
Generalized Framework for Syntax-based Relation Mining

Bonaventura Coppola †, Alessandro Moschitti †, Daniele Pighin †‡

† University of Trento, Department of Computer Science and Engineering
‡ FBK-Irst, Human Language Technologies Research Unit

{coppola,moschitti}@disi.unitn.it, pighin@fbk.eu

Abstract

Supervised approaches to Data Mining are particularly
appealing as they allow for the extraction of complex rela-
tions from data objects. In order to facilitate their applica-
tion in different areas, ranging from protein to protein in-
teraction in bioinformatics to text mining in computational
linguistics research, a modular and general mining frame-
work is needed. The major constraint to the generalization
process concerns the feature design for the description of
relational data.

In this paper, we present a machine learning framework
for the automatic mining of relations, where the target ob-
jects are structurally organized in a tree. Object types are
generalized by means of the use of roles, whereas the re-
lation properties are described by means of the underlying
tree structure. The latter is encoded in the learning algo-
rithm thanks to kernel methods for structured data, which
represent structures in terms of their all possible subparts.
This approach can be applied to any kind of data disregard-
ing their very nature.

Experiments with Support Vector Machines on two text
mining datasets for relation extraction, i.e. the PropBank
and FrameNet corpora, show both that our approach is gen-
eral, and that it reaches state-of-the-art accuracy.

1. Introduction

Mining relations from text is one of the most interesting
Data Mining (DM) problems, testified by several impor-
tant applications in bioinformatics [2], medicine [28], and
other areas such as hypermedia, e.g. for the automatic gen-
eration of hyperlinks between related entities across docu-
ments [15] or digital media indexing and integration [24].
In bioinformatics, studies on relation mining are carried
out on three main different data types: natural language
texts, molecular structures expressed in text format (e.g. the
DNA sequence), and molecular models as proteins. This re-
search field has also impact in the development of annotated

corpora to be employed for the setup of supervised learn-
ing frameworks, as in the case of the GENIA corpus [14].
Moreover, there are also trends to widen and generalize the
data mining perspective so that multiple structured informa-
tion sources may be considered at the same time, as in the
case of Multi-Relational approaches [6]. Therefore, the de-
sign of a framework able to extract relations independently
of data is a challenging and interesting research area.

In the specific case of relational mining from texts, two
interesting computational linguistics projects, PropBank
[21] and FrameNet [1], proposed different approaches for
modeling the relations between sentence constituents, i.e.
grammatically and semantically meaningful sequences of
words. This kind of information is expressed in the form
of predicate argument structures (PAS), where a particular
word, i.e. the target, evokes an action, a situation or an event
and establishes a relation among the above constituents.

In particular, given a predicate target word like a verb, a
Semantic Role Labeling (SRL) system identifies and prop-
erly labels the word sequences that play some role with re-
spect to the target word. The roles typically express seman-
tic relations between the target and one of its arguments, as
in “John gave Mary the ball” where John is the GIVER
in the action expressed by the verb give, the ball is the
GIVEN OBJECT, and Mary is the RECIPIENT of the object.

An interesting aspect is that such relations are derived
from the syntactic structure of the referring sentence, that
is its syntactic parse tree, where the semantic roles have
been annotated. This makes it possible to mine dependen-
cies between words which are located in distant sentence
positions. Such goal can be achieved with very high accu-
racy, as shown by recent SRL works [3, 16].

The abstract function of an SRL system is to mine se-
mantic relations between objects described in a syntactic
structure. Therefore, similar learning techniques could be
applied to relation extraction in other domains in which a
generic syntactic/structural organization for data objects is
available. The main problem in generalizing the SRL idea is
that the features extracted from the syntactic structures must
be able to describe potentially very different objects. For

example, in SRL, linguists have designed features like the
head word or passive/active sentence form. Probably, these
features do not make any sense in a task of protein clas-
sification, where the syntactic structure simply describes
the spatial and interaction properties between different pro-
teins’ molecules (i.e. the objects specific to that problem).

A viable approach to automatic feature design for struc-
ture representation consists in extracting all possible struc-
tured features, and then selecting those most significant.
This can be achieved by exploiting two major recent find-
ings of the Statistical Learning Theory, i.e. Support Vector
Machines (SVMs) [27] and Kernel Methods [25]. The latter
can be used to implicitly generate the space of all possible
substructures from the target object structure. That is, ker-
nels extract all object properties, while SVMs can empha-
size the role of the meaningful substructures, realizing an
implicit side-effect of feature selection. In this context, sev-
eral kernel families (such as the polynomial and the string
kernels [25] or the syntactic tree kernels [5]) can be used
for the representation of structured objects and their syntac-
tic relations in the task of deriving semantic properties.

Such framework can be further generalized by consid-
ering that a domain is typically characterized by local sub-
domains for which specific local relations and roles should
be considered. We also informally refer to such sub-
domains as to frames. In other words, an ad-hoc relation
miner for any sub-domain can be implemented, where the
relations between different sub-domains should be taken
into account for its design. Instances of such complex sce-
nario can be found in computational linguistics research,
e.g. the FrameNet project, which defines a hierarchical or-
ganization of frames according to different frame-to-frame
relations. More specifically, each frame clusters together
different target words evoking semantically similar predi-
cates associated with the same roles as in the GIVING ex-
ample above. Additionally, relations between frames, e.g.
inheritance and specialization, are defined.

How to effectively and efficiently organize this complex
extraction framework is an interesting subject, as it involves
the design of innovative data mining algorithms both from
a machine learning and from an engineering viewpoint.

In this paper, we propose a general framework for the
mining of semantic relations between objects structured in
a tree-based hierarchy. Such a framework allows for the use
of different miners associated with different frames which
establish similar relations on homogeneous semantic roles,
the latter being a generalization of object instances. In this
preliminary study, the relations between different frames
are provided as a prior knowledge and they can be ex-
ploited to enhance the extraction of the individual relations
described by each frame.

The main properties of our frameworks are:

• Supervised learning of semantic relations among ob-

obj1

obj2

obj3

obj4

obj5

obj6:R0

obj7

obj8

obj9 obj10:R3

obj11:tgt

obj12

obj13

obj14:R1

obj15

obj16

obj17

Figure 1. Abstract structure encoding objects
and relations.

jects organized in a tree structure;

• SVM-based relational miners learnt from examples;

• Kernel Methods for the representation of structured
data in terms of trees and sequences;

• Different miners associated with specific local clusters
of objects;

• Modular and efficient models, where the detection of a
relation and its classification are implemented in mul-
tiple steps;

• A joint model to take into account the interdependen-
cies of the mining objects, and able to considers global
properties by enforcing different kinds of prior knowl-
edge.

To test the characteristics of our framework, we exper-
imented with linguistic domains since two very large and
popular datasets are available, produced by the FrameNet
and the PropBank project. The results on both corpora show
state-of-the-art accuracy.

In the remainder of this paper, Section 2 presents a gen-
eral framework for the extraction of relational patterns from
structured input data; Section 2.3 extends the model so that
it can be applied to a multi-domain scenario; Section 3 dis-
cusses how kernel methods can be applied to discover novel
and relevant features in the presence of highly structured
data; Section 4 reviews the previous work in this field; Sec-
tion 5 details the setup and outcome of our experiments;
finally, Section 6 summarizes the discussion and presents
our conclusions.

2. Mining relational patterns among struc-
turally organized objects

The main task of data mining is to discover interesting
patterns from data in a target domain, where data are often
structurally organized. Structure is an important source of
information that helps in discovering the relationships be-
tween different data objects. For example, Figure 1 shows a

set of elements organized into a tree structure, where object-
to-object relationships are likely to be characterized both
by object properties and by the surrounding structure. In
particular, we assume that some elements, the targets (tgt),
trigger the relations between other objects, i.e. their argu-
ments. The former will also be referred to as predicates,
whereas the classes of argument objects (those involved in
the relations) are called roles (e.g. R0, R1, R2).

Previous work on relation mining mainly concerns with
unsupervised approaches [7]. However, since such models
are based on frequency counts, they are not accurate enough
to mine specific and infrequent relationships. In this per-
spective, supervised approaches are an interesting alterna-
tive if we already know the roles and the classes of predi-
cates that we may expect to find in a domain.

A supervised approach assumes that examples of the tar-
get objects are available, and that their detection can be au-
tomatically learnt. A more interesting step relates to mining
relations between such objects as relational patterns. In this
section, we describe a general algorithm that, given a pred-
icate, selects its arguments by also classifying their role.
A joint model that considers the relations among multiple
objects is presented, along with an example on predicate ar-
gument extraction from texts in a linguistic domain.

2.1 Object selection and classification

Suppose that our objects are structurally encoded into
trees, as shown in Figure 1. The process of recognizing
relational patterns, i.e. predicate argument structures, can
be intuitively decomposed into two smaller problems:

1. given the predicate object tgt (the one triggering the re-
lation), the elements (e.g. the nodes of an XML docu-
ment) that participate in some relation with such pred-
icate must be identified. We define this task node se-
lection (NS) or argument selection.

2. The most appropriate role must be assigned to each of
the previously selected nodes. We define this task role
classification (RC).

Considering the example in Figure 1, given the target
node obj11 (labeled as tgt), NS selects its argument nodes
(obj6, obj10 and obj14). Then, the appropriate role labels,
(R0, R3 and R1 respectively) must be assigned by RC.

Both NS and RC are typically and individually modeled
as a supervised learning problem: several classifiers are
trained on a dataset of previously labeled data, where the
correct annotation is provided for each input instance and
target element therein.

A detailed analysis of such approach is shown in Figure
2 and it is hereby described.

First, to improve the efficiency of the classification steps,
we enforce any available prior knowledge regarding nodes

Training Test

t,p

(Train)

Candidate

Filtering

a

Feature

Extraction

Train Node

Selector

Train Roles

Classifier

Ct,p

t,p

(Test)

Candidate

Filtering

Feature

Extraction

Node

Selection

Role

Classification

t
Joint

Inference

automatic annotation

Ct,p

Node Selection

Model

Roles

Model

Figure 2. Relational Mining Architecture
(RMA).

that do not participate in any relation. Thus, we apply a
pre-processing stage of candidate filtering to both training
and test sets. For example, in the case of XML data, we
may discard all the comment elements and all those classes
of elements that contain indexing information or metadata.
The result of this pre-processing is a set Ct,p of all the can-
didate elements of the tree t that might be arguments of the
predicate p.

Second, according to our classification framework, each
element c ∈ Ct,p should be represented in terms of feature
vectors capturing the structural properties linking p and c
(feature extraction step).

Third, we split the training candidates into:
⋃

t,p C
+
t,p, the

set of objects which are arguments of at least one predicate,
and

⋃
t,p C

−
t,p, the set of non-argument objects, where t is a

tree of our dataset. These two sets of positive and negative
instances, according to some gold standard annotation a, are
used to learn a binary classifier implementing NS.

Next,
⋃

t,p C
+
t,p is divided into as many sets as the number

of role types, so that a role multi-class classifier RC can be
learnt. Since no information about the other roles involved
in a relation is available to NS and RC, a joint inference
model can be learnt considering alternative outcomes of the
classifiers. The joint inference step can be arbitrarily com-
plex, ranging from label-sequence correction schemes [26]
to whole probabilistic frameworks built on top of NS and
RC output [12].

Finally, at test time NS, RC, and the joint inference
model can be used to classify new data as shown on the right
side of Figure 2. This supervised machine learning setting
constitutes a Relational Mining Architecture (RMA). Sec-
tion 3 will focus on its critical aspects of object representa-
tion and feature extraction.

2.2 Predicate argument mining from texts

In the case of linguistic applications, data are typically
structured into syntactic parse trees, and the following map-
ping holds with respect to Figure 1. The objects (the tree
nodes) that we classify are syntactic constituents (sequences
of words which constitute grammatically and semantically
meaningful text fragments). Target nodes correspond to
predicates. i.e. specific classes of words (usually verbs)
which determine linguistic relations among syntactic con-
stituents. Tree leaves correspond to the actual words of the
sentence. Hence, the argument nodes are the syntactic con-
stituents participating to the relation triggered by the predi-
cate.

Figure 3.a shows as an example the syntactic parse tree
of the sentence “John took the book and read its title”,
where the circled nodes are predicates and the boxed con-
stituents are the arguments. Note that the argument John is
shared by both predicates.

So far, we described the general approach for mining re-
lational patterns in a supervised machine learning setting.
The generality of this approach through different data min-
ing applications is mostly given by the feature extraction
step, in which the designer should include the prior knowl-
edge about a specific task. While Section 3 shows how ker-
nel methods provide a successful technique to automatize
feature design, we now focus on extending the basic RMA
to multiple sub-domains.

2.3 Extending the approach to multi-frame sce-
narios

In the previous sections, we introduced a Relational Min-
ing Architecture (RMA) which operates under the assump-
tion of globally defined relations over data, so that all the
objects to be classified share the same set of relation types
and role labels. However, in more complex problems these
properties may be only locally shared, thus defining sub-
domains whose local semantics (relation types and role la-
bels) is often referred to as a frame (see Section 5.2 for a
further example).

Many data mining problems are inherently multi-frame,
i.e. the target dataset is naturally partitioned into subsets
which share a local semantics. Multi-frame problems need a
more complex architecture. Our approach to deal with them
is replicating the basic RMA for each sub-domain. There-

fore, given k different frames F 1, . . . , F k, we instantiate k
corresponding RMA modules M1, . . . ,Mk.

In general, the extent to which two frames F i and F j

are actually separated depends on the specific application
domain. In fact, frame-to-frame relations often hold, in-
cluding: similarity, specialization/generalization, and inher-
itance. These, along with the possibility of sharing spe-
cific role labels and predicates across different domains, al-
low for the definition of several schemes of interdependent
RMAs. As a result, the two corresponding modules M i

and M j may share the role label set, the training data, or
even the learning models. A key strength of our multi-frame
architecture is to allow a selective information sharing be-
tween modules. As a typical case, M i and M j can share a
common node selection model NS, and keep separated their
role classification models RCs, or vice versa. In general,
three main learning-and-test modalities are allowed:

Per-frame learning: a separate model is instantiated for
each module and for each classification stage, i.e. for
node selection (NS) and role classification (RC).

Selective learning: given a partition P over the set of
frames, a different classification model (for either or
both NS and RC) is instantiated for each frame subset
s ∈ P .

Aggregate learning: all the modules share the same mod-
els for NS and RC.

Our implementation of this multi-frame architecture leaves
to the user the capability of selecting and customizing the
above options through a simple description language.

3. Automatic Structured Feature Generation

Different data mining domains involve different objects
and structures, whose individual parts are interesting for de-
tecting the relationships between two objects. The encoding
of structured data as feature vectors in a learning algorithm
is a complex activity, and it requires remarkable expertise
to detect the meaningful subparts. A constructive automatic
approach would include all possible substructures as fea-
tures, and then select the most relevant ones. Since their
number is exponential in the number of objects, no ma-
chine learning algorithms could manage the resulting fea-
ture space dimension.

Support Vector Machines (SVMs) are a very accurate su-
pervised learning approach [27] which allows for the use of
kernel functions to evaluate object similarity in very high di-
mensional and implicit feature spaces. By means of kernel
methods, SVMs can carry out learning by using all possible
substructures. Moreover, given their robustness to less rele-
vant features, no feature selection step is eventually needed.

S

NP

PRP

John

VP

VP

VB

took

NP

DT

the

NN

book

CC

and

VP

VB

read

NP

PRP$

its

NN

title

(a) A sentence parse tree

S

A0

NP

VP

VP

rel

took

A1

NP

(b) ASTn for took

S

A0

NP

VP

VP

rel

read

A1

NP

(c) ASTn for read

VP

VB-rel

read

NP-arg

PRP$

its

NN

title

(d) AST1

Figure 3. A syntactic parse tree and subtrees capturing dependencies between roles and predicates.

In the remainder of this section, we describe the kernels
for structured data that we use in our framework. We cur-
rently limit the object structures to trees, but kernels for
more general graphs are also available in literature.

3.1 SVMs and the kernel trick

Supervised learning is based on the use of labeled exam-
ples, generally described by means of feature vectors in a n-
dimensional space over real numbers, <n. Support Vector
Machines define a hyperplane H(~x) = ~w ·~x+b = 0 able to
separate (classify) positive from negative examples, where
~x is the feature vector representation of an object o, and
~w ∈ <n and b ∈ < are parameters, learned from the train-
ing examples by applying the Structural Risk Minimization
principle [27]. The object o is mapped in ~x with a feature
function φ : O → <n, where O is the set of objects. o is
categorized in the target class only if H(~x) ≥ 0.

The kernel trick allows us to rewrite the decision hyper-
plane as:

H(~x) =
(∑

i=1..l

yiαi~xi

)
· ~x + b =∑

i=1..l

yiαi~xi · ~x + b =
∑

i=1..l

yiαiφ(oi) · φ(o) + b.

where, yi is equal to 1 for positive and -1 for negative ex-
amples, αi ∈ < with αi ≥ 0, and oi ∀i ∈ {1, .., l} are the
training instances. The product K(oi, o) = 〈φ(oi) ·φ(o)〉 is
the kernel function associated with the mapping φ.

Note that we do not need to actually apply the map-
ping φ, since we can use K(oi, o) directly. This allows
us, under the Mercer’s conditions [25], to define abstract
kernel functions which generate implicit feature spaces.
An interesting example is given by the polynomial kernel:
PK(o1, o2) = (c + ~x1 · ~x2)d, where c is a constant and d
is the degree of the polynomial. This kernel generates the
space of all conjunctions of feature groups up to d elements.

In our relational data mining framework, we consider ob-
jects organized in a tree structure, thus the tree kernels de-
scribed in the next section are used to classify relations and
roles.

3.2 Tree Kernels

Tree kernels represent trees in terms of their substruc-
tures (fragments). When comparing two trees T1 and T2,
the kernel function detects if a tree subpart common to both
trees belongs to the feature space that we intend to gener-
ate. For such purpose, the desired fragments need to be de-
scribed. We consider three important characterizations: the
subtrees (STs), the subset trees (SSTs) and the partial trees
(PTs).

A subtree (ST) is any node of a tree along with all its
descendants. For example, Figure 4(a) shows the syntactic
parse tree of the sentence “Mary brought a cat” along with
its 6 STs.

A subset tree (SST) is a more general structure since its
leaves can be non-terminal symbols. For example, Figure
4(b) shows 10 SSTs (out of 17) of the subtree in Figure 4(a)
rooted in VP. The SSTs satisfy the constraint that grammat-
ical rules cannot be broken. For example, [VP [V NP]]
is an SST which has two non-terminal symbols, V and NP,
as leaves whereas [VP [V]] is not an SST.

If we relax such constraint over the SSTs, we obtain
more general substructures called partial trees (PTs). These
can be generated by the application of partial production
rules of the grammar. Consequently, [VP [V]] and [VP
[NP]] are valid PTs. Figure 4(c) shows that the number of
PTs derived from the same tree as before is still higher (i.e.
30 PTs).

The main idea of tree kernels is to compute the number
of common substructures between two trees T1 and T2 with-
out explicitly considering the whole fragment space. In the
following paragraphs, the equation for the efficient evalua-
tion of ST, SST and PT kernels are reported.

To evaluate the above kernels between two trees T1 and
T2, we need to define a set F = {f1, f2, . . . , f|F|}, i.e.
a tree fragment space, and an indicator function Ii(n),
equal to 1 if the target fi is rooted at node n and equal
to 0 otherwise. A tree-kernel function over T1 and T2 is
TK(T1, T2) =

∑
n1∈NT1

∑
n2∈NT2

∆(n1, n2), where NT1

and NT2 are the sets of the T1’s and T2’s nodes, respectively
and ∆(n1, n2) =

∑|F|
i=1 Ii(n1)Ii(n2). The latter is equal to

S

N

NP

D N

VP

V Mary

brought

a cat

NP

D N

a cat

N

 cat

D

a

V

brought

N

Mary

NP

D N

VP

V

brought

a cat

(a) SubTree (ST) fragments

NP

D N

a cat

NP

D N

NP

D N

a

NP

D N
NP

D N

VP

V

brought

a cat

 cat
NP

D N

VP

V

a cat

NP

D N

VP

V

N

 cat

D

a

V

brought

N

Mary
…

(b) SubSet Tree (SST) fragments

NP

D N

VP

V

brought

a cat

NP

D N

VP

V

a cat

NP

D N

VP

a cat

NP

D N

VP

a

NP

D

VP

a

NP

D

VP

NP

N

VP

NP

N

NP NP

D N D

NP

…

VP

(c) Partial Tree (PT) fragments

Figure 4. Examples of different classes of tree fragments.

the number of common fragments rooted in the n1 and n2

nodes.
The ∆ function depends on the type of fragments that

we consider as basic features. For example, to evaluate the
fragments of type ST or SST, it can be defined as:

1. if the productions at n1 and n2 are different then
∆(n1, n2) = 0;

2. if the productions at n1 and n2 are the same, and
n1 and n2 have only leaf children (i.e. they are pre-
terminals symbols) then ∆(n1, n2) = 1;

3. if the productions at n1 and n2 are the same, and n1

and n2 are not pre-terminals then

∆(n1, n2) =
nc(n1)∏

j=1

(σ + ∆(cj
n1

, cj
n2

)) (1)

where σ ∈ {0, 1}, nc(n1) is the number of children of n1

and cj
n is the j-th child of the node n. Note that, since the

productions are the same, nc(n1) = nc(n2).
When σ = 0, ∆(n1, n2) is equal 1 only if

∀j ∆(cj
n1

, cj
n2

) = 1, i.e. all the productions associated
with the children are identical. By recursively applying this
property, it follows that the subtrees in n1 and n2 are iden-
tical. Thus, Eq. 1 evaluates the subtree (ST) kernel. When
σ = 1, ∆(n1, n2) evaluates the number of SSTs common
to n1 and n2 as proved in [5].

Moreover, a decay factor λ can be added by modifying
steps (2) and (3) as follows1:

2. ∆(n1, n2) = λ,

3. ∆(n1, n2) = λ
∏nc(n1)

j=1 (σ + ∆(cj
n1

, cj
n2

)).

The computational complexity of Eq. 1 is O(|NT1 |×|NT2 |)
but as shown in [17], the average running time is linear, i.e.
O(|NT1 |+ |NT2 |).

PTFs have been defined in [17]. Their computation is
carried out by the following ∆ function:

1. if the node labels of n1 and n2 are different then
∆(n1, n2) = 0;

1To have a similarity score between 0 and 1, we also apply the normal-
ization in the kernel space, i.e.:
K′(T1, T2) =

TK(T1,T2)√
TK(T1,T1)×TK(T2,T2)

.

2. else ∆(n1, n2) =

1 +
∑

~I1,~I2,l(~I1)=l(~I2)

∏l(~I1)
j=1 ∆(cn1(~I1j), cn2(~I2j))

where ~I1 = 〈h1, h2, h3, ..〉 and ~I2 = 〈k1, k2, k3, ..〉 are in-
dex sequences associated with the ordered child sequences
cn1 of n1 and cn2 of n2, respectively, ~I1j and ~I2j point to
the j-th child in the corresponding sequence, and, again, l(·)
returns the sequence length, i.e. the number of children.

Furthermore, we add two decay factors: µ for the depth
of the tree and λ for the length of the child subsequences
with respect to the original sequence, i.e. we account for
gaps. It follows that ∆(n1, n2) =

µ
(
λ2+

∑
~I1,~I2,l(~I1)=l(~I2)

λd(~I1)+d(~I2)

l(~I1)∏
j=1

∆(cn1(~I1j), cn2(~I2j))
)
, (2)

where d(~I1) = ~I1l(~I1)
− ~I11 and d(~I2) = ~I2l(~I2)

− ~I21. This
way, we penalize both larger trees and child subsequences
with gaps. Equation 2 is a more general one, the kernel can
be applied to PTs. Also note that, if we only consider the
contribution of the longest child sequence from node pairs
that have the same children, we actually implement the SST
kernel. For the ST computation, we also need to remove the
λ2 term from Eq. 2.

3.3 Combining and engineering kernel functions

Tree kernels can be combined with other kernels, for ex-
ample the polynomial kernel over standard feature vectors,
by summing or multiplying them. Another important aspect
is the engineering property of tree kernels which allows to
obtain efficient and accurate feature spaces by simply ex-
tracting subparts of the initial input tree. For example, if
the structure of our data is a tree containing hundreds of
thousands of nodes, the kernel computation would be very
expensive in terms of time and memory occupancy.

In such conditions, we can assume that nodes located
very far in the structures are independent and we may con-
sider the subtree which only includes a target set of nodes.
For example, in case of relation extraction from texts it is
convenient to use the subtree in Figure 3.d instead of the
whole tree of the frame (Figure 3.a) to classify the rela-
tion between the target and the argument, “its title”. Such

subtree, called Argument Spanning Tree (AST1) [20] is ob-
tained by considering the minimum subtree that covers the
target and only one argument node, along with their descen-
dants. An AST1 can be regarded as a subset of a larger
structure, the ASTn, which is defined as the minimum tree
that spans all the arguments that take part in a relation [20].
The subfigures labeled (b) and (c) in Figure 3 show the
ASTn corresponding to the predicates encoded in the ex-
ample sentence (a).

4. Previous work

Semantic Role Labeling is a broadly employed text min-
ing technique, as it allows for the addition of structured
semantic information to plain text [23]. The automati-
cally extracted patterns can be eventually used to discover
new relations as well as to access the encoded information
more conveniently. [3] and more recently [16] present good
overviews on state-of-the-art systems for SRL.

As a straightforward applied scenario in the domain of
biology and medicine is the rich (and inherently textual)
scientific literature that can be processed with automatic
tools in order to discover new hints about protein interac-
tion or gene functions. For example, in [2] an SRL system
is used to automatically extract protein transport informa-
tion. The system, based on word chunks, uses SVMs as
its learning framework. It is generally accurate and it also
shows good results on automatically identified proteins, un-
like traditional rule-based approaches which are generally
less robust towards new phenomena.

Our framework of relation extraction from structured
data can be extended to other application domains. As an
example, given the popularity of the format across many di-
verse communities, a great deal of attention is devoted to
relation extraction from XML documents [29].

5. Experiments

In this section, we report extensive experimentation on
mining semantic patterns from texts in the form of predi-
cate argument structures. In the computational linguistics
community, such task is often referred to as Semantic Role
Labeling. When extended to multi-frame scenarios, it is
referred to as Frame Recognition. Since our approach is in-
herently supervised, we concentrate on the PropBank [21]
and FrameNet [1] corpora. In fact, they allow for the eval-
uation of our models against fairly large amounts of anno-
tated data, spanning different linguistic domains and target
semantic relations. For both corpora, our input data consist
of automatically generated parse trees of natural language
sentences, along with and human-annotated target predi-
cates and roles. In more detail, the syntactic structure of

the above linguistic objects is the parse tree automatically
generated by means of the Charniak’s constituency based
parser [4].

We exploited the architecture shown in Figure 2 over
the mentioned corpora, in which feature representations are
provided by structural kernels. Additionally, we exploited
the features manually designed by computational linguists
for SRL systems in the last decade, including the Path, Node
Type, Head Word, First and Last Word Part Of Speech fea-
tures [10, 22]. In this way, we made available to our learn-
ing machines different combinations of polynomial kernels
with the Tree Kernels described in Section 3.2.

� � � � � � � � 	 �

��

��

�

��

��

��

��

�

Percentage of training data

�
�
�

�
�
�
�
��

�
 �
 �
 �

��

��

��

��

��

��

�	

�

��

��

����

����

���������

������������ ����!�!���"���

�
�
�

�
�
�
�
��

Figure 5. Learning curve for the argument se-
lection task.

We used the SVM-Light implementation [13] of the
SVM algorithm with the default regularization parameter
(option -c) and λ = 0.4.

In the remainder, Section 5.1 details the setup and re-
sults of our experiments on the PropBank dataset, whereas
Section 5.2 will focus on FrameNet.

5.1 Evaluation on PropBank corpus

Since the CoNLL’05 shared task [3], the Proposition
Bank [21] has been a major benchmark for the evaluation of
supervised models for SRL. It consists of 43,616 sentences
and 99,242 predicate argument structures organized into 24
sections which are annotated on the top of handcrafted syn-
tactic parse trees. As a common experiment setting estab-
lished in the SRL community, sections 02-21 are available
for training, section 24 (1,347 sentences containing 3,247
predicate argument annotations) is used for development,
and section 23 (2,417 sentences containing 5,267 predicate
argument annotations) for testing. The target objects are
verbs, and the role set consists of 59 distinct labels, which

are shared across different verbs, although most of them are
defined on a per-predicate basis. In order to allow systems
to be trained on automatic parse trees, the shared task orga-
nizers provided a mapping between the annotations defined
on the handcrafted trees and the automatic parses generated
by Charniak’s parser on the corpus sentences.

To evaluate the accuracy of our relational miner on node
selection (NS), we ran a set of experiments using 1,000,000
candidate arguments for training, from sections 2 to 6. We
used 3 kernel combinations: poly, a polynomial kernel of
degree 3 on a vector of manually designed features; the SST
Tree Kernel on AST1 structures (shortly SST, see Section
3.3); and SST+poly, an additive combination of the two
previous kernels. Figure 5 shows the F1-measure (i.e. the
harmonic mean between Precision and Recall) achieved by
different kernel configurations on the candidate arguments
of section 24 (149,140 candidate examples after filtering)
when varying the percentage of training data.

The plot shows that SST2 improves on poly by about 3
percent points when very few training data (i.e. 10,000 in-
stances) are used. When all the available data are used for
learning, the polynomial kernel outperforms SST by about
5 points. This limited loss of performance is a very good
result, considering that SST only encodes structural infor-
mation without relying on the properties of the considered
objects.

The relatively higher F1 of the polynomial kernel is
traded for the cost of manually designing features. In
fact, those used in the experiments have been developed
in several years of study by expert computational linguists.
Clearly, such features are very useful and, when available,
they should be combined with tree kernels to further in-
crease the model accuracy. Indeed, the combined kernel
(SST+poly) always outperforms the individual configura-
tions, as it is able to conveniently represent both object-
specific and structural information. Using one million train-
ing instances, the SST+poly kernel classifies the instances
of section 24 with a Precision of 81.64%, a Recall of
80.73% and an F1 measure of 81.18. This achieves the best
result obtained in CoNNL 2005 when no classifier commit-
tee and no multiple syntactic parsers are used [18].

task P R F1

NS 82.23% 80.83% 81.52
NS+RC 76.55% 75.24% 75.89
Joint inference 80.16% 74.54% 77.25

Table 1. Results on the PropBank dataset.

Table 1 shows the results for the different SRL sub-tasks
on the 269,888 candidate arguments of section 23. For NS
and RC, the best model, SST+poly, was used. Moreover,

2In the plot, SST is indicated as AST1

we built a joint model based on the PT Kernel (Section
3.2) which combines the individual AST1 structures into
ASTn-like structures (as shown in Figure 3.b and 3.c, see
also Section 3.3). These, by encoding the whole automatic
annotation (role labels and predicate), are able to capture
the global argument interdependencies [19]. This model
achieves F1=77.25 (last line in Table 1) which is near the
state-of-the-art of SRL systems, e.g. [22].

5.2 Evaluation on FrameNet corpus

A natural application setting for the multi-frame min-
ing architecture (or combined RMAs, Section 2.3) is the
FrameNet lexical resource for English [9]. FrameNet is an
ongoing lexicographic project based on Frame Semantics
[1], which currently produced more than 135,000 sentences
annotated on the basis of more than 800 frames, where each
frame defines its local set of semantic roles.

For example, the sentence “As a result of your win I
can buy something special for your ma” is annotated as an
instance of the COMMERCE SCENARIO frame, which in-
cludes frame elements (roles) as BUYER (I), GOODS (some-
thing special) and RECIPIENT (for your ma). Although both
PropBank and FrameNet encode the relation between syn-
tax and semantics [11], FrameNet sentences are not asso-
ciated with human-validated syntactic trees. Therefore, se-
mantic roles are annotated directly on the bare text. As a
consequence, only automatic syntactic analysis is available
for FrameNet. This constitutes an additional challenge for
automatic frame and role detection, due to the high number
of mismatches between the human-annotated semantic roles
and the automatically-annotated syntactic constituents.

We applied our multi-frame RMA architecture to the su-
pervised machine learning task of recognizing roles over
free text sentences.

5.2.1 Multi-frame architecture configuration

The multi-frame architecture was configured for this task
in the following way: first, we instantiated a specific frame
model, i.e. a single RMA as in Figure 2, for each FrameNet
frame. Recall that each RMA exploits two different ma-
chine learning models its two labeling stages, that is node
selection (NS) and role classification (RC). We just con-
sidered those 502 frames actually populated with annotated
sentences.

Second, we trained 5 different NS models for the 5 main
categories of the target words (i.e. the syntactic categories
of possible predicates3). This means that 5 binary classifi-
cation models were learned over 782 frames (obtained when
sentences in the above 502 frames are further partitioned by

3Verbal as well as nominal, adjectival, adverbial and prepositional pred-
icates are defined in FrameNet.

poly SST SST + poly SST-L SST-L + poly
Eval setting P R F1 P R F1 P R F1 P R F1 P R F1

NS (nodes) .887 .675 .767 .949 .652 .773 .915 .698 .792 .938 .659 .774 .908 .701 .791
NS (words) .850 .647 .735 .919 .631 .748 .875 .668 .758 .906 .636 .747 .868 .670 .757
NS+RC (nodes) .654 .498 .565 .697 .479 .568 .680 .519 .588 .689 .484 .569 .675 .521 .588
NS+RC (words) .625 .476 .540 .672 .462 .548 .648 .495 .561 .663 .466 .547 .644 .497 .561

Table 2. Results on FrameNet: kernel classifiers with 2% training data for NS and 90% for RC.

part of speech of their predicates), where each model pre-
dicts the role/non-role class.

Third, for each syntactic word category and for each
frame, we learned a multi-role classifier, obtaining 782
different one-versus-all multi-classification models, collec-
tively composed by 5,345 binary classifiers (one for each
role).

Finally, we applied this multi-frame setting for recogniz-
ing argument nodes as well as their semantic roles in the
FrameNet sentences, where the frame label and the target
predicate were considered as given.

5.2.2 Experiment setting and results

The Version 1.3 of FrameNet4 was used for both learning
and test. After preprocessing and parsing with the Char-
niak’s parser5, we obtained 135,293 annotated and parsed
sentences. We split the data considering the part of speech
of predicates, ending up with 782 different frames.

The overall dataset was partitioned into three subsets.
We used a 2% of data (2,782 sentences) as NS training set,
90% (121,798 sentences) as RC training set, and 1% (1,345
sentences) as overall test set. All of these subsets are dis-
joint.

We also report the number of positive and negative train-
ing examples provided to our binary SVM-based classifiers.
For NS, we used: 2,764 positive and 37,497 negative exam-
ples for verbal predicates, 1,189 and 35,576 for nominal,
615 and 14,544 for adjectival, 0 and 40 for adverbial, and
7 and 177 for prepositional predicates. The total examples
for NS were 4,575 and 87,834. For RC, the total numbers
were 207,662 and 1,960,423, which divided by the number
of role labels shows the average number of 39 positive ver-
sus 367 negative examples per role.

We tested several kernels over standard [10, 22] and
structured (AST1) features [20]: the polynomial kernel
(poly, with a degree of 3), the subset tree kernel (SST), and
the SST kernel combined with the bag-of-word kernel on
the tree leaves (SST-L). Also, the combinations of SST and
SST-L with poly were tested.

Table 2 reports Precision, Recall and F1 measure of the
above classifiers over different tasks. The 4 rows in the table

4Only its lexicographic data were used, leaving out the continuous an-
notation texts.

5A few sentences were discarded in this step due to parsing problems.

show in turn: (1) the “pure” performance of the BD clas-
sifier, i.e. considering correct the classification decisions
also when a correctly classified tree node does not exactly
correspond to a valid sentence constituent. Such mismatch
frequently happens when the parse tree (which is automat-
ically generated) includes incorrect nodes and attachments
(also see the initial discussion in Section 5.2); (2) the per-
formance of the BD classification “projected” on the tree
leaves, i.e. when matching not only the constituent node
as in 1, but also the selected words (leaves) with those in
the FrameNet gold standard. This implies an exact syntac-
tic analysis being encoded in the subtree; (3) the same as 1,
with the argument role classification (RC) also performed
(i.e. Frame Element labels must match as well); (4) the
same as 2, with RC also performed.

The results improve when the amount of training data
for the NS model is also increased from 2% to 90%. As
shown in Table 3, the SST+poly kernel achieves 1.0 Preci-
sion, 0.732 Recall and 0.847 F1 on NS. These figures can
be compared to 0.855 Precision, 0.669 Recall and 0.751
F1 of the system described in [8], achieved with the same
amount of training data. In conclusion, our best learning
scheme is currently capable of tagging FrameNet data from
noisy syntax with exact boundaries and role labels at 63%
F1. Our next steps will be first, further improving the RC
models exploiting FrameNet-specific information (such as
frame and role inheritance), and second, introducing an ef-
fective frame classifier to automatically choose Frame la-
bels.

Enhanced SST + poly
Eval Setting P R F1

NS (nodes) 1.0 .732 .847
NS (words) .963 .702 .813
NS+RC (nodes) .784 .571 .661
NS+RC (words) .747 .545 .630

Table 3. Results on FrameNet. SST+poly with
90% training data for NS and RC.

6. Conclusions

The extraction of relational patterns from structured data
is a relevant topic within the DM community. A general
framework able to cope with this kind of data may handle

the growing amount of information which is naturally avail-
able in a structured way. Furthermore, by using automatic
text processing tools such as constituency or dependency
parsers, it would be possible to convert textual information
into structured one, and to use the same framework to mine
patterns in originally unstructured documents.

We presented a framework for relational mining over
structured data capable of scaling to different tasks and do-
mains. This flexibility is achieved by means of Tree Kernels
and structured features, which allow for the encoding of
structural information directly into the learning algorithm.
To assess the accuracy of our approach, we executed a set of
experiments on Semantic Role Labeling and Frame Recog-
nition, over the two established PropBank and FrameNet
corpora.

On both tasks, our system achieves state of the art accu-
racy. Also, Frame Recognition achieves good accuracy with
very small training sets. Especially in such difficult condi-
tions, the impact of Tree Kernels and structured features is
noticeable and relevant for real-world tasks.

Acknowledgments
This research is partially supported by the LiveMemories
Project funded by the Provincia Autonoma di Trento (PAT).
The authors wish to thank the anonymous reviewers for
their helpful comments.

References

[1] C. F. Baker, C. J. Fillmore, and J. B. Lowe. The Berke-
ley FrameNet project. In Proceedings of COLING-ACL ’98,
pages 86–90, 1998.

[2] S. Bethard, Z. Lu, J. H. Martin, and L. Hunter. Semantic role
labeling for protein transport predicates. BMC Bioinformat-
ics, 9:277+, June 2008.

[3] X. Carreras and L. Màrquez. Introduction to the CoNLL-
2005 Shared Task: Semantic Role Labeling. In Proceed-
ings of CoNLL-2005, pages 152–164, Ann Arbor, Michigan,
June 2005.

[4] E. Charniak. A maximum-entropy-inspired parser. In Pro-
ceedings of NAACL 2000, San Francisco, CA, USA, 2000.

[5] M. Collins and N. Duffy. New Ranking Algorithms for Pars-
ing and Tagging: Kernels over Discrete structures, and the
voted perceptron. In ACL02, pages 263–270, 2002.

[6] S. Dzeroski and H. Blockeel. Introduction to the work-
shop. In MRDM ’05: Proceedings of the 4th international
workshop on Multi-relational mining, New York, NY, USA,
2005. ACM.

[7] S. Dzeroski and N. Lavrac, editors. Relational Data Mining.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2001.

[8] K. Erk and S. Pado. Shalmaneser - a flexible toolbox for
semantic role assignment. In Proceedings of LREC 2006,
Genoa, Italy, 2006.

[9] C. J. Fillmore. The Case for Case. In E. Bach and R. T.
Harms, editors, Universals in Linguistic Theory, pages 1–
210. Holt, Rinehart, and Winston, New York, 1968.

[10] D. Gildea and D. Jurafsky. Automatic Labeling of Semantic
Roles. Computational Linguistics, 28(3):245–288, 2002.

[11] A.-M. Giuglea and A. Moschitti. Semantic role labeling via
framenet, verbnet and propbank. In Proceedings of ACL
2006, Sydney, Australia, 2006.

[12] A. Haghighi, K. Toutanova, and C. Manning. A joint model
for semantic role labeling. In Proceedings of CoNLL-2005,
Ann Arbor, Michigan, June 2005.

[13] T. Joachims. Making large-scale SVM learning practical. In
B. Schölkopf, C. Burges, and A. Smola, editors, Advances in
Kernel Methods - Support Vector Learning, pages 169–184,
1999.

[14] J. D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii. Genia corpus–
semantically annotated corpus for bio-textmining. Bioinfor-
matics, 19 Suppl 1, 2003.

[15] O. Kolak and B. N. Schilit. Generating links by mining quo-
tations. In Proceedings of the 9th ACM conference on Hy-
pertext and hypermedia, 2008.

[16] L. Marquez, X. Carreras, K. C. Litkowski, and S. Stevenson.
Semantic role labeling: An introduction to the special issue.
Computational Linguistics, 34(2):145–159, 2008.

[17] A. Moschitti. Efficient Convolution Kernels for Dependency
and Constituent Syntactic Trees. In Proceedings of ECML
2006, pages 318–329, Berlin, Germany, 2006.

[18] A. Moschitti, B. Coppola, A. Giuglea, and R. Basili. Hierar-
chical semantic role labeling. In Proceedings of the CoNLL
2005 shared task on SRL, Ann Arbor, Michigan, 2005.

[19] A. Moschitti, D. Pighin, and R. Basili. Semantic role label-
ing via tree kernel joint inference. In Proceedings of CoNLL-
X, New York City, 2006.

[20] A. Moschitti, D. Pighin, and R. Basili. Tree kernels for se-
mantic role labeling. Computational Linguistics, 34(2):193–
224, 2008.

[21] M. Palmer, D. Gildea, and P. Kingsbury. The Proposition
Bank: an Annotated Corpus of Semantic Roles. Computa-
tional Linguistics, 31(1):71–106, 2005.

[22] S. Pradhan, K. Hacioglu, V. Krugler, W. Ward, J. H. Mar-
tin, and D. Jurafsky. Support Vector Learning for Semantic
Argument Classification. Machine Learning, 60:1-3:11–39,
2005.

[23] S. Pradhan, K. Hacioglu, W. Ward, J. Martin, and D. Juraf-
sky. Semantic role parsing: Adding semantic structure to
unstructured text, 2003.

[24] R. Sanderson and P. Watry. Integrating data and text mining
processes for digital library applications. In Proceedings of
JCDL 2007, 2007.

[25] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pat-
tern Analysis. Cambridge University Press, 2004.

[26] E. Tjong Kim Sang, S. Canisius, A. van den Bosch, and
T. Bogers. Applying spelling error correction techniques
for improving semantic role labelling. In Proceedings of
CoNLL-2005, Ann Arbor, Michigan, June 2005.

[27] V. N. Vapnik. Statistical Learning Theory. John Wiley and
Sons, 1998.

[28] X. Zhou, H. Han, I. Chankai, A. Prestrud, and A. Brooks.
Approaches to text mining for clinical medical records. In
Proceedings of SAC 2006, 2006.

[29] X. Zhou, X. Pan, and Y. Ren. Web mining of relations from
xml and construct database schema. In CIMCA ’06: Pro-
ceedings of CIMCA 2006, 2006.

