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Abstract

The work on document similarity has
shown that complex representations are
not more accurate than the simplag-of-
words Term clustering, e.g. using latent
semantic indexing, word co-occurrences
or synonym relations using a word ontol-
ogy have been shown not very effective.
In particular, when to extend the similar-
ity function external prior knowledge is
used, e.g. WordNet, the retrieval system
decreases its performance. The critical is-
sues here are methods and conditions to
integrate such knowledge.

In this paper we propose kernel func-
tions to add prior knowledge to learn-
ing algorithms for document classifica-
tion. Such kernels use a term similarity
measure based on the WordNet hierarchy.
The kernel trick is used to implement such
space in a balanced and statistically co-
herent way. Cross-validation results show
the benefit of the approach for the Support
Vector Machines when few training data is
available.
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term clustering methods based on corpus term dis-
tributions or on external (to the target corpus) prior

knowledge (e.g. provided by WordNet) were used to

improve the basic term matching.

An example of statistical clustering is given in
(Bekkerman et al., 2001). A feature selection tech-
nique, which clusters similar features/words, called
the Information Bottleneck (IB), was applied to Text
Categorization (TC). Such cluster based representa-
tion outperformed the simpleag-of-wordson only
one out of the three experimented collections. The
effective use of external prior knowledge is even
more difficult since no attempt has ever been suc-
cessful to improve document retrieval or text clas-
sification accuracy, (e.g. see (Smeaton, 1999;
Voorhees, 1993; Voorhees, 1994; Moschitti and
Basili, 2004)).

The main problem of term cluster based represen-
tations seems the unclear nature of the relationship
between the word and the cluster information lev-
els. Even if (semantic) clusters tend to improve the
system Recall, simple terms are, on a large scale,
more accurate (e.g. (Moschitti and Basili, 2004)).
To overcome this problem, hybrid spaces containing
terms and clusters were experimented (e.g. (Scott
and Matwin, 1999)) but the results, again, showed
that the mixed statistical distributions of clusters and

1 Introduction terms impact either marginally or even negatively on

The large literature on term clustering, term simthe overall accuracy.

ilarity and weighting schemes shows that docu- In (Moorhees, 1993; Smeaton, 1999), clusters of
ment similarity is a central topic in Information Re-synonymous terms as defined in WordNet (WN)
trieval (IR). The research efforts have mostly beefFellbaum, 1998) were used for document retrieval.
directed in enriching the document representatiofhe results showed that the misleading information
by using clusteringtérm generalizationor adding due to the wrong choice of the local term senses
compoundstérm specifications These studies are causes the overall accuracy to decrease. Word sense
based on the assumption that the similarity betweatisambiguation (WSD) was thus applied beforehand
two documents can be expressed as the similarity bley indexing the documents by means of disam-
tween pairs of matching terms. Following this ideabiguated senses, i.e. synset codes (Smeaton, 1999;



?; Voorhees, 1993; Voorhees, 1994; Moschitti anémount of training documents, we experimented our
Basili, 2004). However, even the state-of-the-annodel in poor training conditions (e.g. less equal
methods for WSD did not improve the accuracy bethan 20 documents for each category). The improve-
cause of the inherent noise introduced by the disaments in the accuracy, observed on the classification
biguation mistakes. The above studies suggest thaitthe well known Reuters and 20 NewsGroups cor-
term clusters decrease the precision of the systemara, show that our document similarity model is
they force weakly related terms or unrelated termgery promising for general IR tasks: unlike previous
(in case of disambiguation errors) to give a contriattempts, it makes sense of the adoption of semantic
bution in the similarity function. The successful in-external resources (i.e. WN) in IR.
troduction of prior external knowledge relies on the Section 2 introduces the WordNet-based term
solution of the above problem. similarity. Section 3 defines the new document simi-
In this paper, a model to introduce the semantitarity measure, the kernel function and its use within
lexical knowledge contained in the WN hierarchySVMs. Section 4 presents the comparative results
in a supervised text classification task has been prbetween the traditional linear and the WN-based
posed. Intuitively, the main idea is that the docukernels within SVMs. In Section 5 comparative dis-
mentsd are represented through the set of all pairsussion against the related IR literature is carried
in the vocabulark ¢,¢' > V x V originating by out. Finally Section 6 derives the conclusions.
the termst € d and all the wordg’ € V, e.g. the L
WN nouns. When the similarity between two docu-2 Term similarity based on general
ments is evaluated, their matching pairs are used to knowledge
account for the final score. The weight given to each IR, any similarity metric in the vector space mod-
term pair is proportional to the similarity that the twoels is driven by lexical matching. When small train-
terms have in WN. Thus, the tertwf the first docu- ing material is available, few words can be effec-
ment contributes to the document similarity accordtively used and the resulting document similarity
ing to its relatedness with any of the terms of thenetrics may be inaccurate. Semantic generaliza-
second document and the prior external knowledgépns overcome data sparseness problems as con-
provided by WN, quantifies the single term to terntributions from different but semantically similar
relatedness. Such approach has two advantages: (@yds are made available.
we obtain a well defined space which supports the Methods for the induction of semantically in-
similarity between terms of different surface formsspired word clusters have been widely used in lan-
based on external knowledge and (b) we avoid tguage modeling and lexical acquisition tasks (e.qg.
explicitly define term or sense clusters which in{Clark and Weir, 2002)). The main resource em-
evitably introduce noise. ployed in most works is WordNet (Fellbaum, 1998)
The class of spaces which embeds the above paihich contains three subhierarchies: for nouns,
information may be composed y(|V'|?) dimen- verbs and adjectives. Each hierarchy represents lex-
sions. If we consider only the WN nouns (abouicalized concepts (or senses) organized according to
10%), our space contains aboud'® dimensions an "is-a-kind-of’ relation. A concept is described
which is not manageable by most of the learning aby a set of wordsyn(s) calledsynset. The words
gorithms. Kernel methods, can solve this problem as € syn(s) are synonyms according to the semse
they allow us to use an implicit space representation For example, the wordse, argumentationlogi-
in the learning algorithms. Among them Supportal argumentndline of reasoninglescribe a synset
Vector Machines (SVMs) (Vapnik, 1995) are kernelwhich expresses the methodical process of logical
based learners which achieve high accuracy in preseasoning (e.g. I"can't follow your line of reason-
ence of many irrelevant features. This is another ining”). Each word/term may be lexically related to
portant property as selection of the informative pairmore than one synset depending on its senses. The
is left to the SVM learning. word line is also a member of the syndite, divid-
Moreover, as we believe that the prior knowledgéng line, demarcatiorandcontrast as aine denotes
in TC is not so useful when there is a sufficientalso a conceptual separation (e.ghéere is a nar-



row line between sanity and insarilty The Wordnet
noun hierarchy is a direct acyclic grapm which
the edges establish thtirect.isa relations between
two synsets.

2.1 The Conceptual Density

CD(ul, UQ) =

CD of u; andusy is:

0 iff S; NSy =10
S o (u(3)

|3]
otherwise

(1)

marseSiNSs

The automatic use of WordNet for NLP and IR task¥vhere:

has proved to be very complex. First, how the topo- e
logical distance among senses is related to their cor-
responding conceptual distance is unclear. The per-
vasive lexical ambiguity is also problematic as it im-
pacts on the measure of conceptual distances be-
tween word pairs. Second, the approximation of a
set of concepts by means of their generalization in
the hierarchy implies a conceptual loss that affects ®
the target IR (or NLP) tasks. For exampbackand
white are colors but are alsachess pieceand this
impacts on the similarity score that should be used
in IR applications. Attempts to solve the above prob-
lems a priori map lexicals to specific generalizations
levels, i.e. tacutsin the hierarchy (e.g. (Li and Abe,
1998; Resnik, 1997)), and use corpus statistics for
weighting the resulting mappings. For several tasks
(e.g. in TC) this is unsatisfactory: different contexts
of the same corpus (e.g. documents) may require
different generalizations of the same word as they
independently impact on the document similarity.

On the contrary, the&Conceptual DensitfC D)
(Agirre and Rigau, 1996) is a flexible semantic simi-

S1N.S; is the set of WN shared generalizations
(i.e. the common hypernyms) of andus

w(8) is the average number of children per node
(i.e. the branching factor) in the sub-hierarchy

5. 1(5) depends on WordNet and in some cases
its value can approach 1.

h is the depth of thddeal, i.e. maximally
dense,tree with enough leaves to cover the
two sensess; andssy, according to an average
branching factor of.(s). This value is actually
estimated by:

h= { gogu(a?J iff pu(5) # 1

otherwise @)
When 1(s)=1 h ensures a tree with at least 2
nodes to coves; andss (height = 2).

|5| is the number of nodes in the sub-hierarchy
5. This value is statically measured on WN and
it is a negative bias for the higher level general-
izations (i.e. largeg).

larity which depends on the generalizations of word CD models the semantic distance as the density
senses not referring to any fixed level of the hieref the generalizations € S; N .S,. Suchdensityis
archy. TheCD defines a metrics according to thethe ratio between the number of nodes of itheal
topological structure of WordNet and can be seentree and|s|. The ideal tree should (a) link the two
ingly applied to two or more words. The measursenses/nodes; and s with the minimal number
hereafter defined specializes the definition in (Basilif edges (isa-relations) and (b) maintain the same

et al., 2004) to word pairs.

branching factorlgf) observed irs. In other words,

We denote by the set of nodes of the hierarchythis tree provides the minimal number of nodes (and

rooted in the synset, i.e. {c € S|cisa s}, whereS
is the set of WN synsets. By definitiofs € S, s €

isa-relations) sufficient to conneg¢t andss accord-
ing to the topological structure af For example, if

5. CD makes a guess about the proximity of thes has &f of 2 the ideal tree connects the two senses

sensess; andssy, of two wordsu; andus, accord-

with a single node (their father). If thaef is 1.5, to

ing to the information expressed by the minimal subreplicate it, the ideal tree must contain 4 nodes, i.e.
hierarchy,s, that includes them. Lef; be the set of the grandfather which haslkd# of 1 and the father
generalizations for at least one sersef the word which hasbf of 2 for an average of 1.5. Whéaf is

u;, .. S; = {s € S|s; € 5,u; € syn(s;)}. The 1the Eq. 1degenerates to the inverse of the number

—Y _ _of nodes in the path betwean andss, i.e. the sim-
As only the 1% of its nodes own more than one parent in

the graph, most of the techniques assume the hierarchy to bepnlf proximity measure used in (Siolas and d'Alch
tree, and treat the few exception heuristically. Buc, 2000).



It is worth noting that for each pait'D(uy,u2) sler, 1999). Hereafter, we report such definition:
determines the similarity according tbe closest let Let X, X4,.., X,, be separable metric spaces,
lexical sensess, s € s: theremaining sensesof = € X a structure andd = x4, ..., z,, its parts,
andus are irrelevant, with a resulting semantic diswherex; € X,;Vi = 1,..,m. Let R be a relation on
ambiguation side effect”’ D has been successfully the setX x X x .. x X,,, such thatR(Z, =) is "true”
applied to semantic tagging ((Basili et al., 2004))if & are the parts of x. We indicate witR—!(z) the
As the hierarchies for other POS classes(i.e. vedet{z : R(Z,z)}. Given two objects andy € X
and adjctives) have topological properties differentheir similarity X (x, y) is defined as:
from the WN noun hyponimy network, their seman- m
tics is not suitably captured_ by Eqg. 1. _In'thi_s Paper, i (z,y) = Z Z HKi(l'ia?/i) 4)
Eqg. 1 has been only applied as a similarity mea- FER1(z) FeR-1(y)i=1
sures between noun pairs. As the high number of
such pairs increases the computational complexity /f we considerX as the document set (i.é) =
of the target learning algorithm, efficient approaches ) m = 1 and X; = V (i.e. the vocabu-
are needed. The next section describes how kerrl@ly Of our target document corpus) we derive that:
methods can make practical the use of the Concefs- = ¢ (i.e. a documen)i = z; = w € V

tual Density in Text Categorization. (i.e. a word which is a part of the documen
and R~1(d) is the set of words in the documedt
3 AWordNet Kernel for document As T, Ki(zi,y:) = Ki(z1,y1), we can define
similarity Ki(z1,y1) = K(wi,w2) = (A1A2) x o(w1, w2) to

Term similarities are used to design document simpbtain exactly the Eq. 3.

larities which are the core functions of most TC al- The above equation can be used in support vector
gorithms. The term similarity proposed in Eq. 1machines as illustrated by the next section.

is valid for all term pairs of a target vocabulary and )

has two main advantages: (1) the relatedness of eadf SUPPort Vector Machines and Kernel

term occurring in the first document can be com- ~ Methods
puted againsall terms in the second document, i.e Given the vector space iR”7 and a set of positive
all different pairs of similar (not just identical) to- and negative points, SVMs classify vectors accord-
kens can contribute and (2) if we use all term paiing to a separating hyperplang(z) = J-¥+b = 0,
contributions in the document similarity we obtain avherez andw € R” andb € R are learned by apply-
measure consistent with the term probability distriing theStructural Risk Minimization principlé/ap-
butions, i.e. the sum of all term contributions doesik, 1995). From the kernel theory we have that:
not penalize or emphasize arbitrarily any subset of

terms. The next section presents more formally th&/ (z) = ( Z ah:z?h)-f+b = Z QR T+b =

above idea. h=1.1 h=1..
3.1 Asemanticvector space and(dn) - (d) +b = anK(dy,d)+b
Given two documents; andds € D (the document- "= h=1-d (5)
set) we define their similarity as: where d is a classifying document antj, are all the
K(dy,dy) = Z (MA2) x o(wy,we) (3) I training instances, projected ifiand 7}, respec-
w1 €d1 waEdy tively. The productK (d,dp,) =<¢(d) - ¢(dp)> is

where)\; and )\, are the weights of the words (fea-the Semantic WN-based Kerngl K) function asso-
tures)w; andws in the documentgl; andd,, re- ciated with the mapping.

spectively andr is a term similarity function, e.g. Eq. 5 shows that to evaluate the separating hy-
the conceptual density defined in Section 2. Tperplane ifR” we do not need to evaluate the entire
prove that Eq. 3 is a valid kernel is enough tovectorz; or . Actually, we do not know even the
show that it is a specialization of the general defimapping¢ and the number of dimensiong, As
nition of convolution kernels formalized in (Haus-it is sufficient to computes (d, dy), we can carry



out the learning with Eq. 3 in thR™, avoiding to has the benefit to retrieve useful information and
use the explicit representation in tRR& space. The exploit the similarity between verb nominalizations
real advantage is that we can consider only the woim@hd other nouns, e.¢p drivelike drive has a synset
pairs associated with non-zero weight, i.e. we caim common withparkway
use a sparse vector computation. Additionally, to For the evaluations, we applied a careful SVM
have a uniform score across different document sizparameterization: a preliminary investigation sug-
the kernel function can be normalized as followsgested that the trade-off (between the training-set er-

SK(d d) ror and margin, i.ec option in SVM-light) parame-
V/SK(d1,d1)-SK (d2,d2) o k

ter optimizes thd’, measure for values in the range

4 Experiments [0.02,0.32f. We noted also that the cost-factor pa-

The use of WordNet (WN) in the term similarity rameter (i.e.j option) is not critical, i.e. a value of
function introduces a prior knowledge whose impactO always optimizes the accuracy. The feature se-
on the Semantic Kerneb(K) should be experimen- lection techniques and the weighting schemes were
tally assessed. The main goal is to compare the tradiot applied in our experiments as they cannot be ac-
tional Vector Space Model kernel agairk’, both curately estimated from the small available training
within the Support Vector learning algorithm. data.

The high complexity of theSK limits the size The classification performance was evaluated by
of the experiments that we can carry out in a feameans of thé’; measurefor the single category and
sible time. Moreover, we are not interested to largthe MicroAverage for the final classifier pool (Yang,
collections of training documents as in these traint999). Given the high computational complexity of
ing conditions the simpl@ag-of-wordsmodels are SK we selected 8 categories from the 20Ndhid 8
in general very effective, i.e. they seems to moddrom the Reuters corptis
well the document similarity needed by the learning To derive statistically significant results with few
algorithms. Thus, we carried out the experimentgaining documents, for each corpus, we randomly
on small subsets of the 20NewsGrotig@0NG) selected 10 different samples from the 8 categories.
and theReuters-21578corpora to simulate critical We trained the classifiers on one sample, parameter-

learning conditions. ized on a second sample and derived the measures
. on the other 8. By rotating the training sample we
4.1 Experimental set-up obtained 80 different measures for each model. The

For the experiments, we used the SVMsSize ofthe samplesrangesfrom 24 to 160 documents

light software (Joachims, 1999) (available atlepending on the target experiment.
svmlight.joachims.org ) with the default linear o
kernel on the token space (adopted as the baselifi¢¢ Cross validation results
evaluations). For theSK evaluation we imple- TheSK (Eg. 3) was compared with the linear kernel
mented the Eq. 3 witly(-,-) = CD(-,-) (Eq. 1) which obtained the bedf; measure in (Joachims,
inside SVM-light. As Eq. 1 is only defined for 1999). Table 1 reports the first comparative results
nouns, a part of speech (POS) tagger has beesr 8 categories of 20NG on 40 training documents.
previously applied. However, also verbs, adjective$he results are expressed as Meanand theStd.
and numerical features were included in the paiDev.over 80 runs. Thé are reported in Column 2
space: a nullCD value is defined to the pairs for the linear kernel, i.ebow, in Column 3 forSK
made by different tokens. As the POS-tagger could—, _
introduce errors, in a second experiment any word S\IQV‘B used all the values from 0.02 to 0.32 with step 0.02.

. ' . . . 1 assigns equal importance to PrecisiBrand RecallR,
was considered in the kernel given its look-up in thee g R

WN hierarchy was successfull. This approximation °®we selected the 8 most different categories (in terms of
their content) i.e. Atheism Computer GraphicsMisc Forsale

2pAvailable at www.ai.mit.edu/peoplefjrennie/ Autos Sport Baseba)lMedicing Talk Religionsand Talk Poli-
20Newsgroups/ . tics.
3The Ape split available at kdd.ics.uci.edu/ "We selected the 8 largest categories, Aequisition Earn,

databases/reuters21578/reuters21578.html . Crude Grain, Interest Money-fx TradeandWheat



without applying POS information and in Column 4surface forms were allowed to give contributions to
for S K with the use of POS informatios(X-POS). the Eq. 3.

The last row shows the MicroAverage performance

for the above three models on all 8 categories. We Category [ bow | SK SK-POS |
note thatSK improvesbow of 3%, i.e. 34.3% vs. | Aheism 29.5£19.8 1 32.0016.3 | 25.2¢17.2

) k | Comp.Graph | 39.2+20.7 | 39.3t20.8 | 29.3+21.8
31.5% and that the POS information reduces the im+ Mmisc.Forsale | 61.3:17.7 | 51.3-18.7 | 49.5:20.4

provement ofSK, i.e. 33.5% vs. 34.3%. éUtO?B ) gg%ggz gg-&gg-g ii-gﬁg-g
. . . L port.Baseb. . . . . . .

To vc_arlfy the h_y|_oothe5|s that \(\{N information is | i ved 2610172 | 185L17.4 | 16.6L17.2

useful in low training data conditions we repeated| Talk.Relig. 23.5+11.6 | 28.4+19.0 | 27.6+17.0

the evaluation over the 8 categories of Reuters with_Talk.Polit. 28.3t17.5 | 30.7£15.5 | 30.3:14.3

MicroAvg. I | 31.554.8 | 34.3+t5.8 | 33.5£6.4

samples of 24 and 160 documents, respectively. Th
results reported in Table 2 shows that (1) agéiid  Table 1:Performance of the linear and Semantic Kernel with
improvesbow (41.7% - 37.2% = 4.5%) and (2) as40 training documents over 8 categories of 20NewsGroups col-
the number of documents increases the improvemeattion.

decreases (77.9% - 75.9% = 2%). It is worth noting

that the standard deviations tend to assume high val€ategory 24 docs 160 docs

ues. In general, the use of 10 disjoint training/testing bow | SK bow | SK

; il Acq. 55.3£18.1 | 50.8£18.1 | 86.74.6 | 84.2t4.3
samples _produces a hlghgr variability thansthield Crude 3.ALE 6 3 ELE 7 64.0520.6 | 62 0L16.7
cross validation which insists on the same documengam 64.0610.0 | 64.7410.3 | 91.3:5.5 | 90.4+5.1

set. However, this does not affect the confidengeGrain 45.0:33.4 | 44.4:29.6 | 69.9+16.3 | 73.7+14.8
Interest | 23.9£29.9 | 24.94-28.6 | 67.2£12.9 | 59.8-12.6

test over the differe_nces between the MicroAverageMoney_fX 3610343 | 3921295 | 69 1L11.9 | 67.4:13.3
of SK andbow as it suggests that the former has Trade 9.8+21.2 | 10.3+17.9 | 57.1£23.8 | 60.1+15.4
a higher accuracy than the latter at 99% confidence/Vheat | 8.6+19.7 | 13.3426.3 | 23.9424.8 | 31.2£23.0
level. Mic.Avg. | 37.2£5.9 | 41.746.0 | 75.9F11.0 | 77.9£5.7
The above findings confirm th&tK outperforms Table 2:Performance of the linear and Semantic Kernel with
the bag-of-wordskernel in critical learning condi- 40 and 160 training documents over 8 categories of the Reuters
tions as the semantic contribution of tB& recov- corpus.
ers useful information. To complete this study we
carried out experiments with samples of different s
size, i.e. 3, 5, 10, 15 and 20 documents for each 4,
category. Figures 1 and 2 show the learning curves
for 20NG and Reuters corpora. Each point refers toc
the average on 80 samples. g
As expected the improvement provided By §
decreases when more training data is availables e
However, the improvements are not negligible yet. | |ees
The SK model (without POS information) pre- B30 +SKPOS
serves about 2-3% of improvement with 160 training ~ 3° : : : : :

. 40 60 80 100 120 140 160
documents. The matching allowed between noun- #Training Documents

verb pairs still captures semantic information Whid?:igure 1: MicroAverage Fi of SVMs usingbow, SK and
. 1 ow,

is useful for topic detection. In particular, durings i’ pos kernels over the 8 categories of 20NewsGroups.
the similarity estimation, each word activas05

pairs on average. This is particularly useful to in- The important outcome is th&tK converges to a
crease the amount of information available to thdlicroAveragef’; measure of 56.4% (compare with
SVMs. Table 2). This shows that the word similarity pro-
Finally, we carried out some experiments withvided by WN is still consistent and, although in the
160 Reuters documents by discarding the stringrorst case, slightly effective for TC: the evidence
matching fromSK. Only words having different is that a suitable balancing between lexical ambigu-




80.0

that semantic information derived directly from WN
without a priori WSD produces poor results.

The latter methods are even more problematic in
TC (Moschitti and Basili, 2004). Word senses tend
to systematically correlate with the positive exam-
ples of a category. Different categories are better
characterized by different words rather than differ-
ent senses. Patterns of lexical co-occurrences in the

w50 ‘ ‘ ; ‘ ‘ ; training data seem to suffice for automatic disam-
200 40 60 80 100 120 140 160 biguation. (Scott and Matwin, 1999) use WN senses
#reining ocuments to replace simple words without word sense disam-
Figure 2:MicroAverageF; of SVMs usinghow andSK over ~ biguation and small improvements are derived only
the 8 categories of the Reuters corpus. for a small corpus. The scale and assessment pro-
. . , vided in (Moschitti and Basili, 2004) (3 corpora us-
Ity an_d topical relatedness is captured by the SV'th cross-validation techniques) showed that even
learning. the accurate disambiguation of WN senses (about
5 Related Work 80% accuracy on nouns) did not improve TC.

o ~_ In(Siolas and d'Alch Buc, 2000) was proposed
The IR studies in this area focus on the term similaryy approach similar to the one presented in this ar-

ity models to embed statistical and external knowlicle. A term proximity function is used to design

edge in document similarity. a kernel able to semantically smooth the similarity
In (Kontostathis and Pottenger, 2002)aent Se- petween two document terms. Such semantic ker-
mantic Indexinganalysis was used for term cluster-nel was designed as a combination of the Radial Ba-
ing. Such approach assumes that valugsin the  sjs Function (RBF) kernel with the term proximity
transformed term-term matrix represents the simmatrix. Entries in this matrix are inversely propor-
larity (> 0) and anti-similarity between termisand  tional to the length of the WN hierarchy path linking
Jj. By extension, a negative value represents an anthe two terms. The performance, measured over the
similarity betweeni and; enabling both positive and 20NewsGroups corpus, showed an improvement of
negative clusters of terms. Evaluation of query ex29 over thebag-of-words Two main differences
pansion techniques showed that positive clusters cgan be emphasized with respct to our approach.
improve Recall of about 18% for ti@ Sl collection,  First, the term proximity does not fully capture the
2.9% for MED and 3.4% forCRAN Furthermore, \WN topological information. Equidistant terms re-
the negative clusters, when used to prune the resglive the same similarity irrespectively from their
set, improve the precision. generalization level. For exampl&kyand Loca-
The use of external semantic knowledge seemidn (direct hyponyms oEntity) receive a similarity
to be more problematic in IR. In (Smeaton, 1999)score equal t&nifeandgun(hyponyms ofveapo.
the impact of semantic ambiguity on IR is studMore accurate measures have been widely discussed
ied. A WN-based semantic similarity function be-in literature, e.g. (Resnik, 1997) or tli&D itself.
tween noun pairs is used to improve indexing an@econd, the kernel-bas&dD similarity is an ele-
document-query matching. However, the WSD algant combination of lexicalized and semantic infor-
gorithm had a performance ranging between 60mation. In (Siolas and d’Alch Buc, 2000) the com-
70%, and this made the overall semantic similaritpination of weighting schemes, the RBF kernel and
not effective. the proximitry matrix has a less clear interpretation.
Other studies using semantic information for im+inally, (Siolas and d’Alch Buc, 2000) selected only
proving IR were carried out in?j] and (Voorhees, 200 features via Mutual Information statistics. In
1993; Voorhees, 1994). Word semantic informatioihis way rare or non statistically significant terms are
was here used for text indexing and query expameglected while being source of often relevant con-
sion, respectively. In (Voorhees, 1994) it is shownribution in theS K space based on WN.
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" In Proceedings of Language Resources and Evaluation Con-

2002; Kandola et al., 2002). Two methods for in-  ference Lisbon, Portugal.
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posed. In the first a system of equations were de- ter. 2001. On feature distributional clustering for text cat-
. . S egorization. InProceedings of SIGIR’01 New Orleans,
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