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Abstract approximations or transformations of the gradient,

e.g. (Rakotomamonjy, 2003), (Weston et al., 2003)
or (Kudo and Matsumoto, 2003).

However, kernel based systems have two major
drawbacks: first, new features may be discovered
in the implicit space but they cannot be directly ob-

The combination of Support Vector Machines
with very high dimensional kernels, such as
string or tree kernels, suffers from two ma-
jor drawbacks: first, the implicit representa-
tion of feature spaces does not allow us to un-

derstand which features actually triggered the
generalization; second, the resulting compu-
tational burden may in some cases render un-
feasible to use large data sets for training. We
propose an approach based on feature space
reverse engineering to tackle both problems.
Our experiments with Tree Kernels on a Se-
mantic Role Labeling data set show that the
proposed approach can drastically reduce the
computational footprint while yielding almost
unaffected accuracy.

served. Second, since learning is carried out in the
dual space, it is not possible to use the faster SVM or
perceptron algorithms optimized for linear spaces.
Consequently, the processing of large data sets can
be computationally very expensive, limiting the use
of large amounts of data for our research or applica-
tions.

We propose an approach that tries to fill in the
gap between explicit and implicit feature represen-
tations by 1) selecting the most relevant features in

accordance with the weights estimated by the SVM
and 2) using these features to build an explicit rep-
resentation of the kernel space. The most innovative
The use of Support Vector Machines (SVMs)aspect of our work is the attempt to model and im-
in supervised learning frameworks is spreadinglement a solution in the context of structural ker-
across different communities, including Computanels. In particular we focus on Tree Kernel (TK)
tional Linguistics and Natural Language Processingunctions, which are especially interesting for the
thanks to their solid mathematical foundations, ef€omputational Linguistics community as they can
ficiency and accuracy. Another important reasoeffectively encode rich syntactic data into a kernel-
for their success is the possibility of using kernebased learning algorithm. The high dimensionality
functions to implicitly represent examples in somef a TK feature space poses interesting challenges in
high dimensional kernel space, where their similaterms of computational complexity that we need to
ity is evaluated. Kernel functions can generate a vegddress in order to come up with a viable solution.
large number of features, which are then weighte#/e will present a number of experiments carried
by the SVM optimization algorithm obtaining a fea-out in the context of Semantic Role Labeling, show-
ture selection side-effect. Indeed, the weights enng that our approach can noticeably reduce training
coded by the gradient of the separating hyperplartane while yielding almost unaffected classification
learnt by the SVM implicitly establish a ranking be-accuracy, thus allowing us to handle larger data sets
tween features in the kernel space. This property has a reasonable computational cost.

been exploited in feature selection models based onThe rest of the paper is structured as follows: Sec-

1 Introduction
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overlap. The function can be computed recursively
in closed form, and quite efficient implementations

D are available (Moschitti, 2006). Different TK func-

g g tions are characterized by alternative fragment defi-
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@% ;) ©) /@ /@\ ©) g) nitions, e.g. (Collins and Duffy, 2002) and (Kashima

L / X and Koyanagi, 2002). In the context of this paper
@Q \® we will be focusing on the SubSet Tree (SST) ker-
N 5 nel described in (Collins and Duffy, 2002), which

7N\ P =L 0.0 AN relies on a fragment definition that does not allow to

/\ ¢(T2) =10,0,0,0,1, 1, 1] ‘ break production rules (i.e. if any child of a node is

Lo KETLTR = e, e =1 included in a fragment, then also all the other chil-
dren have to). As such, it is especially indicated for
fasks involving constituency parsed texts.

Implicitly, a TK function establishes a correspon-
tion 2 will briefly review SVMs and Tree Kernel dence between distinct fragments and dimensions in
functions; Section 3 will detail our proposal for thesomefragment spacei.e. the space of all the pos-
linearization of a TK feature space; Section 4 W|”S|b|e fragments. To simplify, a treecan be repre-
review previous work on related subjects; Section 8ented as a vector whose attributes count the occur-
will describe our experiments and comment on theifences of each fragment within the tree. The ker-
results; finally, in Section 6 we will draw our con- ne| between two trees is then equivalent to the scalar

clusions. product between pairs of such vectors, as exempli-
fied in Figure 1.
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Figure 1: Esemplification of a fragment space and th
kernel product between two trees.

2 Tree Kernel Functions
The decision function of an SVM is: 3 Mining the Fragment Space

n If we were able to efficiently mine and store in a
f@=ad-F+b=> auw;-Z+b (1) dictionary all the fragments encoded in a model,
=1 we would be able to represent our objects explicitly
whereZ is a classifying example and andb are and use these representations to train larger models
the separating hyperplanetgadient and itsbias ~and very quick and accurate classifiers. What we
respectively. The gradient is a linear combinatiomeed to devise are strategies to make this approach
of the training pointsz;, their labelsy; and their convenient in terms of computational requirements,
weights ;. These and the bias are optimized atvhile yielding an accuracy comparable with direct
training time by the learning algorithm. Applying tree kernel usage.
the so-calledkernel trickit is possible to replace the  Our framework defines five distinct activities,
scalar product with &ernel functiondefined over which are detailed in the following paragraphs.

pairs ofobjects Fragment Space Learning ESL) First of all, we

n can partition our training data int§ smaller sets,
flo) =D _awik(oi,0) +b and use the SVM and the SST kernel to lesimnod-
=1 els. We will use the estimated weights to drive our
with the advantage that we do not need to providéeature selection process. Since the time complexity
an explicit mappingp(-) of our examples in a vector of SVM training is approximately quadratic in the
space. number of examples, this way we can considerably
A Tree Kernel function is a convolution ker- accelerate the process of estimating support vector
nel (Haussler, 1999) defined over pairs of treesveights.
Practically speaking, the kernel between two trees According to statistical learning theory, being
evaluates the number of substructuredi@gment¥y trained on smaller subsets of the available data
they have in common, i.e. it is a measure of theithese models will be less robust with respect to the
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lection process, as we will describe shortly), we can . .—>.
accept to rely on sub-optimal weights. Furthermore, RLA1,B,Z1,W 2.1 13

R2,X,1,Y,1.B,Z, T,W

research results in the field of SVM parallelization © B.Z1.W ©) . . ﬂ
using cascades of SVMs (Graf et al., 2004) suggest (23 (22

that support vectors collected from locally learnfigure 2: Fragment indexing. Each fragment is repre-
models can encode many of the relevant features rgented as a sequeri@and then encoded as a path in the
tained by models learnt globally. Henceforth, et index® which keeps track of its cumulative relevance.
be the model associated with theh split, and.F
the fragment space that can describe all the trees.in
M.

sequence should be attached after climbing one level
in the tree. For example, the tré@ (Z W))in figure
is represented as the sequefigez, 1, W]. Then, we
Fragment Mining and Indexing (FMI) In Equa- add the elements of the sequence to a graph (which

tion 1 it is possible to isolate the gradient = we call anindexof fragments) where each sequence
S gy, With @ = [%(1)7 o 7%@”], N being becomes a path. The nodes of the index are the la-
the dimensionality of the feature space. For a treleels of the fragment nodes, and each arc is associ-
kernel function, we can rewritegj) as: ated with a pair of vall_Je$d, n): d is a node identi-
fier, which is unique with respect to the source node;
G) _ tig A tigAD) @ " is the identifier of the arc that must be selected at
! el \/Zé\;l(ti’k)\z(fk))z the destination node in order to follow the path as-

sociated with the sequence. Index nodes associated
where:t; ; is the number of occurrences of the fragwith a fragment root also have a field where the cu-
ment f;, associated with thg-th dimension of the mulative relevance of the fragment is stored.

feature space, in the treg )\ is the kernel decay As an example, the index node labelBdn fig-

factor; and/(f;) is the depth of the fragment. ure has an associated weightof, thus identify-
The relevancgw!/)| of the fragmentf; can be ing the root of a fragment. Each outgoing edge
measured as: univocally identifies an indexed fragment. In this

n . case, the only outgoing edge is labeled with the pair
Zaiyzng) (3) (d = 1,n = 1), meaning that we should follow it
=1 to the next node, i.€Z, and there select the edge la-
We fix a thresholdZ and from each model\/, beledl, as indicated by.. The edge withi = 1inZ
(learnt during FSL) we select the most relevant is (d = 1,n = 1), so we browse td where we se-
fragments, i.e. we build the s&f ;, = U,{fx} so lectthe edgéd = 1,n = —). The missing value for

lwl)| =

that: n tells us that the next nod#y, is the last element
) Q) of the sequence. The complete sequence is[tBen
[ Fs,o| = Land|w™| > [w[Vfie FANFsr - 7z 1, W], which encodes the fragmeti (Z W))

In order to do S0, we need to harvest all the frag_ The index implementation has been Optimized for
ments with a fast extraction function, store them ifast insertions and has the following features: 1)
a compact data structure and finally select the fragach node label is represented exactly once; 2) each
ments with the highest relevance. Our strategy is eistinct sequence tail is represented exactly once.
emplified in Figure 2. First, we represent each fragThe union of all the fragments harvested from each
ment as a sequence as described in (Zaki, 2002). model is then saved into a dictionaBy, which will
sequence contains the labels of the fragment nodeg used by the next stage.
in depth-first order. By default, each node is the To mine the fragments, we apply to each tree in
child of the previous node in the sequence. A speeach model the algorithm shown in Algorithm 3.1.
cial symbol () indicates that the next node in theln this context, we calfragment expansiothe pro-
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procedure MINE( frag, depth) a cat -1:8C +1: BC,AL
if frag € indexed -1: A0,A2,A3,A4,A5
then return Figure 3: Examples of AS] structured features.
mgg{%;ggndmd U{frag} transformed to encode label-vector pdigg ;). To
for each node € TO_EXPAND( frag) do so, we generate the fragment space; ptising
if node ¢ mined a variant of the mining algorithm described in Fig-
do q 4 {mined «— mined U {node} ure 3.1, and encode i} all and only the fragments
MINE(FRAG(n0de), 0) t; j sothatt; ; € Dy, i.e. we perform feature extrac-

if depth < mazxdepth
th for each fragment € EXPAND(frag, maxexp)
do MINE( fragment,depth + 1)

tion based on the indexed fragments. The process is
applied to the whole training and test sets. The al-
gorithm exploits labels and production rules found

cess by which tree nodes are included in a fra in the fragments listed in the dictionary to generate

ment. Fragment expansion is achieved niale ex- only the fragments thathay bein the dictionary. For

: . . example, if the dictionary does not contain a frag-
pansions where expanding a node means includ-

Co . . ment whose root is labelety, then if a nodeN is

ing its direct children in the fragment. The func- . . .

. . . . _encountered during TFX neither its base fragment
tion FRAG(n) builds the basic fragment rooted in a

) ) . nor its expansions are generated.
given noden, i.e. the fragment consisting only of
and its direct children. The functioro_.ExPAND(f) Explicit Space Learning (ESL) After linearizing
returns the set of nodes in a fragmefithat can the training data, we can learn a very fast model by
be expanded (i.e. internal nodes in the origin treejsing all the available data and a linear kernel. The
while the functionEXPAND( f, maxexp) returns all fragment space is noexplicit, as there is a mapping
the possible expansions of a fragmeht The pa- between the input vectors and the fragments they en-
rametermaxexp is a limit to the number of nodes code.

that can be expanded at the same time when a n L T
P 'me W %/y(phCIt Space Classification ESC) After learn-

fragment is generated, whiteaxdepth sets a limit the | del lassi i ved
on the number of times that a base fragment can ped e linear model, we can ¢ assify our linearize

expanded. The functiombex (f) adds the frag- test data and evaluate the accuracy of the resulting

ment f to the index. To keep the notation simple £2SSifier:

here we assume that a fragmehtontains all the 4 previous work
necessary information to calculate its relevance (i.e.
y;, and||t;]|, the depth of the fragmertt f) and the tion techniques is carried out in (Guyon and Elis-
decay factor\, see equations 2 and 3). seeff, 2003). Non-filter approaches for SVMs and
Performing in a different order the same node exeMel machines are often concerned with polyno-
pansions on the same fragmefhtesults in the same Mial and Gaussian kernels, e.g. (Weston et al., 2001)
fragmentf’. To prevent the algorithm from entering@nd (Neumann etal., 2005). Weston etal. (2003) use
more than once. Similarly, thevined set is used !N (Kudoand Matsumoto, 2003), an extension of the
so that the base fragment rooted in a given node RrefixSpan algorithm (Pei et al., 2001) is used to ef-
considered only once. ficiently mine the features in a low degree polyno-
mial kernel space. The authors discuss an approx-
Tree Fragment Extraction (TFX) During this imation of their method that allows them to handle
phase, a data file encoding label-tree paitst;) is high degree polynomial kernels.




Data set Non-linearized classifiers Linearized classifier@hr=10k)

Task Pos Neg Train  Test P R 1F Train  Test P R F

A0 60,900 118,191 521 7 90.26 9295 91.59 209 3 88.95 91.914090.
Al 90,636 88,455 1,206 11 89.45 88.62 89.03 376 3 89.39 88.18.768
A2 21,291 157,800 692 7 8456 6442 73.13 248 3 81.23 68.292074.
A3 3,481 175,610 127 2 97.67 40.00 56.76 114 3 9756 38.10 954.7
Ad 2,713 176,378 47 1 92.68 55.07 69.10 92 2 9500 55.07 69.72
A5 69 179,022 3 0 100.00 50.00 66.67 63 2 100.00 50.00 66.67
BC 61,062 938,938 3,069 247 8257 80.96 81.76 916 39 83.36 957881.10

RM - 2,596 27 89.37 86.00 87.65 1,090 16 8850 8581 87.13

Table 1: AccuracyP, R, F1), training (Train) and test Tes) time of non-linearized (center) and linearized (right)
classifiers. Times are in minutes. For each task, colupasandNeglist the number of positive and negative training
examples, respectively. The accuracy of the role multifieéss is the micro-average of the individual classifiers
trained to recognize core PropBank roles.

Suzuki and Isozaki (2005) present an embedddtie second involves &ole Multi-class Classifier
approach to feature selection for convolution ker(RM).
nels based ony2-driven relevance assessment. To

our knowledge, this is the only published worktsetUp' _If the_lcobr?stltuency p?rsi trtde?lf ti sen-
clearly focusing on feature selection for tree ker-cNce s IS available, we can look at all the pairs
), Wheren,; is any node in the tree angd is

nel functions. In (Graf et al., 2004), an approac ﬁ’ T e dominati d decide whether. i
to SVM parallelization is presented which is based’® MO et on;ma mg:g,_an Ec,lhe V\'It N ertll |sdan
on a divide-et-impera strategy to reduce optimiza"ergumen nod®r not, 1.e. whether It exactly dom-

tion time. The idea of using a compact graph rep'—nates all and only the words encoding anyw

resentation to represent the support vectors of a T%rggumf?;s. ) Thf objectts thatLV\;e classity are Sijhb'
function is explored in (Aiolli et al., 2006), where g S€'s of the input parse tree that encompass po

Direct Acyclic Graph (DAG) is employed. andn;. Namely, we use the AS] structure defined
Concerning the use of kernels for NLP interin (Moschitti et al., 2008), which is the minimal tree

. ) that covers all and only the words pfandn;. In
esting models and results are described, for exam- '\ o1 » andn; are marked so that they can be
ple, in (Collins and Duffy, 2002), (Moschitti et al"gistingug’rled frorr21 the other nodes. An ASTs
é%?ﬁ ) 2(0%?0 asr::lrl:/'zzs;mztg O 32 Oogéégeu drggye?r;[egarded as a positive example for BGjfis an ar-
2003’ c I)t'f nd S r”n N )’2(§04 Daumé | jument node, otherwise it is considered a negative
and Iz;la(rcu 02302 K; :msaea’n d Tor?éa( :u20%5example. Positive BC examples can be used to train

u. ). ( 2 ISawa, n efficient RM: for each role we can train a clas-
(Kudo et al., 2005), (Titov and Henderson, 2006)

" " ) sifier whose positive examples are argument nodes
(Moschitti et al., 2006), (Moschitti and Bejan, 2004) b P 9
whose label is exactly, whereas negative examples
or (Toutanova et al., 2004).

are argument nodes labeletl # r. Two AST,,s

) extracted from an example parse tree are shown in
S Experiments Figure 3: the first structure is a negative example for
We tested our model on a Semantic Role LgBC and is not part of the data set of RM, whereas

beling (SRL) benchmark, using PropBank annotathe second is a positive instance for BC and Al.

tions (Palmer et al., 2005) and automatic Charniak To train BC we used PropBank sections 1 through
parse trees (Charniak, 2000) as provided for th@, extracting AST, structures out of the first 1 mil-

CoNLL 2005 evaluation campaign (Carreras andion (p, n;) pairs from the corresponding parse trees.
Marquez, 2005). SRL can be decomposed intAS a test set we used the 149,140 instance collected

two tasks:boundary detectionwhere the word se- from the annotations in Section 24. There are 61,062
quences that are arguments of a predicate word Positive examples in the training set (i.e. 6.1%) and
are identified, andble classificationwhere each ar- 8,515 in the test set (i.e. 5.7%).

gument is assigned the proper role. The former task For RM we considered all the argument nodes of
requires a binarBoundary Classifie(BC), whereas any of the six PropBank core roles (i.e. A0, ...,
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Figure 4: Training time decomposition for the Iinearizedsupport_ During FSL, we learn the models using a

BC with respectto its main components whenvarying thg, o764 SST kernel and the default decay factor

threshold value. .
resnoldvalue A = 0.4. The same parameters are used to train

AS) from all the available training sections, i.e. 2ihe models of the non linearized classifiers. During
through 21, for a total of 179,091 training instancesg g | the classifier is trained using a linear kernel.

Similarly, we collected 5,928 test instances from thWe did not carry out further parametrization of the
annotations of Section 24. learning algorithm.

In the remainder, we will mark with afthe lin- . L
Results. The left side of Table 1 shows the distri-

earized classifiers, i.e. BGnd RM will refer to i ; Ve (ColumP 4 i
the linearized boundary and role classifiers, respetl?EJ lon of positive (Co um _09 andnega veNeg
data points in each classifier’s training set. The cen-

tively. Their traditional, vanilla SST counterparts : . :
tral group of columns lists training and test effi-

will be simply referred to as BC and RM. . q fBC and RM. i.e. th
We used 10 splits for the FMI stage and we seflency and accuracy o an » 1-€. The non-

mazdepth = 4 andmazezp = 5 during FMI and linearized classifiers, along with figures for the indi-

TFX. We didn’t carry out an extensive validation ofv'dual, rf"e classifiers that make up RM.
these parameters. These values were selected dur!'@ining BC took more than two days of CPU
ing the development of the software because, onti® and testing about 4 hours. ~The classifier
very small development set, they resulted in a ver§clieves an Fmeasure of 81.76, with a good bal-
responsive system. ance bereeq precision and recall. Concerning RM,
Since the main topic of this paper is the assesSeduential training of the 6 models took 2,596 min-

ment of the efficiency and accuracy of our linearizaUtes: while classification took 27 minutes. The slow-

tion technique, we did not carry out an evaluatiorfSt of the individual role classifiers happens to b_e
on the whole SRL task using the official conLLosAL which has an almost 1:1 ratio between posi-

evaluator. Indeed, producing complete annotatiorfd/® @nd negative examples, i.e. they are 90,636 and

requires several steps (e.g. overlap resolution, OvAS:455 respectively. _
We varied the threshold value (i.e. the number of

or Pairwise combination of individual role classi-

fiers) that would shade off the actual impact of thdragments that we mine from each model, see Sec-
methodology on classification. tion 3) to measure its effect on the resulting classi-

_ fier accuracy and efficiency. In this context, we call
Platform. Al the experiments were run on & Ma-yaining timeall the time necessary to obtain a lin-

chine equipped with 4 Intél Xeor® CPUs clocked  g4ized model, i.e. the sum of FSL, FMI and TFX
at 1.6 GHz and 4 GB of RAM running on a LinuX ime for every split, plus the time for ESL. Similarly,

2.6.9 kernel. As a sup;ervis_ed learning frameworl o ¢4itest timethe time necessary to classify a lin-
we used SVM-Light-TK’, which extends the SVM- ¢4izeq test set, i.e. the sum of TFX and ESC on test
Light optimizer (Joachims, 2000) with tree kernely,iq.

httprdisi unitn. it/ - moschit/Tree- Kernel.htm In Figure 4 we plot the efficiency of BQearn-



ing with respect to different threshold values. The Learning parallelization
Linearized (Thr=10k)

(')ve'rall tralnlng time is shown qlong&de with par- Task  Non Lin. lcpu 5cps  10Gpes
tial times coming from FSL (which is the same for BC  3.059 916 293 215
every threshold value and amounts to 433 minutes), RM 2596 1,000 297 198

FMI, training data TFX and ESL. The plot showsTable 2: Learning time when exploiting the framework’s
that TFX has a logarithmic behaviour, and that quit@arallelization capabilities. ColumNon Lin. lists non-
soon becomes the main player in total training timénearized training time.

after FSL. For threshold values lower than 10k, ESL, o comparing against a fast TK implementation that

time decreases as the threshold increases: 100 fQu, st linear in time with respect to the number of
fragments are available and adding new ones ifae nodes (Moschitti, 2006).

creases the pr_ot_)ability of including relevant frag- Concerning RM, we can see that the accuracy
ments in the dictionary. After 10k, all the relevantlOSS is even less than with BQ.e. it reaches an,F
fragments are already there and adding more onyeaq re of 87.13 which is just 0.52 less than RM.
makes computation harder. We can see that forfig 554 interesting to note how the individual lin-

threshold value of 100k t%tal training time amounts, e role classifiers manage to perform accurately
to 1,104 minutes, i.e. 36% of BC. For a thresholde o qjess of the distribution of examples in the data
value of 10k, learning time further decreases t0 918q. for 4| the six classifiers the final accuracy is

minutes, i.e. less than 30%. This threshold valug, jine with that of the corresponding non-linearized

V\{e_ls used to train the individual linearized role Clasélassifier. In two cases, i.e. A2 and A4, the accuracy
sifiers that make up RM

of the linearized classifier is even higher, i.e. 74.20

These considerations are backed by the trend gf 73 13 and 69.72 vs. 69.10, respectively. As for
classification accuracy shown in Figure 5, where thg, efficiency, total training time for RMs 37% of
Precision, Recall and,Fmeasure of Bg evaluated rp ie. 1190 vs. 2.596 minutes. while test time

on the test set, are shown in comparison with BGg requced to 60%, i.e. 16 vs 27 minutes. These
We can see that BCprecision is almost constant, j,rqvements are less evident than those measured
while its recall increases as we increase the thresﬁ)—r boundary detection. The main reason is that

old, reaches a maximum of 78'950/% for a thresholghe ¢aining set for boundary classification is much
of 10k and then settles around 78.8%. ThesBore |5ger je. 1 million vs. 179k instances: therefore,

is maximized for a threshold of 10k, where it meayjiyting training data during FSL has a reduced im-
sures 81.10, i.e. just 0.66 points less than BC. Wﬁact on the overall efficiency of RM
can also see that Bds constantly more conserva-
tive than BC, i.e. it always has higher precision anéParallelization. All the efficiency improvements
lower recall. that have been discussed so far considered a com-
Table 1 compares side to side the accuracyletely sequential process. But one of the advan-
(columnsP, R and F,), training (Train) and test tages of our approach is that it allows us to paral-
(Tes) times of the different classifiers (central blocklelize some aspect of SVM training. Indeed, every
of columns) and their linearized counterparts (bloclactivity (but ESL) can exploit some degree of par-
on the right). Times are measured in minutes. Fallelism: during FSL, all the models can be learnt
the linearized classifiers, test time is the sum odt the same time (for this activity, the maximum de-
TFX and ESC time, but the only relevant contribu-gree of parallelization is conditioned by the number
tion comes from TFX, as the low dimensional lineaiof training data splits); during FMI, models can be
space and fast linear kernel allow us to classify teshined concurrently; during TFX, the data-set to be
instances very efficientl§. Overall, BG testtime is linearized can be split arbitrarily and individual seg-
39 minutes, which is more than 6 times faster thaments can be processed in parallel. Exploiting this
BC (i.e. 247 minutes). It should be stressed that wgossibility we can drastically improve learning ef-

2Although ESC is not shown in table, the classification of aIIfICIenCy' As an example, in Table 2 we show how

149K test instances with BGook 5 seconds with a threshold of the total learning of the B@can be cut to as low _aS
1k and 17 seconds with a threshold of 100k. 215 seconds when exploiting ten CPUs and using a



100 - | - 1k —=— 5k —e— 10k node and, of these, about one third are rooted in it.
—5— 50k —— 100k This last figure strongly suggests that the internal
80 |- i structure of an argument is indeed a very powerful

feature not only for role classification, as we would
expect, but also for boundary detection. About 10%
40 |- . of the fragments contain both the predicate and the
argument node, while about 1% encode the Path fea-
ture traditionally used in explicit semantic role label-
[ N I O O SO S B ing models (Gildea and Jurafsky, 2002). About 5%
encode a sort of extended Path feature, where the ar-
Models gument node is represented together with its descen-
Figure 6: Growth of dictionary size when including frag-dants. Overall, about 2/3 of the fragments contain at
ments from more splits at different threshold valuesl€ast some terminal symbol (i.e. words), generally a

When a low threshold is used, the contribution of indifpreposition or an adverb.
vidual dictionaries tends to be more marginal.

60 -

20 -

Cumulative contribution (%)

6 Conclusions
threshold of 10k. Even running on just 5 CPUs, the

overall computational cost of BGs less than 10% We presented a supervised learning framework for
of BC (ColumnNon Lin). Similar considerations Support Vector Machines that tries to combine the
can be drawn concerning the role multi-classifier. power and modeling simplicity of convolution ker-

. _ nels with the advantages of linear kernels and ex-
Fragment space. In this section we take & ook at it feature representations. We tested our model
the fragments included in the dictionary of the BC ,, 5 semantic Role Labeling benchmark and ob-

classifier. During FMI, we incrementally merge the,ineq very promising results in terms of accuracy
fragments mined from each of the models learnt dugy efficiency. Indeed, our linearized classifiers

ing FSL. Figure 6 plots, for different threshold val-anage 10 be almost as accurate as non linearized
ues, the percentage of new fragments (ONtB&IS)  oneg \while drastically reducing the time required to

that thei-th model (on ther axis) contributes with yain and test a model on the same amounts of data.
respect to the number of fragments mined from each 14 qur pest knowledge, the main points of nov-

model (i.e. the threshold value). elty of this work are the following: 1) it addresses

If we consider the curve for a threshold equal tQne problem of feature selection for tree kemnels, ex-
100k_, we can see that eac_h model after the first a loiting SVM decisions to guide the process; 2) it
proximately contributes with the same number ofqyides an effective way to make the kernel space
fragments. On the other hand, if the threshold is Sgfyservable; 3) it can efficiently linearize structured
_to 1k th.an the contrlbuthn of subsequent models i§at4 without the need for an explicit mapping; 4) it
increasingly more marginal. Eventually, less thag,mpines feature selection and SVM parallelization.
10% of the fragments mined from the last model are o began investigating the fragments generated

new ones. This behaviour suggests thgt there isb@ a TK function for SRL, and believe that study-
core set of very relevant fragments which is COMing them in more depth will be useful to identify

mon across models learnt on different data, i.e. theye\y relevant features for the characterization of
are relevant for the task and do not strictly depe”ﬂredicate—argument relations.

on the training data that we use. When we increase |, the months to come. we plan to run a set of ex-

the threshold value, the new fragments that we indeXeriments on a wider list of tasks so as to consolidate
are more and more data specific. the results we obtained so far. We will also test the
The dictionary compiled with a threshold of 10kgenera|ity of the approach by testing with different

lists 62,760 distinct fragments. 15% of the fragpjgh-dimensional kernel families, such as sequence
ments contain the predicate node (which generally,q nolynomial kernels.

is the node encoding the predicate word's POS tag),
more than one third contain the candidate argument
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