
Coreference Systems based on Kernels Methods

Yannick Versley

SFB 441

University of Tübingen

versley@sfs.uni-tuebingen.de

Alessandro Moschitti

DISI

University of Trento

moschitti@disi.unitn.it

Massimo Poesio

DISI

University of Trento

massimo.poesio@unitn.it

Xiaofeng Yang

Data Mining Department

Institute for Infocomm Research

xiaofengy@i2r.a-star.edu.sg

Abstract

Various types of structural information -

e.g., about the type of constructions in

which binding constraints apply, or about

the structure of names - play a central role

in coreference resolution, often in combi-

nation with lexical information (as in ex-

pletive detection). Kernel functions ap-

pear to be a promising candidate to capture

structure-sensitive similarities and com-

plex feature combinations, but care is re-

quired to ensure they are exploited in the

best possible fashion. In this paper we

propose kernel functions for three subtasks

of coreference resolution - binding con-

straint detection, expletive identification,

and aliasing - together with an architec-

ture to integrate them within the standard

framework for coreference resolution.

1 Introduction

Information about coreference relations–i.e.,

which noun phrases are mentions of the same

entity–has been shown to be beneficial in a great

number of NLP tasks, including information

extraction (McCarthy and Lehnert 1995), text

planning (Barzilay and Lapata 2005) and sum-

marization (Steinberger et al. 2007). However,

the performance of coreference resolvers on

unrestricted text is still quite low. One reason

for this is that coreference resolution requires a

great deal of information, ranging from string

matching to syntactic constraints to semantic

knowledge to discourse salience information to

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

full common sense reasoning (Sidner 1979; Hobbs

1978, 1979; Grosz et al. 1995; Vieira and Poesio

2000; Mitkov 2002). Much of this information

won’t be available to robust coreference resolvers

until better methods are found to represent and

encode common sense knowledge; but part of

the problem is also the need for better methods

to encode information that is in part structural,

in part lexical. Enforcing binding constraints

–e.g., ruling out Peter as antecedent of him in (1a)

requires recognizing that the anaphor occurs in a

particular type of construction (Chomsky 1981;

Lappin and Leass 1994; Yang et al. 2006) whose

exact definition however has not yet been agreed

upon by linguists (indeed, it may only be definable

in a graded sense (Sturt 2003; Yang et al. 2006)),

witness examples like (1b). Parallelism effects are

a good example of structural information inducing

preferences rather than constraints. Recognizing

that It in examples such as (1c,d) are expletives

requires a combination of structural information

and lexical information (Lappin and Leass 1994;

Evans 2001). But some sort of structure also

underlies our interpretation of other types of

coreference: e.g., knowledge about the structure

of names certainly plays a role in recognizing

that BJ Habibie is a possible antecedent for Mr.

Habibie.

(1) a. John thinks that Peter hates him.

b. John hopes that Jane is speaking only to

himself.

c. It’s lonely here.

d. It had been raining all day.

The need to capture such information suggests

a role for kernel methods (Vapnik 1995) in coref-

erence resolution. Kernel functions make it pos-

sible to capture the similarity between structures



without explicitly enumerating all the substruc-

tures, and have therefore been shown to be a vi-

able approach to feature engineering for natural

language processing for any task in which struc-

tural information plays a role, e.g. (Collins and

Duffy 2002; Zelenko et al. 2003; Giuglea and Mos-

chitti 2006; Zanzotto and Moschitti 2006; Mos-

chitti et al. 2007). Indeed, they have already been

used in NLP to encode the type of structural in-

formation that plays a role in binding constraints

(Yang et al. 2006); however, the methods used in

this previous work do not make it possible to ex-

ploit the full power of kernel functions. In this

work, we extend the use of kernel functions for

coreference by designing and testing kernels for

three subtasks of the coreference task:

• Binding constraints

• Expletive detection

• Aliasing

and developing distinct classifiers for each of these

tasks. We show that our developed kernels produce

high accuracy for both distinct classifiers for these

subtasks as well as for the complete coreference

system.

In the remainder: Section 2, briefly describes

the basic kernel functions that we used; Section

3 illustrates our new kernels for expletive, binding

and name alias detection along with a coreference

context kernel; Section 4 reports the experiments

on individual classifiers on expletives, binding and

names whereas Section 5 shows the results on the

complete coreference task; Finally, Section 6 de-

rives the conclusions.

2 Kernel for Structured Data

We used three kernel functions in this work: the

String Kernel (SK) proposed in Shawe-Taylor and

Cristianini (2004) to evaluate the number of sub-

sequences between two sequences, the Syntactic

Tree Kernel (STK; see Collins and Duffy 2002)

which computes the number of syntactic tree frag-

ments and the Partial Tree Kernel (PTK; see Mos-

chitti 2006) which provides a more general repre-

sentation of trees in terms of tree fragments. We

discuss each in turn.

2.1 String Kernels (SK)

The string kernels that we consider count the num-

ber of substrings shared by two sequences contain-

ing gaps, i.e. some of the characters of the original

��� �� ������ � ��� �� ��� ���� ������	
��� � ��� ������ ���� � ��� ��� ���� ���� �� ���	
��� �
���
Figure 1: A tree with some of its STFs .��� ����������� � ��� ��� ���� � ��� ��� ���� ��� ��� ���� ��� ��� ��� �� �� ����� � ����� � �����
Figure 2: A tree with some of its PTFs.

string are skipped. Gaps penalize the weight asso-

ciated with the matched substrings. More in detail,

(a) longer subsequences receive lower weights.

(b) Valid substrings are sequences of the original

string with some characters omitted, i.e. gaps. (c)

Gaps are accounted by weighting functions and (d)

symbols of a string can also be whole words, i.e.

the word sequence kernel Cancedda et al. (2003).

2.2 Tree Kernels

The main idea underlying tree kernels is to com-

pute the number of common tree fragments be-

tween two trees without explicitly considering the

whole fragment space. The type of fragments char-

acterize different kernel functions. We consider

syntactic tree fragments (STFs) and partial tree

fragments (PTFs)

2.2.1 Syntactic Tree Kernels (STK)

An STF is a connected subset of the nodes and

edges of the original tree, with the constraint that

any node must have all or none of its children. This

is equivalent to stating that the production rules

contained in the STF cannot be partial. For ex-

ample, Figure 1 shows a tree with its PTFs: [VP [V

NP]] is an STF, [VP [V]] or [VP [NP]] are not STFs.

2.2.2 Partial Tree Kernel (PTK)

If we relax the production rule constraint over

the STFs, we obtain a more general substructure

type, i.e. PTF, generated by the application of par-

tial production rules, e.g. Figure 2 shows that [VP

[NP[D]]] is indeed a valid fragment. Note that

PTK can be seen as a STK applied to all possible

child sequences of the tree nodes, i.e. a string ker-

nel combined with a STK.

2.3 Kernel Engineering

The Kernels of previous section are basic functions

that can be applied to feature vectors, strings and



trees. In order to make them effective for a specific

task, e.g. for coreference resolution: (a) we can

combine them with additive or multiplicative op-

erators and (b) we can design specific data objects

(vectors, sequences and tree structures) for the tar-

get tasks.

It is worth noting that a basic kernel applied to

an innovative view of a structure yields a new ker-

nel (e.g. Moschitti and Bejan (2004); Moschitti

et al. (2006)), as we show below:

Let K(t1, t2) = φ(t1) · φ(t2) be a basic ker-

nel, where t1 and t2 are two trees. If we map t1
and t2 into two new structures s1 and s2 with a

mapping φM (·), we obtain: K(s1, s2) = φ(s1) ·
φ(s2) = φ(φM (t1)) · φ(φM (t2)) = φ′(t1) ·

φ′(t2)=K′(t1, t2), which is a noticeably different

kernel induced by the mapping φ′ = φ ◦ φM .

3 Kernels for Coreference Resolution

In this paper we follow the standard learning ap-

proach to coreference developed by Soon et al.

(2001) and also used the few variants in Ng and

Cardie (2002). In this framework, training and

testing instances consist of a pair (anaphor, an-

tecedent). During training, a positive instance is

created for each anaphor encountered by pairing

the anaphor with its closest antecedent; each of the

non-coreferential mentions between anaphor and

antecedent is used to produce a negative instance.

During resolution, every mention to be resolved is

paired with each preceding antecedent candidate

to form a testing instance. This instance is pre-

sented to the classifier which then returns a class

label with a confidence value indicating the likeli-

hood that the candidate is the antecedent.

The nearest candidate with a positive classifica-

tion will be selected as the antecedent of the pos-

sible anaphor. The crucial point is that in this ap-

proach, the classifier is trained to identify positive

and negative instances of the resolution process. In

previous work on using kernel functions for coref-

erence (Yang et al. 2006), structural information

in the form of tree features was included in the

instances. This approach is appropriate for iden-

tifying contexts in which the binding constraints

apply, but not, for instance, to recognize exple-

tives. In this work we adopted therefore a more

general approach, in which separate classifiers are

used to recognize each relevant configuration, and

their output is then used as an input to the coref-

erence classifier. In this section we discuss the

types of structures and kernel functions we used

for three different kinds of classifiers: expletive,

binding and alias classifiers. We then present the

results of these classifiers, and finally the results

with the coreference resolver as a whole.

3.1 Expletive Kernels

In written text, about a third of the occurrences

of the pronoun it are not coreferent to a previ-

ous mention, but either refer to a general discourse

topic (it’s a shame) or do not refer at all, as in the

case of extraposed subjects (it is thought that . . . )

or weather verbs (it’s raining). It is desirable to

minimize the impact that these non-anaphoric pro-

nouns have on the accuracy of a anaphora resolu-

tion: Lappin and Leass (1994), for example, use

several heuristics to filter out expletive pronouns,

including a check for patterns including modal ad-

jectives (it is good/necessary/. . . that . . . ), and cog-

nitive verbs (it is thought/believed/. . . that . . . ).

Newer approaches to the problem use machine-

learning on hand-annotated examples: Evans

(2001) compares a shallow approach based on

surrounding lemmas, part-of-speech tags, and the

presence of certain elements such as modal adjec-

tives and cognitive verbs, trained on 3171 exam-

ples from Susanne and the BNC to a reimplemen-

tation of a pattern-based approach due to Paice and

Husk (1987) and finds that the shallower machine-

learning approach compares favorably to it. Boyd

et al. (2005) use an approach that combines some

of Evans’ shallow features with hand-crafted pat-

terns in a memory based learning approach and

find that the more informative features are ben-

eficial for the system’s performance (88% accu-

racy against 71% for their reimplementation using

Evans’ shallow features).

Evans’ study also mentions that incorporating

the expletive classifier as a filter for a pronoun re-

solver gives a gain between 2.86% (for manually

determined weights) and 1% (for automatically op-

timized weights).

Tree kernels are a good fit for expletive classi-

fication since they can naturally represent the lex-

ical and structural context around a word. Our fi-

nal classifier uses the combination of an unmodi-

fied tree (UT) (where the embedding clause or verb

phrase of the pronoun is used as a tree), and a tree

that only preserves the most salient structural fea-

tures (ST).

The reduced representation prunes all nodes that



would not be seen as indicative in a pattern ap-

proach, essentially keeping verb argument struc-

ture and important lexical items, such as the gov-

erning verb and, in the case of copula construc-

tions, the predicate. For example, the phrase

(S (NP (PRP It))

(VP (VBZ has)

(NP (NP (DT no) (NN bearing))

(PP (IN on)

(NP (NP (PRP$ our)

(NN work)

(NN force))

(NP (NN today)))))

(. .))

would be reduced to the ST:

(S-I (NP-I (PRP-I It))

(VP (VBX have)

(NP))

(.))

or, in a similar fashion,

(S (NP (PRP it))

(VP (VBZ ’s)

(NP (NP (NN time))

(PP (IN for)

(NP (PRP$ their)

(JJ biannual)

(NN powwow))))))

would just be represented as the ST:

(S-I (NP-I (PRP-I it))

(VP (BE VBZ)

(NP-PRD (NN time))))

3.2 Binding Kernels

The resolution of pronominal anaphora heavily re-

lies on the syntactic information and relationships

between the anaphor and the antecedent candi-

dates, including binding and other constraints, but

also context-induced preferences in sub-clauses.

Some researchers (Lappin and Leass 1994;

Kennedy and Boguraev 1996) use manually de-

signed rules to take into account the grammati-

cal role of the antecedent candidates as well as

the governing relations between the candidate and

the pronoun, while others use features determined

over the parse tree in a machine-learning approach

(Aone and Bennett 1995; Yang et al. 2004; Luo

and Zitouni 2005). However, such a solution has

limitations, since the syntactic features have to be

selected and defined manually, and it is still partly

an open question which syntactic properties should

be considered in anaphora resolution.

We follow (Yang et al. 2006; Iida et al. 2006) in

using a tree kernel to represent structural informa-

tion using the subtree that covers a pronoun and its

antecedent candidate. Given a sentence like “The

Figure 3: The structure for binding detection for

the instance inst(“the man”, “him”) in the sentence

‘the man in the room saw him”

man in the room saw him.”, we represent the syn-

tactic relation between “The man” and “him”, by

the shortest node path connecting the pronoun and

the candidate, along with the first-level of the node

children in the path.

Figure 3 graphically shows such tree highlighted

with dash lines. More in detail we operate the fol-

lowing tree transformation:

(a) To distinguish from other words, we explic-

itly mark up in the structured feature the pronoun

and the antecedent candidate under consideration,

by appending a string tag “ANA” and “CANDI”

in their respective nodes, i.e. “NN-CANDI” for

“man” and “PRP-ANA” for “him”.

(b) To reduce the data sparseness, the leaf nodes

representing the words are not incorporated in the

feature, except that the word is the word node of

the “DET” type (this is to indicate the lexical prop-

erties of an expression, e.g., whether it is a definite,

indefinite or bare NP).

(c) If the pronoun and the candidate are not in the

same sentence, we do not include the nodes denot-

ing the sentences (i.e., “S” nodes) before the can-

didate or after the pronoun.

The above tree structures will be jointly used

with the basic STK which extracts tree fragments

able to characterize the following information: (a)

the candidate is post-modified by a preposition

phrase, (the node “PP” for “in the room” is in-

cluded), (b) the candidate is a definite noun phrase

(the article word “the” is included), (c) the candi-

date is in a subject position (NP-S-VP structure),

(d) the anaphor is an object of a verb (the node

“VB” for “saw” is included) and (e) the candidate

is c-commanding the anaphor (the parent of the

NP node for “the main in the room” is dominat-

ing the anaphor (“him”), which are important for

reference determination in the pronoun resolution.



3.3 Encoding Context via Word Sequence

Kernel

The previous structures aim at describing the in-

teraction between one referential and one referent;

if such interaction is observed on another mention

pair, an automatic algorithm can establish if they

corefer or not. This kind of information is the most

useful to characterize the target problem, however,

the context in which such interaction takes place is

also very important. Indeed, natural language pro-

poses many exceptions to linguistic rules and these

can only be detect by looking at the context. To be

able to represent context words or phrases, we use

context word windows around the mentions and

the subsequence kernel function (see section 2.1)

to extract many features from it.

For example, in the context of “and so Bill

Gates says that”, a string kernel would ex-

tract features including: Bill Gates says that,

says that, Gates, Gates says that, Bill says that,

so Gates says that, and so that and so on.

Name Alias

BJ Habibie Mr. Habibie
Federal Express Fedex
Ju Rong Zhi Ju

Table 1: Examples of coreferent named entities

(aliases) taken from the MUC 6 corpus.

3.4 Kernels for Alias Resolution

Most methods currently employed by coreference

resolution (CR) systems for identifying coreferent

named entities, i.e. aliases, are fairly simplistic in

nature, relying on simple surface features such as

the edit distance between two strings representing

names. We investigate the potential of using the

structure contained within names. This can be very

useful to solve complex cases like those shown in

Table 1, taken from the MUC 6 corpus (Chinchor

and Sundheim 2003). For this purpose, we add

syntactic information to the feature set by tagging

the parts of a name (e.g. first name, last name, etc.)

as illustrated in Figure 4.

To automatically extract such structure we used

the High Accuracy Parsing of Name Internal Struc-

ture (HAPNIS) script1. HAPNIS takes a name as

input and returns a tagged name like what is shown

in Figure 4. It uses a series of heuristics in making

its classifications based on information such as the

1The script is freely available at
http://www.cs.utah.edu/ hal/HAPNIS/.

Figure 4: A proper name labeled with syntactic in-

formation.

serial positions of tokens in a name, the total num-

ber of tokens, the presence of meaningful punctua-

tion such as periods and dashes, as well as a library

of common first names which can be arbitrarily ex-

tended to any size. The tag set consists of the fol-

lowing: surname, forename, middle, link, role, and

suffix2.

Once the structure for a name has been de-

rived, we can apply tree kernels to represent it in

the learning algorithms thus avoiding the manual

feature design. Such structures are not based on

any particular grammar, therefore, any tree sub-

part may be relevant. In this case the most suitable

kernel is PTK, which extracts any tree subpart. It

is worth to note that the name tree structure can

be improved by inserting a separate node for each

name character and exploiting the string matching

approximation carried out by PTK. For example,

Microsoft Inc. will have a large match with Mi-

crosoft Incorporated whereas the standard string

matching would be null.

4 Experiments with Coreference Subtask

Classifiers

In these experiments we test the kernels devised for

expletive (see Section 3.1), binding (see Section

3.2) and alias detection (see Section 3.4), to study

the level of accuracy reachable by our kernel-based

classifiers. The baseline framework is constituted

by SVMs along with a polynomial kernel over the

Soon et al.’s features.

4.1 Experiments on Expletive Classification

We used the BBN Pronoun corpus3 as a source of

examples, with the training set consisting of sec-

tions 00-19, yielding more than 5800 instances of

2Daumé reports a 99.1% accuracy rate on his test data set.
We therefore concluded that it was sufficient for our purposes.

3Ralph Weischedel and Ada Brunstein (2005): BBN Pro-
noun Coreference and Entity Type Corpus, LDC2005T33



it, with the testing set consisting of sections 20 and

21, using the corresponding parses from the Penn

Treebank for the parse trees. Additionally, we re-

port on the performance of the classifier learnt on

only the first 1000 instances to verify that our ap-

proach also works for small datasets. The results

in Table 2 show that full tree (UT) achieves good

results whereas the salient tree (ST) leads to a bet-

ter ability to generalize, and the combination ap-

proach outperforms both individual trees.

BBN large BBN small
Prec Recl Acc Prec Recl Acc

UT 83.87 61.54 84.35 78.76 52.66 80.85
ST 78.08 67.46 83.98 77.61 61.54 82.50
UT+ST 81.12 68.64 85.27 80.74 64.50 84.16

Table 2: Results for kernel-based expletive detec-

tion (using STK)

Note that the accuracy we get by training on

1000 examples (84% accuracy; see the small col-

umn in Table 2) is better than Boyd’s replication of

Evans (76% accuracy) or their decision tree clas-

sifier (81% accuracy) even though Boyd et al.’s

dataset is three times bigger. On the other hand,

Boyd et al’s full system, which uses substantial

hand-crafted knowledge, gets a still better result

(88% accuracy), which is also higher than the ac-

curacy of our classifier even when trained on the

full 5800 instances.

MUC-6
Prec Recl F

Soon et al. 51.25 55.51 53.29
STK 71.93 55.41 62.59

Table 3: Binding classifier: coreference classifica-

tion on same-sentence pronouns

4.2 Experiments with the Binding Classifier

To assess the effect of the binding classifier on

same-sentence pronoun links, we extracted 1398

mention pairs from the MUC-6 training data where

both mentions were in the same sentence and at

least one item of the pair included a pronoun, us-

ing the first 1000 for training and the remaining

398 examples for testing. The results (see Table 3)

show that the syntactic tree kernel (STK) consider-

ably improves the precision of classification of the

Soon et al.’s features.

4.3 Experiments on Alias Classification

For our preliminary experiments, we extracted

only pairs in the MUC 6 testing set in which both

mentions were proper names, as determined by

the coreference resolver’s named entity recognizer.

This set of proper names contained about 37,000

pairs of proper names of which about 600 were

positive instances. About 5,500 pairs were ran-

domly selected as test instances and the rest were

used for training.

In the first experiment, we trained a decision

tree classifier to detect if two names are aliases.

For this task, we used either the string kernel score

over the sequence of characters or the edit distance.

The results in Table 4 show that the string kernel

score performs better by 21.6 percentage points in

F-measure.

In the second experiments we used SVMs

trained with the string kernel over the name-

character sequences and with PTK, which takes

into account the structure of names. The re-

sults in Table 5 show that the structure improves

alias detection by almost 5 absolute percent points.

This suggests that an effective coreference sys-

tem should embed PTK and name structures in the

coreference pair representation.

Recall Precision F-measure

String kernel 49.5% 60.8% 54.6%
Edit distance 23.9% 53.1% 33.0%

Table 4: Decision-tree based classification of name

aliases using string kernels and edit distance.

Recall Precision F-measure

String kernel 58.4% 67.5% 62.6%
PTK 64.8% 70.0% 67.3%

Table 5: SVM-based classification of name aliases

using string kernels and tree-based feature.

5 Experiments on Coreference Systems

In this section we evaluate the contribution in the

whole coreference task of the expletive classifier

and the binding kernel. The predictions of the for-

mer are used as a feature of our basic coreference

system whereas the latter is used directly in the

coreference classifier by adding it to the polyno-

mial kernel of the basic system.

Our basic system is based on the standard learn-

ing approach to coreference developed by Soon

et al. (2001). It uses the features from Soon et

al’s work, including lexical properties, morpho-

logic type, distance, salience, parallelism, gram-

matical role and so on. The main difference with



Soon et al. (2001) is the use of SVMs along with a

polynomial kernel.

MUC-6
Prec Recl F

plain 65.2 66.9 66.0
plain+expletive 66.1 66.9 66.5
upper limit 70.0 66.9 68.4

Table 6: Expletive classification: influence on pro-

noun resolution

5.1 Influence of Expletive classification

To see how useful a classifier for expletives can

be, we conducted experiments using the expletive

classifier learned on the BBN pronoun corpus on

the MUC-6 corpus. Preliminary experiments indi-

cated that perfect detection of expletives (i.e. using

gold standard annotation) could raise the precision

of pronoun resolution from 65.2% to 70.0%, yield-

ing a 2.4% improvement in the F-score for pronoun

resolution alone, or 0.6% improvement in the over-

all coreference F-score (see Table 6).

For a more realistic assessment, we used the

classifier learned on the BBN pronoun corpus ex-

amples as an additional feature to gauge the im-

provement that could be achieved using it. While

the gain in precision is small even in comparison

to the achievable error reduction, we need to keep

in mind that our baseline is in fact a well-tuned

system.

MUC-6 ACE02-BNews
R P F R P F

PK 64.3 63.1 63.7 58.9 68.1 63.1
PK+TK 65.2 80.1 71.9 65.6 69.7 67.6

Table 7: Results of the pronoun resolution

5.2 Binding and Context Kernels

In these experiments, we compared our corefer-

ence system based on Polynomial Kernel (PK)

against its combinations with Syntactic Tree Ker-

nels (STK) over the binding structures (Sec. 3.2)

and Word Sequence Kernel (WSK) on context

windows (Sec. 3.3). We experimented with

both the only pronoun and the complete corefer-

ence resolution tasks on the standard MUC-6 and

ACE03-BNews data sets.

On the validation set, the best kernel combina-

tion between PK and STK was STK(T1, T2) ·

PK(~x1, ~x2)+PK(~x1, ~x2). Then an improvement

arises when simply summing WSK.

Table 7 lists the results for the pronoun resolu-

tion. We used PK on the Soon et al.’s features as

the baseline. On MUC-6, the system achieves a

recall of 64.3% and precision 63.1% and an over-

all F-measure of 63.7%. On ACE02-BNews, the

recall is lower 58.9% but the precision is higher,

i.e. 68.1%, for a resulting F-measure of 63.1%.

In contrast, adding the binding kernel (PK+STK)

leads to a significant improvement in 17% preci-

sion for MUC-6 with a small gain (1%) in recall,

whereas on the ACE data set, it also helps to in-

crease the recall by 7%. Overall, we can see an

increase in F-measure of around 8% for MUC and

4.5% for ACE02-BNews. These results suggest

that the structured feature is very effective for pro-

noun resolution.

MUC-6 ACE02-BNews
R P F R P F

PK 61.5 67.2 64.2 54.8 66.1 59.9
PK+STK 63.4 67.5 65.4 56.6 66.0 60.9
PK+STK+WSK 64.4 67.8 66.0 57.1 65.4 61.0

Table 8: Results of the coreference resolution

Table 8 lists the results on the coreference res-

olution. We note that adding the structured fea-

ture to the polynomial kernel, i.e. using the model

PK+STK, improves the recall of 1.9% for MUC-

6 and 1.8% for ACE-02-BNews and keeps invari-

ant the precision. Compared to pronoun resolu-

tion, the improvement of the overall F-measure is

smaller (about 1%). This occurs since the resolu-

tion of non-pronouns case does not require a mas-

sive use of syntactic knowledge as in the pronoun

resolution problem. WSK further improves the

system’s F1 suggesting that adding structured fea-

tures of different types helps in solving the coref-

erece task.

6 Conclusions

We presented four examples of using kernel-based

methods to take advantage of a structured repre-

sentation for learning problems that arise in coref-

erence systems, presenting high-accuracy classi-

fiers for expletive detection, binding constraints

and same-sentence pronoun resolution, and name

alias matching. We have shown the accuracy

of the individual classifiers for the above tasks

and the impact of expletives and binding classi-

fiers/kernels in the complete coreference resolu-

tion system. The improvement over the individual

and complete tasks suggests that kernel methods



are a promising research direction to achieve state-

of-the-art coreference resolution systems.

Future work is devoted on making the use of ker-

nels for coreference more efficient since the size of

the ACE-2 corpora prevented us to directly use the

combination of all kernels that we designed. In this

paper, we have also studied a solution which re-

lates to factoring out decisions into separate clas-

sifiers and using the decisions as binary features.

However, this solution shows some loss in terms of

accuracy. We are currently investigating methods

that allow us to combine the accuracy and flexibil-

ity of the integrated approach with the speed of the

separate classifier approach.

Acknowledgements Y. Versley was funded by the

Deutsche Forschungsgemeinschaft as part of SFB (Collabora-

tive Research Centre) 441. A. Moschitti has been partly sup-

ported by the FP6 IST LUNA project (contract No. 33549).

Part of the work reported in this paper was done at the Johns

Hopkins Summer Workshop in 2007, funded by NSF and

DARPA. We are especially grateful for Alan Jern’s implemen-

tation help for name structure identification.

References

Aone, C. and Bennett, S. W. (1995). Evaluating automated
and manual acquisition of anaphora resolution strategies.
In Proc. ACL 1995, pages 122–129.

Barzilay, R. and Lapata, M. (2005). Modelling local coher-
ence: An entity-based approach. In Proc. of ACL, Ann
Arbor, MI.

Boyd, A., Gegg-Harrison, W., and Byron, D. (2005). Iden-
tifying non-referential it: a machine learning approach in-
corporating linguistically motivated features. In Proc. ACL
WS on Feature Engineering for Machine Learning in Nat-
ural Language Processing.

Cancedda, N., Gaussier, E., Goutte, C., and Renders, J. M.
(2003). Word sequence kernels. JMLR, 3:1059–1082.

Chinchor, N. and Sundheim, B. (2003). Muc 6 corpus. Mes-
sage Understanding Conference (MUC) 6.

Chomsky, N. (1981). Lectures on government and binding.
Foris, Dordrecht, The Netherlands.

Collins, M. and Duffy, N. (2002). New ranking algorithms for
parsing and tagging: kernels over discrete structures and
the voted perceptron. In Proc. ACL 2002, pages 263–270.

Evans, R. (2001). Applying machine learning toward an au-
tomatic classification of it. Literary and Linguistic Com-
puting, 16(1):45–57.

Giuglea, A.-M. and Moschitti, A. (2006). Semantic role la-
beling via framenet, verbnet and propbank. In Proceedings
of Coling-ACL, Sydney, Australia.

Grosz, B., Joshi, A., and Weinstein, S. (1995). Centering: a
framework for modeling the local coherence of discourse.
CL, 21(2):203–225.

Hobbs, J. (1978). Resolving pronoun references. Lingua,
44:339–352.

Hobbs, J. (1979). Resolving pronoun references. Coherence
and Coreference, 3(1):67–90.

Iida, R., Inui, K., and Matsumoto, Y. (2006). Exploiting syn-
tactic patterns as clues in zero-anaphora resolution. In
Proc. Coling/ACL 2006, pages 625–632.

Kennedy, C. and Boguraev, B. (1996). Anaphora for every-
one: pronominal anaphora resolution without a parser. In
Proc. Coling 1996.

Lappin, S. and Leass, H. (1994). An algorithm for pronominal
anaphora resolution. CL, 20(4):525–561.

Luo, X. and Zitouni, I. (2005). Multi-lingual coreference res-
olution with syntactic features. In Proc. HLT/EMNLP 05.

McCarthy, J. and Lehnert, W. (1995). Using decision trees for
coreference resolution. In Proc. IJCAI 1995.

Mitkov, R. (2002). Anaphora resolution. Longman.

Moschitti, A. (2006). Efficient convolution kernels for depen-
dency and constituent syntactic trees. Proc. ECML 2006.

Moschitti, A. and Bejan, C. A. (2004). A semantic kernel for
predicate argument classification. In CoNLL-2004, USA.

Moschitti, A., Pighin, D., and Basili, R. (2006). Semantic
Role Labeling via Tree Kernel Joint Inference. In Pro-
ceedings of CoNLL-X.

Moschitti, A., Quarteroni, S., Basili, R., and Manandhar, S.
(2007). Exploiting syntactic and shallow semantic kernels
for question answer classification. In Proceedings ACL,
Prague, Czech Republic.

Ng, V. and Cardie, C. (2002). Improving machine learning
approaches to coreference resolution. In Proc. ACL 2002.

Paice, C. D. and Husk, G. D. (1987). Towards an automatic
recognition of anaphoric features in english text: The im-
personal pronoun ‘it’. Computer Speech and Language,
2:109–132.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods

for Pattern Analysis. Cambridge University Press.

Sidner, C. (1979). Toward a computational theory of definite
anaphora comprehension in english. Technical report AI-
TR-537, MIT, Cambridge, MA.

Soon, W., Ng, H., and Lim, D. (2001). A machine learning
approach to coreference resolution of noun phrases. CL,
27(4):521–544.

Steinberger, J., Poesio, M., Kabadjov, M., and Jezek, K.
(2007). Two uses of anaphora resolution in summarization.
Information Processing and Management, 43:1663–1680.
Special issue on Summarization.

Sturt, P. (2003). The time-course of the application of binding
constraints in reference resolution. Journal of Memory and
Language.

Vapnik, V. (1995). The Nature of Statistical Learning Theory.
Springer.

Vieira, R. and Poesio, M. (2000). An empirically based sys-
tem for processing definite descriptions. CL, 27(4):539–
592.

Yang, X., Su, J., and Tan, C. (2006). Kernel-based pronoun
resolution with structured syntactic knowledge. In Proc.
COLING-ACL 06.

Yang, X., Su, J., Zhou, G., and Tan, C. (2004). Improving pro-
noun resolution by incorporating coreferential information
of candidates. In Proc. ACL 2004.

Zanzotto, F. M. and Moschitti, A. (2006). Automatic learn-
ing of textual entailments with cross-pair similarities. In
Proceedings of Coling-ACL, Sydney, Australia.

Zelenko, D., Aone, C., and Richardella, A. (2003). Kernel
methods for relation extraction. JMLR, 3(6):1083 – 1106.


