the data sets of the RTE 2005 challenge Ts Sé\i"ex‘t’;;fi;wrg?éi:natmpéz?gfnyagrgggf

show an improvement of 4.4% over the ties”

state-of-the-art methods. Hz  “All wild mountain animals eat plants
that have scientifically proven medici-

nal properties.

1 Introduction we note thafl; is structurally (and somehow lex-
Recently, textual entailment recognition has beencally similar) to7; and Hs is more similar toH;
receiving a lot of attention. The main reason isthan toH,. Thus, fromT; = H; we may extract
that the understanding of the basic entailment prorules to derive thals = Hs.
cesses will allow us to model more accurate se- The above example suggests that we should rely
mantic theories of natural languages (Chierchianot only on aintra-pair similarity betweerl” and
and McConnell-Ginet, 2001) and design importantH but also on aross-pairsimilarity between two
applications (Dagan and Glickman, 2004), e.g.pairs(7”, H') and(T”, H"). The latter similarity
Question Answering and Information Extraction. measure along with a set of annotated examples al-
However, previous work (e.g., (Zaenen et al.lows a learning algorithm to automatically derive
2005)) suggests that determining whether or nogyntactic and lexical rules that can solve complex
a textT entails a hypothesi#/ is quite complex entailment cases.
even when all the needed information is explic- Inthis paper, we define a new cross-pair similar-
itly asserted. For example, the sentefige “At ity measure based on text and hypothesis syntactic
the end of the year, all solid companies pay divi-trees and we use such similarity with traditional
dends: entails the hypothesiéf;: “At the end of intra-pair similarities to define a novel semantic
the year, all solid insuranceompanies pay divi- kernel function. We experimented with such ker-
dends: but it does not entail the hypothesig,:  nel using Support Vector Machines (Vapnik, 1995)
“At the end of the year, all solid companies payon the test tests of the Recognizing Textual En-
cashdividends: tailment (RTE) challenges (Dagan et al., 2005;
Although these implications are uncontrover-Bar Haim et al., 2006). The comparative results
sial, their automatic recognition is complex if we show that (a) we have designed an effective way
rely on models based on lexical distance (or sim{o automatically learn entailment rules from ex-
ilarity) between hypothesis and text, e.g., (Corleyamples and (b) our approach is highly accurate and
and Mihalcea, 2005). Indeed, according to suclexceeds the accuracy of the current state-of-the-art



models (Glickman et al., 2005; Bayer et al., 2005)need to define a cross-pair similarity measure. Its
by about 4.4% (i.e. 63% vs. 58.6%) on the RTE 1definition is not straightforward as it should detect
test set (Dagan et al., 2005). whether two pairg7’, H') and (7", H") realize

In the remainder of this paper, Sec. 2 illustrateghe sameaewrite rules This measure should con-
the related work, Sec. 3 introduces the complexitysider pairs similar when: (1J” and H' are struc-
of learning entailments from examples, Sec. 4 deturally similar toT” and H”, respectively and (2)
scribes our models, Sec. 6 shows the experimentéhe lexical relations within the paif7’, H') are
results and finally Sec. 7 derives the conclusions.compatible with those i7", H"”). Typically, T’
and H show a certain degree of overlapping, thus,
2 Related work lexical relations (e.g., b?atween the sgfnegwords)
Although the textual entailment recognition prob-determineword movementom 7' to H (or vice
lem is not new, most of the automatic approachesersa). This is important to model the syntac-
have been proposed only recently. This has beetic/lexical similarity between example pairs. In-
mainly due to the RTE challenge events (Dagan etieed, if we encode such movements in the syntac-
al., 2005; Bar Haim et al., 2006). In the following tic parse trees of texts and hypotheses, we can use
we report some of such researches. interesting similarity measures defined for syntac-

A first class of methods defines measures ofic parsing, e.g., the tree kernel devised in (Collins
the distance or similarity betweefi and H ei-  and Duffy, 2002).

ther assuming the independence between words . . . -
To consider structural and lexical relation simi-

(Corley and Mihalcea, 2005; Glickman et al.,, . . .
2005) in a bag-of-word fashion or exploiting syn- larity, we augment syntactic trees wilacehold-
g P 9 SYN" o rswhich identify linked words. More in detail:

tactic interpretations (Kouylekov and Magnini, - We detect links between words; in T that are

2005). A pair(T, H) is then in entailment when - .
sim(T,H) > a. These approaches can hardlyequ.al’ similar, or semantically dgpendent on words
determine whether the entailment holds in the ex-"" " H. We callanchorsthe pairs(uwy, w,) and

. . A ]we associate them witplaceholders For exam-
amples of the previous section. From the point o le. in Eig. 1. the placeholde®] indicates the
view of bag-of-word methods, the pai%}, H;) Pl 9. L P )

. 777 (companies,companiesgnchor betweerl; and
and (T, H2) have both the same intra-pair simi- (comp . ' panies) . !
o H;. This allows us to derive the word movements
larity since the sentences ®f and H; as well as

those ofl'} andH,, differ by a nounjnsuranceand between text and hypothesis.

) : - We align the trees of the two texi¥ and7” as
cash respectively. At syntactic level, also, we can- ,,
L . well as the tree of the two hypothesBs and H
not capture the required information as such noun

e e By considering thevord movements We find a
are both noun modifiersnsurancemodifiescom- .
. e correct mapping between placeholders of the two
paniesandcashmodifiesdividends

. . h hesisH’ and H” an ly i he tr f
A second class of methods can give a solution y/|,oot es SH a d and apply it to the tree o
to substitute its placeholders. The same map-

o the_prewogs_prqblem. These methods general_%ing is used to substitute the placeholdergih
combine a similarity measure with a set of possi—, . . _ .
. ) : This mapping should maximize the structusah-
ble transformationg” applied over syntactic and .,_ . o
o . . ilarity between the four trees by considering that
semantic interpretations. The entailment between
: : .~ placeholders augment the node labels. Hence, the
T andH is detected when there is a transformation e -
. cross-pair similarity computation is reduced to the
r € T so thatsim(r(T), H) > «. These trans- tree similarity comoutation
formations are logical rules in (Bos and Markert, y P '
2005) or sequences of alloweglvrite rulesin (de The above steps define an effective cross-pair
Salvo Braz et al., 2005). The disadvantage is thagimilarity that can be applied to the example in
such rules have to be manually designed. MoreFig. 1: T3 and T3 share the subtree in bold start-
over, they generally model better positive implica-ing with s — NP VvP. The lexicals inT5 and H3
tions than negative ones and they do not considetre quite different from thos&; and Hy, but we
errors in syntactic parsing and semantic analysis.can rely on the structural properties expressed by
their bold subtrees. These are more similar to the

subtrees ofl} and H; than those ofl} and H,
In the introductory section, we have shown thatrespectively. IndeedH; and H3 share the pro-
to carry out automatic learning from examples, weductionNP — DT JJ NN NNS while H; and H3 do

3 Challenges in learning from examples
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Figure 1: Relations betweéf, H,), (11, H2), and(T5, H3).

not. Consequently, to decide if'{,Hs) is a valid

tactic and lexical overlapping of the two subtrees

entailment, we should rely on the decision madénduced by the aligned set of anchors.
for (T1, H1). Note also that the dashed lines con-
necting placeholders of two texts (hypotheses) inmappings froma’ C A’ : |d/| = |A”| to A”, an

dicate structurally equivalent nodes. For instanceelementc € C is a substitution function.
the dashed line betwed8l and[bl links the main
verbs both in the text§; and 75 and in the hy-

potheses{; and Hs. After substitutind3] with [b]
and[2] with [@, we can detect ifl; and 73 share Where (a)t(S,c) returns the syntactic tree of the
the bold subtress — NA2] vP[3. As such subtree hypothesis (textf with placeholders replaced by
is shared also byZ; and Hs, the words within the means of the substitution, (b) i is the identity
pair (T}, H,) are correlated similarly to the words substitution and (cY<r(t1,2) is a function that
measures the similarity between the two trégs

in (13, H3).

The above example emphasizes that we need
to derive thebest mapping between placeholder
sets. It can be obtained as follows: l&tand A”
be the placeholders ¢f”, H') and (7", H"), re-

4

More precisely, leC be the set of all bijective

We

define as the best alignment the one determined
by

Cmaz = argmazecc(Kr(t(H', ), t(H" 1))+

Kr(t(T',c),t(T",1)) [€h)

nd ¢, (for more details see Sec. 4.2). For ex-
ample, thec,,,, between(Ty, H,) and (75, Hs)
is {(2],[a]), (27),[a%), (8} [0l), (4], )}

Similarity Models

spectively, without loss of generality, we considerin this section we describe how anchors are found

|A’| > |A”| and we align a subset &f to A”. The

at

the level of a single pailT, H) (Sec. 4.1). The

best alignment is the one that maximizes the synanchoring process gives the direct possibility of



implementing an inter-pair similarity that can be section, we will compare Eqg. 2 with some versions
used as a baseline approach or in combination witthat exclude some word relations.

the cross-pair similarity. This latter will be imple-  The above word similarity measure can be used
mented with tree kernel functions over syntacticto compute the similarity betwe€hi and H. In

structures (Sec. 4.2). line with (Corley and Mihalcea, 2005), we define
4.1 Anchorlng and LeX|ca.1I Slmlla..l’lty Itas: S simwenwn) x idf(wn)

The algorithm that we design to find the anchors (o)A

is based on similarity functions between words or s1(T H) = S idf(wn) ®
more complex expressions. Our approach isin line wh €W

with many other researches (e.g., (Corley and Miwhereidf (w) is the inverse document frequency
halcea, 2005; Glickman et al., 2005)). of the word w. For sake of comparison, we

Given the set of content words (verbs, nounsconsider also the corresponding more classical
adjectives, and adverb$yr and Wy of the two  version that does not apply the inverse document
sentence§’ andH, respectively, the set of anchors frequency
A C Wp x Wy is built using a similarity measure so(T, H) = Z sima (we, ws)/|Wa|  (4)
between two wordsim,, (w;, wy). Each element (we,wp)€A
wy, € Wy will be part of a pain(w,, wy,) € A if: ¢From the above intra-pair similaritiess;

1) sim, (we, wy) # 0 and so, we can obtain the baselineross-pair
2) simy, (Wi, wp) = MaXyy ey, 590w (WE W) similarities based on only lexical information:
According to these properties, elementsliry Ki((T', H'),(T" H")) = s:(T', H') x s:(T", H"), (5)
can participate in more than one anchor and con-

versely more than one element Ifii; can be wherei € {1,2}. In the next section we define a
linked to a single element € Wi novel cross-pair similarity that takes into account

The similarity sim., (w;, wy,) can be defined us- syntactic evidence by means of tree kernel func-
ing different indicators and resources. First of all,fions.
two words are maximally similar if these have the4.2 Cross-pair syntactic kernels

same surface form; = wj;,. Second, we can use Section 3 has shown that to measure the syn-
one of the WordNet (Ml"er 1995) similarities in- tactic S|m||ar|ty between two pairS,(T/’ H’)
dicated withd(l.,, L,») (in line with what was done  and (7", H"), we should capture the number of

in (Corley and Mihalcea, 2005)) and different rela-common subtrees between texts and hypotheses
tion between words such as the lexical entailmenfhat share the same anchoring scheme. The best
between verbsKnt) and derivationally relation galignment between anchor sets, i.e. the best
between wordslPer). Finally, we use the edit dis- supstitutionc,., can be found with Eq. 1. As the
tance measur&v(w;, wy,) to capture the similar- - corresponding maximum quantifies tAéggnment

ity between words that are missed by the previougiegree we could define a cross-pair similarity as
analysis for misspelling errors or for the lack of fgllows:

derivationally forms not coded in Wo!rdNet. KT B (T, H")) = max (KT (LB 0). H(H" 1))
As result, given the syntactic category ceC

cw € {noun,verb,adjective,adverb} and +KT(t(T/,c),t(T//,i)>, (6)

the lemmatized forni,, of a word w, the simi-

larity measure between two words and w’ is

defined as follows:

1 if w=w'V

where asK(t1,t2) we use the tree kernel func-
tion defined in (Collins and Duffy, 2002). This
evaluates the number of subtrees shared, land

L = Lyt A Cuy = CpprV to, thus defining an implicit substructure space.
((w, cw), (lw/acu,’)) € Entv H
simu (w, w') = (L €w0)s (Lt cor)) € Derv Formally, given a subtree spac& =
lev(w,w’) =1 . - .
d(lw, L) f w(:u) Ad(l, L,y) > 0.2 {f1, f2,--. ,fm}, the indicator functionl;(n)
0 otherwise

@ IS equal to 1 if the targetf; is rooted at
It is worth noticing that, the above measure is nothode n and equal to O otherwise. A tree-
apure similarity measure as it includes the entail-kernel function overt; andty is Kr(ti,t2) =
ment relation that does not represent synonymy o}, e, 2nsen,, D(71,n2), whereN;, andNy,
similarity between verbs. To emphasize the contriare the sets of thg’s andt,’s nodes, respectlvely
bution of each used resource, in the experimentdh turn A(ny,ny) = Z\FI M L(ng) Ii(ng),



where0 < A < 1 andi(f;) is the number of lev- To reduce the number of placeholders, we con-
els of the subtred;. Thus\!(i) assigns a lower sider the notion ofhunkdefined in (Abney, 1996),
weight to larger fragments. Whekh = 1, A is i.e.,not recursive kernelsf noun, verb, adjective,
equal to the number of common fragments rootecind adverb phrases. When placeholders are in a
at nodesi; andns. As described in (Collins and single chunk both in the text and hypothesis we
Duffy, 2002), A can be computed i@ (| N, | x  assign them the same name. For example, Fig. 1
[N, ). shows the placeholdef] and[2’] that are substi-
The K function has been proven to be a validtuted by the placeholdé?l. The placeholder re-
kernel, i.e. its associatd@ram matrix is positive- duction procedure also gives the possibility of re-
semidefinite. Some basic operations on kernesolving the ambiguity still present in the anchor
functions, e.g. the sum, are closed with respecset A (see Sec. 4.1). A way to eliminate the am-
to the set of valid kernels. Thus, if the maximumbiguous anchors is to select the ones that reduce
held such property, Eq. 6 would be a valid ker-the final number of placeholders.
nel and we could use it in kernel based machines
like SVMs. Unfortunately, a counterexample il- _ _
lustrated in (Boughorbel et al., 2004) shows thaP-2 Augmenting tree nodes with placeholders
themaxfunction does not produce valid kernels in
general.
However, we observe that: )

Anchors are mainly used to extract relevant syn-
tactic subtrees between pairs of text and hypoth-
esis. We also use them to characterize the syn-

! / " " i ; _
I.(S((T. ), (T, HY)) is a sy_mmetrlc func tactic information expressed by such subtrees. In-
tion since the set of transformatiari are always

deed, Eg. 6 depends on the number of common

computed with respect to the pair that has th_esubtrees between two pairs. Such subtrees are

!argest anchor set; (2) in (Haasdan, 2005), Itmatched when they have the same node labels.
is shown that when kernel functions are not

» e . Thus, to keep track of the argument movements,
positive semidefinite, SVMs still solve a data P gur

we augment the node labels with placeholders.

Yhe larger number of placeholders two hypothe-

The drawb_ack is that the solution may be_ Onlyses (texts) match the larger the number of their
a local optimum. Therefore, we can experiment

. : .. common substructures is (i.e. higher similarity).

Eq. 6 with SVMs and observe if the empirical o : ( g )
. . Thus, it is really important where placeholders are
results are satisfactory. Section 6 shows that the
) . Ihserted.

solutions found by Eq. 6 produce accuracy higher _
than those evaluated on previous automatic textual For example, the sentences in the gdir, H1)
entailment recognition approaches. have related subjecfg8] and related main verbs

o _ R [8. The same occurs in the sentences of the pair
5 Refining cross-pair syntactic similarity (7, f7.), respectively@ andB. To obtain such

In the previous section we have defined the intrd10de marking, the placeholders are propagated in
and the cross pair similarity. The former does nothe syntactic tree, from the leave® the target
show relevant implementation issues whereas thBodes according to the head of constituents. The
latter should be optimized to favor its applicability €xample of Fig. 1 shows that the placeholdr
three factors: (1) its computation complexity; (2)
a correct marking _of tree_nodes Wlth placeh_oldgrs;s_3 Pruning irrelevant information in large
and, (3) the pruning of irrelevant information in

! text trees
large syntactic trees.

5.1 Controlling the computational cost Often only a portion of the parse trees is relevant

The computational cost of cross-pair similarit be_to detect entailments. For instance, let us consider
y tpe following pair from the RTE 2005 corpus:

tween two tree pairs (Eq. 6) depends on the size o
C. This is combinatorial in the size of’ and A”,
ie. |C| = (JA'|— A" A" if |A'| > |A”]. Thus  —(———— L ,

hould k the sizes df and A” reasonabl To increase the generalization capacity of the tree ker-
we S” ou eep 1z Y nel function we choose not to assign any placeholder to the
small. leaves.



T=H (id:929) D2 andT2 have all the same size, i.e. 800 train-

T  “Ron Gainsford, chief executive of the . . - -
TSI, said: "It is a major concern to us ing/testing instances. The positive examples con-

that parents could be unwittingly expos- stitute the 50% of the data.

ing their children to the risk of sun dam- - ALL is the union ofD1, D2, andT'1, which we

age, thinking they are better protected o . . .

than they actually are, also split in 70%-30%. This set is useful to test n‘_
H “Ron Gainsford is the chief executive of we can learn entailments from the data prepared in

the TSI the two different challenges.

Only the bold part ofl” supports the implication; - D2(50%)" and D2(50%)" is a random split of
the rest is useless and also misleading: if we use@®2. Itis possible that the data sets of the two com-
it to compute the similarity it would reduce the im- petitions are quite different thus we created this
portance of the relevant part. Moreover, as we norhomogeneousplit.
malize the syntactic tree kerndk{) with respect We also used the following resources:
to the size of the two trees, we need to focus only The Charniak parser (Charniak, 2000) and the
on the part relevant to the implication. nor pha lemmatiser (Minnen et al., 2001) to carry
The anchored leaves are good indicators of relout the syntactic and morphological analysis.
evant parts but also some other parts may be veryWordNet 2.0 (Miller, 1995) to extract both the
relevant. For example, the function wardtplays verbs in entailmentEnt set, and the derivation-
an important role. Another example is given by theally related wordsDer set.
word insurancein H; and mountainin Hs (see - Thewn::sim | arity package (Pedersen et
Fig. 1). They support the implicatioh; = H; al., 2004) to compute the Jiang&Conrath (J&C)
andT; = Hj as well ascashsupportsT} = H,.  distance (Jiang and Conrath, 1997) as in (Corley
By removing these words and the related strucand Mihalcea, 2005). This is one of the best fig-
tures, we cannot determine the correct implicaure method which provides a similarity score in
tions of the first two and the incorrect implication the [0, 1] interval. We used it to implement the
of the second one. Thus, we keep all the words that(l.,, {,,») function.
are immediately related to relevant constituents. - A selected portion of the British National Cor-
The reduction procedure can be formally ex-pug to compute the inverse document frequency
pressed as follows: given a syntactic ttethe set  (idf). We assigned the maximuitf to words not
of its nodesN (t), and a set of anchors, we build found in the BNC.
a treet’ with all the nodesV’ that are anchors or - SVM-light-TK® (Moschitti, 2006) which en-
ancestors of any anchor. Moreover, we add’to codes the basic tree kernel functidii, in SVM-
the leaf nodes of the original tréethat are direct light (Joachims, 1999). We used such software
children of the nodes itV’. We apply such proce- to implementX, (Eq. 6), K;, K2 (Eq. 5) and
dure only to the syntactic trees of texts before the’{s + K; kernels. The latter combines our new
computation of the kernel function. kernel with traditional approaches € {1,2}).

6 Experimental investigation 6.2 Results and analysis

The aim of the experiments is twofold: we showTable 1 reports the results of different similarity
that (a) entailment recognition rules can be learnetternels on the different training and test splits de-
from examples and (b) our kernel functions overscribed in the previous section. The table is orga-
syntactic structures are effective to derive syntacnized as follows:

tic properties. The above goals can be achieved by The first 5 rows Experiment settingseport the
comparing the different intra and cross pair simi-intra-pair similarity measures defined in Section
larity measures. 4.1, the 6th row refers to only thelf similarity
6.1 Experimental settings metric whereas the following two rows report the

For the experiments, we used the Recognizingross-pair similarity carried out with Eq. 6 with
Textual Entailment Challenge data sets, which wdSynt Trees with placeholdgrand without Only
name as follows: Synt Treesaugmenting the trees with placehold-
-D1,T1 and D2, T2, are the deve|0pment and €rs, respectively. Each column in tE«Xperiment
the test sets of the first (Dagan et al., 2005) and———

d (Bar Haim et al., 2006) challenges, respec- ttp:/fwnw. natcorp. ox.ac. Ukd
second ( o g€s, réspec- sgy.light-TK is available aht t p: / / ai

g ) -nlp.info
tively. D1 contains 567 examples where&3, . uniroma2.it/moschitti/



Experiment Settings

w=w" Viw =1, Ncw =cy v Vv vV 4 4 Vv Vv v
cw =yt A d(law, Lyyr) > 0.2 Vv Vv Vv v Vi Vi
((lw, cw), (Lyrs cqpr)) € Der v v v v
(Qws ew), (Lyrs cyr)) € Ent v v v v
lev(w,w’) =1 v Vv v
idf v v v v v v
Only Synt Trees v
Synt Trees with placeholders v
Datasets
“Train: D1-TestT'1” 0.5388 0.5813 0.5500 0.5788 0.5900 0.5888 0.6213 0.6300
“Train:T'1-TestD1” 0.5714 0.5538 0.5767 0.5450 0.5591 0.5644 0.5732 0.5838
“Train:D2(50%)’-TestD2(50%)""" 0.6034 0.5961 0.6083 0.6010 0.6083 0.6083 0.6156  0.6350
“Train:D2(50%)”-TestDZ(SO%)/" 0.6452 0.6375 0.6427 0.6350 0.6324 0.6272 0.5861 0.6607
“Train: D2-TestT'2" 0.6000 0.5950 0.6025 0.6050 0.6050 0.6038 0.6238 0.6388
Mean 0.5918 0.5927 0.5960 0.5930 0.5990 0.5985 0.6040 0.6297
(£00396) (0.0303) (£0.0349) (00335) @0.0270) (£0.0235) (0.0229) ¢ 0.0282)
“Train:t ALL(70%)-TestALL(30%)" 0.5902 0.6024 0.6009 - 0.6131 0.6193 0.6086 0.6376
“Train: AL L-TestT'2" 0.5863 0.5975 0.5975 0.6038 - - 0.6213 0.6250

Table 1:Experimental results of the different methods over diffétest settings

settingsindicates a different intra-pair similarity exceeds the accuracy of the current state-of-the-
measure built by means of a combination of basi@art models (Glickman et al., 2005; Bayer et al.,
similarity approaches. These are specified with th005) by about 4.4 absolute percent points (63%
check sign,/. For example, Column 5 refers to avs. 58.6%) and 4% over our best lexical simi-
model using: the surface word form similarity, the larity measure. By comparing the average on all
d(ly, 1) Similarity and theidf . datasets, our system improves on all the methods
The next 5 rows show the accuracy on the dat®y at least 3 absolute percent points.
sets and splits used for the experiments and theFinally, the accuracy produced Bynt Trees with
next row reports the average and Std. Dev. oveplaceholderss higher than the one obtained with
the previous 5 results. Finally, the last two rowsOnly Synt Trees Thus, the use of placeholders
report the accuracy on ALL dataset split in 70/30%is fundamental to automatically learn entailments
and on the whole ALL dataset used for trainingfrom examples.

and T2 for testing. _ 6.2.1 Qualitative analysis

¢ From the table we note the following aspects: Hereafter we show some instances selected
- First, the lexical-based distance kernéls and  from the first experiment “Traif:1-TestD1".
K3 (Eqg. 5) show accuracy significantly higher thanThey were correctly classified by our overall
the random baseline, i.e. 50%. In all the datasetgodel (last column) and miss-classified by the
(except for the first one), theim,, (T, H) simi-  models in the seventh and in the eighth columns.,
larity based on the lexical overlap (first column) The first is an example in entailment:
provides an accuracy essentially similar to the best T=H (id:35)

lexical-based distance method. T “Saudi Arabia, the biggest oil pro-

- Second, the dataset “Train1-Test7'1” allows ducer inftge WOfldB,WEiS é)nce adSlrJ]P'
. . porter o sama Din Laden an IS

us to compare our models with the ones of the first associates who led attacks against the

RTE challenge (Dagan et al., 2005). The accuracy United States.

reported for the best systems, i.e. 58.6% (Glick- H “Saudi Arabia is the world’s biggest oil

exporter!

man et al., 2005; Bayer et al., 2005), is not signif-
icantly different from the result obtained wili; It was correctly classified by exploiting examples

that uses thedf. like these two:

- Third, the dramatic improvement observed in T'= H _(id:929) . .
(Corley and Mihalcea, 2005) on the dataset T ;F;?”Sgg_'”snfordv chief executive of the
“Train:D1-TestT'1” is given by theidf rather than T "Ron Gainsford s the chief execuiive of

the use of the J&C similarity (second vs. third the TSI
columns). The use of J&C with thef decreases
the accuracy of thé&lf alone.

T=H (id:976)
T  “Harvey Weinstein, the co-chairman of

- Next, our approach (last column) is significantly Miramax, who was instrumental in pop-

better than all the other methods as it provides the ularizing both independent and foreign

best It for each combination of training and films with broad audiences, agrees.
est resu Inatl Ining H “Harvey Weinstein is the co-chairman

test sets. On the “Traim1-TestT'1” test set, it of Miramax”




The rewrite rule is:”X, Y, ..” implies "X is Y”.
This rule is also described in (Hearst, 1992).
A more interesting rule relates the following
two sentences which are not in entailment:
T H (id: 2045)
T “Mrs. Lane, who has been a Director
since 1989, is Special Assistant to the
Board of Trustees and to the President
of Stanford University.

“Mrs. Lane is the president of Stanford
University”

H

It was correctly classified using instances like the

following:
T =+ H (id: 2044)
T “Jacqueline B. Wender is Assistant to

the President of Stanford University.

H “Jacqueline B. Wender is the President
of Stanford University.

T+ H (id: 2069)

T  “Grieving father Christopher Yavelow
hopes to deliver one million letters to
the queen of Holland to bring his chil-
dren homé.

H “Christopher Yavelow is the queen of
Holland.”

Here, the implicit rule is’X (VP (V ...) (NP (to Y)
...)” does not imply’Xis Y”.

7 Conclusions
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