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Abstract comparable with the best machine learning system
when this latter is trained only on the RTE exam-
ples.

Given the high potential of theross-pair similar-
ity model, for the RTE3 challenge, we built on it by
including some features of the two best systems: 1)
we go towards a deeper semantic representation of
learning pairs including shallow semantic informa-
tion in the syntactic trees usirtgped placeholders
1 Introduction 2) we reduce the computational cost of the cross-pair
Similarity computation algorithm to allow the learn-
ing over larger training sets.

In this paper, we briefly describe two
enhancements of theross-pair similarity
model for learning textual entailment rules:
1) the typed anchors and 2) a faster compu-
tation of the similarity. We will report and
comment on the preliminary experiments
and on the submission results.

Results of the second RTE challenge (Bar Haim
al., 2006) have suggested that balkbep semantic _ : .
models andnachine learningapproaches can suc- 1h€ paper is organized as follows: in Sec. 2 we
cessfully be applied to solve textual entailment. ThEEVIEW the Cross-pair similarity model and its limits;
only problem seems to be the size of the knowledg® Se€c- 3, we introduce our model fiyped anchors
bases. The two best systems (Tatu et al., 2005; Hickl Sec. 4 we describe how we limit the computa-
et al., 2005), which are significantly above all thdional cost of the similarity; in Sec. 5 we present the
others (more than +10% accuracy), use implicit ofVO submissiqn experiments, and in Sec. 6 we draw
explicit knowledge bases larger than all the othefomMe conclusions.
systems. In (Tatu et al., 2005), a deep semantic
representation is paired with a large amount of ger?  Cross-pair similarity and its limits
eral and task specific semantic rulegglicit knowl-
edgg. In (Hickl et al., 2005), the machine learning
model is trained over a large amounts of examples
(implicit knowledg® The cross-pair similarity model (Zanzotto and

In contrast, Zanzotto&Moschitti (2006) proposedMoschitti, 2006) proposes a similarity measure
a machine-learning based approach which reachegiming at capturing rewrite rules from train-
high accuracy by only using the available RTE datang examples, computing aross-pair similarity
The key idea is theross-pair similarity i.e. a simi- Kg((T’,H'), (T", H")). The rationale is that if two
larity applied to two text and hypothesis pairs whichpairs are similar, it is extremely likely that they have
considers the relations between the words in the twbhe same entailment value. The key point is the use
texts and between the words in the two hypothesesft placeholdersto mark the relations between the
This is obtained by usinglaceholdergo link the re-  sentence words. flaceholderco-indexes two sub-
lated words. Results in (Bar Haim et al., 2006) arstructures in the parse trees of text and hypothesis,

2.1 Learning entailment rules with syntactic
cross-pair similarity



indicating that such substructures are related. F@2 Limits of the syntactic cross-pair similarity

example, the sentence paifl companies file an- | earming from examples using cross-pair similarity
nual report$ implies “All insurance companies file is 5n attractive and effective approach. However,
annual reports, is represented as follows: the cross-pair strategy, as any machine learning ap-

T (S (NPH (DT All) (NNS:E compa- proach, is highly sensitive on how the examples are
gfs)gl()\/(PNliFe’:tlg)gNP (JI8l represented in the feature space, as this can strongly
u S . ‘g
T, (S (NPE (DT Al) (NNP Forune) (1) bias the performance of the classifier.
(CD 50) (NNSE companies)) (V2 Consider for example the following text-
(VBP{2 file) (NP{sl (JJis] annual) hypothesis pair, which can lead to an incorrect rule,
(NNS{z] reports)))) o
if misused.
where the placeholdefs [z, and@l indicate the rela- T: “For my younger readers, Chapman
tions between the structuresBfand of 4. killed JO';“ Lennon more than twenty
Placeholders help to determine if two pairs share —- y?gl,r]?] al_gehnon died more than twenty (E2)

the samerewriting rule by looking at the subtrees years agd.

that they have in common. For example, suppose |n the basic cross-pair similarity model, the learnt

implies “In autumn, all maple leaves fall The re- Ts (S (NPm) (VP (VBD:LY) (NPm)
lated co-indexed representation is: (ADVPK])))
T (s (NP (vPm  vepm ()
T (S (PP (IN In) (NI:D (NNz aultomn))) (ADVP:K)))
. ) (NP (DT NNS , :
gvg: (VBIEPf falfli)); (NNS{H leaves)) 5 where the verbgill anddie are connected by the

H, (S (PP (IN'In) (NPm (NN:@ automn))) placeholder. This rule is useful to classify examples
( ,) (NPl (DT all) (NN maple) like:
(NNS leaves)) (VR (VBP [ fall))) ’

Ts “Cows are vegetarian but, to save

FE4 and E5 share the following subtrees: money on mass-production, farmers fed (Eo)
cows animal extracts. 6
T5 (S (NPx (DT all) (NNSx)) (VP Hg “Cows have eaten animal extraéts.
(VBP ) — : _
T; (S (NP& (DT al) (NN) (NNS&) (Rs) but it will clearly fail when used for:
(VP (VBPX))) T;  “FDA warns migraine medicine makers
.. . . that they are illegally selling migraine
This is therewrite rulethey have in common. Then, medicines without federal approval. &)
E, can be likely classified as a valid entailment, as Hr “Migraine medicine makers declared 7
it shares the rule with the valid entailmeft. :)hrf;f/eg,e" medicines have been ap-
. T_he cross-parr similaritymodel USES. (1) a tree wherewarnanddeclareare connected as generically
similarity measureK (7, 72) (Collins and Duffy, similar verbs

2002) that counts the subtrees thatandr; have The problem of the basic cross-pair similarity

mhcommon; (2) af?EbSt;tu“c;]n Igunctlpt{-,tc) that rgeasure is that placeholders do not convey the
changes names ot Ihe placenolders In a ree acColly,, , iiq knowledge needed in cases such as the
Ing to a set of correspondences between placehOIgE)ove where the semantic relation between con-
ersc. Given(C as the collection of all correspon- ’ . .

, nected verbs is essential.
dences between the placeholders (@f, H') and
(7", H"), the cross-pair similarity is computed as: 2.3 Computational cost of the cross-similarity

measure
Ks((T', H'), (", H")) = i
mjxcEC(KT(t(ﬂCH(T//’C)) + Ko(t(H',¢),t(H",¢))) ~ L€tus go back to the computational costro§ (eq.

(1) 1). It heavily depends on the size 6f We de-
The cross-pair similarity<'s, used in a kernel-based fine p’ andp” as the placeholders of, respectively,
learning model as the support vector machines, al7”, H') and (7", H"). AsC is combinatorial with
lows the exploitation of implicit true and false en-respect tdp’| and|p”|, |C| rapidly grows. Assigning
tailment rewrite rules described in the examples. placeholders only to chunks helps controlling their



number. For example, in the RTE data the number Rank Relation Type ~ Symbol
of placeholders hardly goes beyond 7, as hypothe- 1. antinomy -
ses are generally short sentences. But, even in these 2. part-of C
cases, the number df» computations grows. As 3. verb entailment —
the treest(T", c) are obtained from a single trdé 4. similarity R~
(containing placeholder) applying differeate C, 5. surface matching =

it is reasonable to think that they will share com-
mon subparts. Then, during the iterationscoE

C, Kr(t(I',¢), t(I'", ¢)) will compute the similarity

between subtrees that have already been evaluat%cai. ture the semantic relations synonymsandh
The reformulation of theross-pair similarityfunc- b ymandhny

tion we present takes advantage of this peronymy The second type is activated when words
' or lemmas match: then, it captures cases in which

words are semantically equivalent. The complete set
of relation types used in the experiments is given in
Table 1.

The examples in the previous section show that i )

the cross-pairs approach lacks the lexical-semantit? 1YP€ anchors in the syntactic tree

knowledge connecting the words in a placeholdeiio learn more correaewrite rulesby using the an-

In the examples, the missed knowledge is the typehor types defined in the previous section, we need
of semantic relation between the main verbs. Th® add this information to syntactic trees. The best
relation that linkskill anddie is not a generic sim- position would be in the same nodes of the anchors.
ilarity, as a WordNet based similarity measure cailso, to be more effective, this information should
suggest, but a more specific causal relation. THge inserted in as many subtrees as possible. Thus we
learnt rewrite ruleRs holds only for verbs in such define the typed-anchor climbing-up rules. We then
relation. In facts, it is correctly applied in exampleimplement in our model the following climbing up
Eg, asfeedcausesat but it gives a wrong sugges- rule:

tion in exampleE, sincewarn anddeclareare only if two typed anchors climb up to the same

related by a generic similarity relation. node, give precedence to that with the high-
We then need to encode this information in the est ranking in Tab. 1.

syntactic trees in order to learn correct rules.

Table 1: Ranked anchor types

3 Adding semantic information to
cross-pair similarity

This rule can be easily showed to be consistent with
common sense intuitions. For an example liietin
is a tall boy that does not entail John is a short

The idea of introducing anchor types should be ilﬂ)oy’, our strategy will produce these trees:
principle very simple and effective. Yet, this may be

not the case: simpler attempts to introduce semantigg)

3.1 Defining anchor types

information in RTE systems have often failed. To Ty Hs
investigate the validity of our idea, we then need to s
focus on a small set of relevant relation types, and to ~e=[ vr-[2 ne=[  veo[2
carefully control ambiguity for each type. we_H Ak e we_H Ak e

A valuable source of relation types among words | I ! I
; ; ; John is pryyoZInn=[] John is pryyo2Inn=[3]
is WordNet. We choose to integrate in our system T ‘ T ‘
three important relation standing at the word level: a tal  boy a shot  boy

part-of, antinomy andverb entailmentWe also de-  This representation can be used to derive a correct
fine two more general anchor typesimilarity and rewrite rule, such as:

the surface matching The first type links words if two fragments have the same syntactic struc-
which are similar according to some WordNet simiture S(NP;,VP(AUX,NP)), and there is an
larity measure. Specifically, this type is intended t@ntonym type 4+) on the S and NP, , thenthe



c1 = {(a, 1), (b,2),(c,3)} c2 = {(a, 1), (b,2),(d,3)}

ry t(T1,c1) t(T'1,c2)
D ejE! X1 X1
A @ Ds [d] As Ds [d] Az D5 [d:3
B3 [@ C4|E| Dg [@ C?@ BSC4D6 07@ 3304 D¢ [€] C?
I | I | | | | | | | | |
w1 wa w3 w4y w1 wa w3 w4y w1 w2 w3 wWq
@ [ (d] (d]
Fz t(Fg, Cl) t(l“2702)
X X X
Ay Ds Ay Ds As Ds
B[ i@ ps[ cr Bs[ad] ¢, [0:2 pge3] ; Bs[ad ¢, [0:2] D [d3] o,
| | | | | | | I | | | I
mi mao ms3 M4 mi msa m3 Mg mi ma2 m3 M4

Figure 1:Tree pairs with placeholders angll’, ¢) transformation

entailment does not hold the substitution function replaces each placeholder
@ of the treel’;with the new placeholdelr:1 by
_ _ t(-, c) obtaining the transformed tre€l';, c¢;), and
4 Reducing computational cost of the each placeholddt of T', with [@Z. After these sub-
cross-pair similarity computation stitutions, the labels of the two trees can be matched
and the similarity functiorf( is applicable.

In thi i describ in detail the simi Krp(7',7"), as defined in (Collins and Duffy,
n tis sec_|on, we describe more _|n etail the Slml'2002), computes the number of common subtrees
larity function K¢ (Eq. 1). To simplify, we focus on

. betweenr’ andr”.
the computation of only on&’r of the kernel sum.

4.1 The original kernel function

4.2 An observation to reduce the

Ks(rl, F”) — max KT(t(F,, o), t(P”, o), (@) computational cost
eee The above section has shown that the similarity

where the(I”,T") pair can be eithefT”,T7") or function K firstly applies the transformatiot-, c)
(H',H"). We apply this simplification since we and then computes the tree ker#e}. The overall
are interested in optimizing the evaluation of therocess can be optimized by factorizing redundant
K with respect to different sets of correspondence&r computations.
ceC. Indeed, two trees;(T", ¢’) andt(T', ¢), obtained

To better explaink’ s, we need to analyze the role by applying two sets of correspondenceés’” € C,
of the substitution function(T", ¢) and to review the may partially overlap sincé and¢” can share a non-
tree kernel functionk . empty set of common elements. Let us consider the

The aim oft(T, ¢) is to coherently replace place- subtree setS shared byt(T', ¢') and ¢(T', ¢”) such
holders in two tree§’” andI'” so that these two trees that they contain placeholders ihn ¢’ = ¢, then
can be compared. The substitution is carried ou{~,c) = t(v,c) = t(v,’) Vy € S. Therefore if
according to the set of correspondencesLet p’  we apply atree kernel functiaki to a pair(I'’, '),
andp” be placeholders of’ andT”, respectively, we can find a such that subtrees ®f and subtrees
if p C p’ thenc is a bijection between a subsetof I'” are invariant with respect @ andc”. There-
P C p andp”. For example (Fig. 1), the tredy  fore, Ky (t(+, ¢), t(v", ¢)) = Kp(t(v, ), t(y", )
hasp; ={@/bl@/[d} as placeholder set arlth has = Kr(t(7/,"),t(v”,¢")). This implies that it is
po ={[1J2[3]}. In this case, a possible set of correpossible to refine the dynamic programming algo-
spondence ig; = {(a,1),(b,2),(c,3)}. InFig. 1 rithm used to compute thA matrices while com-



puting the kerneK g (I, T"). -lex+tree: the comparison of this configuration with
To better explain this idea let us considedex+tapshould further support the validity of our in-

Fig. 1 that represents two treed,; and I';, tuition on typed anchors;

and the application of two different transforma- Preliminary experiments have been performed us-

tions ¢; = {(a,1),(b,2),(c,3)} and ¢ = ing two datasetsRTE2 (the 1600 entailment pairs

{(a,1),(b,2),(d,3)}. Nodes are generally in the from the RTE-2 challenge) arldTE3d (the devel-

form X, where X is the original node labelzis opment dataset of this challenge). We randomly

the placeholder, andlis used to index nodes of thedivided this latter in two halves: RT E3d, and

tree. Two nodes are equal if they have the same nod& E3d; .

label and the same placeholder. The first column of ) ]

the figure represents the original treéés andT,. -2 Investigatory Results Analysis and

The second and third columns contain respectively ~ Submission Results

the transformed treegI’, ¢;) andt(I', c2) Table 2 reports the results of the experiments. The
Since the subtree df; starting fromA,[@ con- first column indicates the training set whereas the

tains only placeholders that are in in the trans- second one specifies the used test set. The third and

formed treest(I't,c;) andt(I'y, c2), the subtrees the forth columns represent the accuracy of basic

rooted in Aj[a:1 are identical. The same happendnodels: the originatree model and the enhanced

for 'y with the subtree rooted id5[1). In the trans- tap model. The latter three columns report the basic

formed treest(I'y, c1) andt (T2, c2), subtrees rooted lex model and the two combined modelex+tree

in Aja:ll are identical. The computation df andlex+tap. The second and the third rows repre-

applied to the above subtrees gives an identical réent the accuracy of the models with respect to the

sult. Then, this computation can be avoided. If corfirst randomly selected half aRT'E3d whilst the

rectly used in a dynamic programming algorithmJast two rows are related to the second half.

the above observation can produce an interesting de-The experimental results show some interesting

crease in the time computational cost. facts. In the case of th@ain systems(treeandtap),
we have the following observations:
5 Experimental Results - The use of theéyped anchorsn the model seems

to be effective. All thetap model results are higher
than the correspondingee model results. This sug-
We implemented the novel cross-similarity kernegests that the method used to integrate this kind of
in the SVM-light-TK (Moschitti, 2006) that en- information in the syntactic tree is effective.
codes the basic syntactic kerngly in SVM-light - The claim thatusing more training material helps
(Joachims, 1999). seems not to be supported by these experiments. The
To assess the validity of the typed anchor modajap betweeniree and tap is higher when learn-
(tap), we evaluated two sets of systems: {hlain ing with RTE2 + RT E3d, than when learning
andlexical-boostedsystems. Thelain systems are: with RT'E3,. This supports the claim. How-
-tap: our tree-kernel approach using typed placeever, the result is not kept when learning with
holders with climbing in the syntactic tree; RTE2 + RTFE3d, with respect to when learning
-tree: the cross-similarity model described in Sec.2with RT'E3;. This suggests that adding not very
Its comparison withtap indicates the effectiveness specific information, i.e. derived from corpora dif-

5.1 Experimental Setup

of our approaches; ferent from the target one (RTE3), may not help the
Thelexical-boostedsystems are: learning of accurate rules.
-lex: a standard approach based lemical over- On the other hand, in the case of theical-

lap. The classifier uses as the only feature the lexboosted systems Iex, lex+tree and lex+tap), we

cal overlap similarity score described in (Corley andee that:

Mihalcea, 2005); - There is an extremely high result for the ples
-lex+tap: these configurations mix lexical overlapmodel. Even if this model makes use of semantic
and our typed anchor approaches; information and word relevance information (i.e.,



Train Test tree tap lex lex+tree lex+tap

RT E3d RTE3d, | 62.97 64.23] 69.02 68.26 69.02
RTE2 + RTE3dy RTE3d, | 62.22 6247 71.03 71.28 71.79
RTE3d; RTFE3dy | 62.03 62.78 70.22  70.22 71.22

RTE2 4+ RTE3dy RTE3dy | 63.77 64.76] 71.46  71.22 72.95

Table 2: Accuracy of the systems on two folds of RTE3 developm

the inverse document frequency), this result i$ Conclusions and final remarks

counterintuitive. Examples on the RTE3d set are, . L .
P q‘hls paper demonstrates that it is possible to ef-

extracted from NLP systems solving a IO"Jlrﬁcmagectivel include shallow semantics in syntax-based
task (e.g., QA and IE). We expect that these systems y y

use models like théex approach to select reIevantIearnlng approaches. Moreover, as it happened in

. . RTEZ2, it is not always true that more learning ex-
passages. Then, positive and negative examples

should have similar values for thiex distance am.ple.s Increase the accuracy of RTE systems. This
o . . claim is still under investigation.

indicator. It is then not clear why this model results

in so high accuracy.
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