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Tutorial Schedule 

!     9:00 – 10:30 First Part 

!   10:30 – 11:00 Break 

!   11:00 – 12:30 Second Part 



Outline:  Part I – Kernel Machines 

!   Outline and Motivation (10 min) 

!   Kernel Machines (25 min) 
!   Perceptron 

!   Support Vector Machines 

!   Kernel Definition (Kernel Trick) 

!   Mercer's Conditions 

!   Kernel Operators 
!   Efficiency issue: when can we use kernels?   



Outline:  Part I – Basic Kernels 

!   Basic Kernels and their Feature Spaces (30 min) 
!   Linear Kernels 

!   Polynomial Kernels 

!   Lexical Semantic Kernels 
!   String and Word Sequence Kernels  

!   Syntactic Tree Kernel, Partial Tree kernel (PTK), Semantic 
Syntactic Tree Kernel, Smoothed PTK 

!   Simple Kernel Applications (25 min) 
!   Question Classification in TREC 

!   Cue Classification in Jeopardy! 

!   Question and Answer Classification 

!   Break (30 min) 



Outline:  Part II – Applications with Simple 
Kernels 

!   Practical Exercise with SVM-Light-TK (15 min) 
!   Question Classification with dependency and constituency trees 

!   NLP applications with simple kernels (15 min) 
!   Semantic Role Labeling (SRL): FrameNet and PropBank 

!   Relation Extraction: ACE  

! Coreference Resolution 



Outline:  Part II – Joint Kernel Models 

!   Reranking for (15 min) 
!   Preference kernel framework 

!   Concept Segmentation and Classification of speech  

!   Named Entity Recognition 
!   Predicate Argument Structure Extraction 

!   Relational Kernels (15 min) 
!   Recognizing Textual Entailment  
!   Answer Reranking 



Outline:  Part II – Advanced Topics 

!   Fast learning and classification approaches (10 min) 
!   Cutting Plane Algorithm for SVMs 

!   Sampling methods (uSVMs) 

!   Compacting space with DAGs 

!   Reverse Kernel Engineering (15 min) 
!   Model linearization 

!   Semantic Role Labeling 
!   Question Classification 

!   Conclusions and Future Research (5 min) 



Motivation (1) 

!   Feature design most difficult aspect in designing a 

learning system 

!   complex and difficult phase, e.g., structural feature 

representation: 

!   deep knowledge and intuitions are required 

!   design problems when the phenomenon is described 

by many features 



Motivation (2) 

!   Kernel methods alleviate such problems 

!   Structures represented in terms of substructures 

!   High dimensional feature spaces 

!   Implicit and abstract feature spaces 

!   Generate high number of features 

!   Support Vector Machines “select” the relevant features 

!   Automatic feature engineering side-effect 



Motivation (3) 

!   High accuracy especially for new applications and new 

domains 

!   Manual engineering still poor, e.g., Arabic SRL 

!   Inherent higher accuracy when many structural patterns 

are needed, e.g. Relation Extraction 

!   Fast prototyping and adaptation for new domains and 

applications 

!   The major contribution of kernels is to make easier system 

modeling. 



What can really kernels do? 

!   Optimistic view: 
!   better feature spaces not manually designable 

!   the overall feature space produced by kernel is essential for a 
given task 

!   features impractical to be manually designed 

!   Bottom line view 
!   faster feature engineering approach 

!   higher level feature engineering, e.g., structures instead of vector 
components 

!   automatic feature engineering 

!   explicit representation: are more meaningful when inspected  



Why and when using kernels? 

!   Using them is very simple: much simpler than feature vector 

!   They are like any other machine learning approach simply 

better than feature vector 

!   Small training data: absolutely no reason for not using them 
!   many features provide back-off models 

!   structural features provide domain adaptation 

!   Large training data: new methods enable them 
!   using large data many features become important 

!   kernels become very effective 



Part I: Kernel Machines 



Binary Classification Problem (on text) 

!   Given: 
!   a category: 

!   and a set T of documents,  

     define 

       f : T  →    

!   VSM (Salton89’) 

!   Features are dimensions of a Vector Space. 

!   Documents and Categories are vectors of feature weights. 

!   d is assigned to        if  

d ⋅

C > th

C

C

{C,C}



More in detail 

!   In Text Categorization documents are word vectors 

!   The dot product            counts the number of features in 

common 

!   This provides a sort of similarity 

  

€ 

Φ(dx ) =
 x = (0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,1)

                         buy       acquisition     stocks          sell     market

zx

⋅

  

€ 

Φ(dz ) =
 z = (0,..,1,..,0,..,1,..,0,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

                         buy   company            stocks          sell     



Linear Classifier 

  

€ 

f (  x ) =
 
x ⋅
 
w + b = 0,    x ,  w ∈ ℜn ,b∈ ℜ

!   The equation of a hyperplane is 

!      is the vector representing the classifying example 

!      is the gradient of the hyperplane 

!   The classification function is 

x


w

( ) sign( ( ))h x f x=


d ⋅

C > thBasically 



     

     
     

! Mapping vectors in a space where they are linearly 
separable,  

x
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The main idea of Kernel Functions 
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A kernel-based Machine: 
Perceptron training 

  

€ 

 w 0 ←
 
0 ;b0 ← 0;k ← 0;R← max1≤ i≤ l ||  x i ||

do
       for i =  1 to 
         if yi(

 w k ⋅
 x i + bk ) ≤ 0 then

                   w k +1 =
 w k +ηyi

 x i
                  bk +1 = bk +ηyiR

2

                 k = k +1
        endif
      endfor
while an error is found
return k,(  w k,bk ) 



Graphic interpretation of the Perceptron 
476 A. Moschitti
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Fig. 10. Perceptron algorithm process

Since the sign of the contribution xi is given by yi, αi is positive and is proportional
(through the η factor) to the number of times that xi is incorrectly classified. Difficult
points that cause many mistakes will be associated with large αi.

It is interesting to note that, if we fix the training set S, we can use the αi as alter-
native coordinates of a dual space to represent the target hypothesis associated with w.
The resulting decision function is the following:

h(x) = sgn(w · x + b) = sgn

(( m∑

i=1

αiyixi

)
· x + b

)
=

= sgn

(
m∑

i=1

αiyi(xi · x) + b

)
(11)

Given the dual representation, we can adopt a learning algorithm that works in the
dual space described in Table 3.

Note that as the Novikoff’s theorem states that the learning rate η only changes the
scaling of the hyperplanes, it does not affect the algorithm thus we can set η = 1.
On the contrary, if the perceptron algorithm starts with a different initialization, it will
find a different separating hyperplane. The reader may wonder if such hyperplanes are
all equivalent in terms of the classification accuracy of the test set; the answer is no:
different hyperplanes may lead to different error probabilities. In particular, the next



     

     
     

 
! In each step of perceptron only training data is added with a 

certain weight 

! Hence the classification function results: 

! Note that data only appears in the scalar product 
 

 

Dual Representation for Classification 
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 w = α j
j=1..
∑ y j

 x j

  

€ 

sgn(  w ⋅  x + b) = sgn α j
j=1..
∑ y j

 x j ⋅
 x + b

% 

& 
' ' 
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) 
* * 



     
     

Dual Representation for Learning 

 
! as well as the updating function  

! The learning rate      only affects the re-scaling of the 
hyperplane, it does not affect the algorithm, so we can fix 

1.η =

η

if yi ( α j
j=1..
∑ yj

x j ⋅
xi + b) ≤ 0 then αi =αi +η



     
! We can rewrite the classification function as 

 
! As well as the updating function 

 

Dual Perceptron algorithm and Kernel 
functions 

  

€ 

h(x) = sgn(  w φ ⋅ φ(
 x ) + bφ ) = sgn( α j

j=1..
∑ y jφ(

 x j ) ⋅ φ(
 x ) + bφ ) =

= sgn( α j
i=1..
∑ y jk(

 x j ,
 x ) + bφ )

if yi α j
j=1..
∑ yjk(x j,

xi )+ bφ
"

#
$$

%

&
'' ≤ 0 then αi =αi +η



Support Vector Machines 

  Var1 

Var2 kbxw −=+⋅


kbxw =+⋅


0=+⋅ bxw

kk

w

The margin is equal to 
2 k
w



Support Vector Machines 

  Var1 

Var2 
w ⋅ x + b = −1

w ⋅ x + b =1

0=+⋅ bxw

11

w

The margin is equal to 
2
w

We need to solve 

max 2
|| w ||

w ⋅ x + b ≥ +1,   if x  is positive  
w ⋅ x + b ≤ −1,   if x  is negative 



Optimization Problem 

!   Optimal Hyperplane: 

Minimize 

Subject to 

!   The dual problem is simpler 

   

 

τ ( w) = 1
2
w 2

yi (
w ⋅ xi + b) ≥1, i =1,..., l



Dual Transformation 

!   To solve the dual problem we need to evaluate: 

 

!   Given the Lagrangian associated with our problem 

 

!   Let us impose the derivatives to 0, with respect to   

 

w

2.3. The Support Vector Machines 43

The above conditions can be applied to evaluate the maximal margin clas-
sifier, i.e. the Problem 2.13, but the general approach is to transform Problem
2.13 in an equivalent problem, simpler to solve. The output of such transfor-
mation is called dual problem and it is described by the following definition.

Def. 2.24 Let f(~w), hi(~w) and gi(~w) be the objective function, the equality
constraints and the inequality constraints (i.e. �) of an optimization problem,
and let L(~w, ~↵, ~�) be its Lagrangian, defined as follows:

L(~w, ~↵, ~�) = f(~w) +
mX

i=1

↵igi(~w) +
lX

i=1

�ihi(~w)

The Lagrangian dual problem of the above primal problem is

maximize ✓(~↵, ~�)

subject to ~↵ � ~0

where ✓(~↵, ~�) = infw2W L(~w, ~↵, ~�)

The strong duality theorem assures that an optimal solution of the dual is
also the optimal solution for the primal problem and vice versa, thus, we can
focus on the transformation of Problem 2.13 according to the Definition 2.24.

First, we observe that the only constraints in Problem 2.13 are the inequal-
ities gi(~w) = [yi(~w · ~xi + b) � 1 8~xi 2 S].

Second, the objective function is ~w · ~w. Consequently, the primal La-
grangian4 is

L(~w, b, ~↵) =
1
2

~w · ~w �
mX

i=1

↵i[yi(~w · ~xi + b)� 1], (2.17)

where ↵i are the Lagrange multipliers and b is the extra variable associated
with the threshold.

Third, to evaluate ✓(~↵, ~�) = infw2W L(~w, ~↵, ~�), we can find the mini-
mum of the Lagrangian by setting the partial derivatives to 0.

@L(~w, b, ~↵)
@ ~w

= ~w �
mX

i=1

yi↵i~xi = ~0 ) ~w =
mX

i=1

yi↵i~xi (2.18)

4As ~w · ~w or 1
2 ~w · ~w is the same optimization function from a solution point of view, we use

the 1
2 factor to simplify the next computations.
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Dual Transformation (cont’d) 

!   and wrt b 

!   Then we substituted them in the objective function 

44 Chapter 2. Statistical Machine Learning

@L(~w, b, ~↵)
@b

=
mX

i=1

yi↵i = 0 (2.19)

Finally, by substituting Eq. 2.18 and 2.19 into the primal Lagrangian we
obtain

L(~w, b, ~↵) =
1
2

~w · ~w �
mX

i=1

↵i[yi(~w · ~xi + b)� 1] =

=
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj �
mX

i,j=1

yiyj↵i↵j ~xi · ~xj +
mX

i=1

↵i

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj

(2.20)
which according to the Definition 2.24 is the optimization function of the dual
problem subject to ↵i � 0. In summary, the final dual optimization problem is
the following:

maximize
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj

subject to ↵i � 0, i = 1, ..,m
mX

i=1

yi↵i = 0

where ~w =
Pm

i=1 yi↵i~xi and the
Pm

i=1 yi↵i = 0 are the relation derived from
Eq. 2.18 and 2.19. Other conditions establishing interesting properties can be
derived by the Khun-Tucker theorem. This provides the following relations for
an optimal solution:

@L(~w⇤, ~↵⇤, ~�⇤)
@ ~w

= ~0

@L(~w⇤, ~↵⇤, ~�⇤)
@~�

= ~0

↵⇤
i gi(~w⇤) = 0, i = 1, ..,m
gi(~w⇤)  0, i = 1, ..,m

↵⇤
i � 0, i = 1, ..,m
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The Final Dual Optimization Problem 
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Soft Margin optimization problem 
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respect to ~w, ~⇠ and b:

@L(~w, b, ~⇠, ~↵)
@ ~w

= ~w �
mX

i=1

yi↵i~xi = ~0 ) ~w =
mX

i=1

yi↵i~xi

@L(~w, b, ~⇠, ~↵)
@~⇠

= C~⇠ � ~↵ = ~0

@L(~w, b, ~⇠, ~↵)
@b

=
mX

i=1

yi↵i = 0

(2.23)

By substituting the above relations into the primal, we obtain the following
dual objective function:

w(~↵) =
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj +
1

2C
~↵ · ~↵� 1

C
~↵ · ~↵ =

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj �
1

2C
~↵ · ~↵ =

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j

�
~xi · ~xj +

1
C

�ij

�
,

(2.24)
where �ij = 1 if i = j and 0 otherwise (Kronecker’s delta). The objective

function is subject to the usual constraints:
(

↵i � 0, 8i = 1, ..,m
Pm

i=1 yi↵i = 0

The above dual can be used to find a solution of Problem 2.21, which ex-
tends the applicability of linear functions to classification problems not com-
pletely linearly separable. The separability property relates not only on the
available class of hypotheses, e.g. linear vs. polynomial functions, but it
strictly depends on the adopted features. Their roles is to provide a map be-
tween the example data and vectors in Rn. Given such mapping, the scalar
product provides a measure of the similarity between pairs of examples or, ac-
cording to a colder interpretation, it provides a partitioning function based on
such features.

The next Section shows that, it is possible to substitute the scalar product
of two feature vectors with a function between the data examples directly. This
allows us to avoid the explicit feature design and consequently enables us to
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respect to ~w, ~⇠ and b:

@L(~w, b, ~⇠, ~↵)
@ ~w

= ~w �
mX

i=1

yi↵i~xi = ~0 ) ~w =
mX

i=1

yi↵i~xi

@L(~w, b, ~⇠, ~↵)
@~⇠

= C~⇠ � ~↵ = ~0

@L(~w, b, ~⇠, ~↵)
@b

=
mX

i=1

yi↵i = 0

(2.23)

By substituting the above relations into the primal, we obtain the following
dual objective function:

w(~↵) =
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj +
1

2C
~↵ · ~↵� 1

C
~↵ · ~↵ =

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj �
1

2C
~↵ · ~↵ =

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j

�
~xi · ~xj +

1
C

�ij

�
,

(2.24)
where �ij = 1 if i = j and 0 otherwise (Kronecker’s delta). The objective

function is subject to the usual constraints:
(

↵i � 0, 8i = 1, ..,m
Pm

i=1 yi↵i = 0

The above dual can be used to find a solution of Problem 2.21, which ex-
tends the applicability of linear functions to classification problems not com-
pletely linearly separable. The separability property relates not only on the
available class of hypotheses, e.g. linear vs. polynomial functions, but it
strictly depends on the adopted features. Their roles is to provide a map be-
tween the example data and vectors in Rn. Given such mapping, the scalar
product provides a measure of the similarity between pairs of examples or, ac-
cording to a colder interpretation, it provides a partitioning function based on
such features.

The next Section shows that, it is possible to substitute the scalar product
of two feature vectors with a function between the data examples directly. This
allows us to avoid the explicit feature design and consequently enables us to
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@L(~w, b, ~↵)
@b

=
mX

i=1

yi↵i = 0 (2.19)

Finally, by substituting Eq. 2.18 and 2.19 into the primal Lagrangian we
obtain

L(~w, b, ~↵) =
1
2

~w · ~w �
mX

i=1

↵i[yi(~w · ~xi + b)� 1] =

=
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj �
mX

i,j=1

yiyj↵i↵j ~xi · ~xj +
mX

i=1

↵i

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj

(2.20)
which according to the Definition 2.24 is the optimization function of the dual
problem subject to ↵i � 0. In summary, the final dual optimization problem is
the following:

maximize
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj

subject to ↵i � 0, i = 1, ..,m
mX

i=1

yi↵i = 0

where ~w =
Pm

i=1 yi↵i~xi and the
Pm

i=1 yi↵i = 0 are the relation derived from
Eq. 2.18 and 2.19. Other conditions establishing interesting properties can be
derived by the Khun-Tucker theorem. This provides the following relations for
an optimal solution:

@L(~w⇤, ~↵⇤, ~�⇤)
@ ~w

= ~0

@L(~w⇤, ~↵⇤, ~�⇤)
@~�

= ~0

↵⇤
i gi(~w⇤) = 0, i = 1, ..,m
gi(~w⇤)  0, i = 1, ..,m

↵⇤
i � 0, i = 1, ..,m



Kernels in Support Vector Machines  

!   In Soft Margin SVMs we maximize: 

!   By using kernel functions we rewrite the problem as: 
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maximize
m∑

i=1

αi −
1
2

m∑

i,j=1

yiyjαiαj

(
k(oi, oj) +

1
C

δij

)

αi ≥ 0, ∀i = 1, .., m
m∑

i=1

yiαi = 0

Moreover, Eq. 10 for the Perceptron appears also in the Soft Margin SVMs (see
conditions 24), hence we can rewrite the SVM classification function as in Eq. 11 and
use a kernel inside it, i.e.:

h(x) = sgn

(
m∑

i=1

αiyik(oi, oj) + b

)

The data object o is mapped in the vector space trough a feature extraction procedure
φ : o → (x1, ..., xn) = x, more in general, we can map a vector x from one feature
space into another one:

x = (x1, ..., xn) → φ(x) = (φ1(x), ..., φn(x))

This leads to the general definition of kernel functions:

Definition 10. A kernel is a function k, such that ∀ x,z ∈ X

k(x, z) = φ(x) · φ(z)

where φ is a mapping from X to an (inner product) feature space.

Note that, once we have defined a kernel function that is effective for a given learning
problem, we do not need to find which mapping φ corresponds to. It is enough to know
that such mapping exists. The following proposition states the conditions that guarantee
such existence.

Proposition 1. (Mercer’s conditions)
Let X be a finite input space and let K(x, z) be a symmetric function on X. Then

K(x, z) is a kernel function if and only if the matrix

k(x, z) = φ(x) · φ(z)

is positive semi-definite (has non-negative eigenvalues).

Proof. Let us consider a symmetric function on a finite space X = {x1, x2, ..., xn}

K =
(
K(xi, xj)

)n
i,j=1

Since K is symmetric there is an orthogonal matrix V such that K = V ΛV ′

where Λ is a diagonal matrix containing the eigenvalues λt of K, with corresponding
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ξi

B) Soft Margin SVM A) Hard Margin SVM 

ix
ix

Fig. 15. Soft Margin vs. Hard Margin hyperplanes

where αi are Lagrangian multipliers.
The dual problem is obtained by imposing stationarity on the derivatives respect to

w, ξ and b:

∂L(w, b, ξ, α)
∂w

= w −
m∑

i=1

yiαixi = 0 ⇒ w =
m∑

i=1

yiαixi

∂L(w, b, ξ, α)
∂ξ

= Cξ − α = 0

∂L(w, b, ξ, α)
∂b

=
m∑

i=1

yiαi = 0

(24)

By substituting the above relations into the primal, we obtain the following dual
objective function:

w(α) =
m∑

i=1

αi −
1
2

m∑

i,j=1

yiyjαiαjxi · xj +
1

2C
α · α − 1

C
α · α =

=
m∑

i=1

αi −
1
2

m∑

i,j=1

yiyjαiαjxi · xj −
1

2C
α · α =

=
m∑

i=1

αi −
1
2

m∑

i,j=1

yiyjαiαj

(
xi · xj +

1
C

δij

)
,

(25)

where the Kronecker’s delta, δij = 1 if i = j and 0 otherwise. The objective function
above is subject to the usual constraints:

{
αi ≥ 0, ∀i = 1, .., m∑m

i=1 yiαi = 0

This dual formulation can be used to find a solution of Problem 22, which extends
the applicability of linear functions to classification problems not completely linearly
separable. The separability property relates not only to the available class of hypotheses,
e.g. linear vs. polynomial functions, but it strictly depends on the adopted features. Their



Soft Margin Support Vector Machines 

!   The algorithm tries to keep ξi low and maximize the margin 

!   NB: the number of error is not directly minimized (NP-complete 

problem); the distances from the hyperplane are minimized 

!   If C→∞, the solution tends to the one of the hard-margin 

algorithm 
!   If C increases the number of error decreases. When C tends to infinite 

the number of errors must be 0, i.e. the hard-margin formulation 
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Trade-off between Generalization and 
Empirical Error 

iξ

Var1 

Var2 
0=+⋅ bxw



ξi 

Var1 

Var2 
0=+⋅ bxw



Soft Margin SVM Hard Margin SVM 



Parameters   

!   C: trade-off parameter 

!   J: cost factor 
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Kernel Function Definition 

!   Kernels are the product of mapping functions such as 

  

€ 

 x ∈ ℜn,     
 
φ ( x ) = (φ1(

 x ),φ2( x ),...,φm (  x ))∈ ℜm
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Def. 2.26 A kernel is a function k, such that 8 ~x,~z 2 X

k(~x,~z) = �(~x) · �(~z)

where � is a mapping from X to an (inner product) feature space.

Note that, once we have defined a kernel function that is effective for a
given learning problem, we do not need to find which mapping � it corresponds
to. It is enough to know that such mapping exists. The following proposition
states the conditions that guaranteed such existence.

Proposition 2.27 (Mercer’s conditions)
Let X be a finite input space with K(~x,~z) a symmetric function on X. Then
K(~x, ~z) is a kernel function if and only if the matrix

k(~x,~z) = �(~x) · �(~z)

is positive semi-definite (has non-negative eigenvalues).

The proof of such proposition is the following (from [Cristianini and Shawe-
Taylor, 2000]). Let us consider a symmetric function on a finite space X =
{x1, x2, ..., xn}

K =
�
K(xi, xj)

�n

i,j=1

Since K is symmetric there is an orthogonal matrix V such that K =
V ⇤V 0 where ⇤ is a diagonal matrix containing the eigenvalues �t of K, with
corresponding eigenvectors ~vt = (vti)n

i=1, i.e. the columns of V . Now assume
that all the eigenvalues are non-negatives and consider the feature mapping:

� : ~xi !
�p

�tvti

�n

t=1
2 Rn, i = 1, .., n.

We now have that,

�(~xi) · �(~xj) =
nX

t=1

�tvtivtj = (V ⇤V 0)ij = Kij = K(xi, xj).

This proves that K(~x,~z) is a valid kernel function that corresponds to the
mapping �. Therefore, the only requirement to derive the mapping � is that
the eigenvalues of K are non-negatives since if we had a negative eigenvalue
�s associated with the eigenvector ~vs, the point

~z =
nX

i=1

vsi�(~xi) =
p

⇤V 0~vs.



The Kernel Gram Matrix 

!   With KM-based learning, the sole information used from 
the training data set is the Kernel Gram Matrix 

 

!   If the kernel is valid, K is symmetric definite-positive 
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Valid Kernels 

VI Appendix B. Basic Geometry and Algebraic Concepts

For example:

(x, x2) =
Z 1

0
xx2dx =

h1

0

x4

4
=

1
4

The four properties required in Def. B.6 follow immediately from the analo-
gous property of the definite integral:

(f + h, g) =
Z 1

0
(f(t) + h(t))g(t)dt =

Z 1

0
f(t)g(t) + h(t)g(t)dt =

=
Z 1

0
f(t)g(t)dt +

Z 1

0
h(t)g(t)dt = (f, g) + (h, g).

Example B.8 The classical scalar product in Rn is the component-wise prod-
uct

(u1, u2, .., un)(v1, v2, .., vn) = (u1v1, u2v2, .., unvn)

We recall that
cos(~u,~v) =

(~u,~v)
||~u||⇥ ||~v||

B.2 Matrixes

Def. B.9 Transposed Matrix
Given a matrix A 2 Rm ⇥ Rn of m rows and n columns, we indicate with
A0 2 Rn ⇥Rm its transposed, i.e. Aij = A0

ji for i = 1, ..,m and j = 1, .., n.

Def. B.10 Diagonal Matrix
Given a matrix A 2 Rm ⇥ Rn, A is a diagonal matrix iff Aij = 0 for i 6= j
i = 1, ..,m and j = 1, .., n.

Def. B.11 Eigen Values
Given a matrix A 2 Rm ⇥ Rn, an egeinvalue � and an egeinvector ~x 2
Rn � {~0} are such that

A~x = �~x

Def. B.12 Symmetric Matrix
A square matrix A 2 Rn⇥Rn is symmetric iff Aij = Aji for i 6= j i = 1, ..,m
and j = 1, .., n, i.e. iff A = A0.
B.2. Matrixes VII

Def. B.13 Positive (Semi-) definite Matrix
A square matrix A 2 Rn ⇥ Rn is said to be positive (semi-) definite if its
eigenvalues are all positive (non-negative).

Proposition B.14 Let A be a symmetric matrix. Then A is positive (semi-)
definite iff for any vector ~x 6= 0

~x0A~x > �~x (� 0).

From the previous proposition it follows that: If we find a decomposition
A in M 0M , then A is semi-definite positive matrix as

~x0A~x = ~x0M 0M~x = (M~x)0(M~x) = M~x · M~x = ||M~x||2 � 0.

Theorem B.15 Schur Decomposition, (Real Values)
Every square real matrix A is orthogonally similar to an upper block triangu-
lar matrix D: A = Q0DQ where each block of D is either a 1#1 matrix or
a 2#2 matrix having complex conjugate eigenvalues. D is diagonal iff A is
symmetric.



Valid Kernels cont’d 

!   If the matrix is positive semi-definite then we can find a 
mapping φ implementing the kernel function 

32 Alessandro Moschitti

Note that, once we have defined a kernel function that is effective for a given learn-
ing problem, we do not need to find which mapping � corresponds to. It is enough
to know that such mapping exists. The following proposition states the conditions that
guarantee such existence.

Proposition 1. (Mercer’s conditions)
Let X be a finite input space and let K(x,z) be a symmetric function on X. Then

K(x,z) is a kernel function if and only if the matrix

k(x,z) = �(x) · �(z)

is positive semi-definite (has non-negative eigenvalues).

Proof. Let us consider a symmetric function on a finite space X = {x1, x2, ..., xn

}

K =
�
K(x

i

, x
j

)
�
n

i,j=1

Since K is symmetric there is an orthogonal matrix V such that K = V ⇤V

0

where ⇤ is a diagonal matrix containing the eigenvalues �
t

of K, with corresponding
eigenvectors v

t

= (v
ti

)n

i=1, i.e., the columns of V . Now assume that all the eigenvalues
are non-negatives and consider the feature mapping:

� : x

i

!
�p

�
t

v
ti

�
n

t=1
2 Rn, i = 1, .., n.

It follows that

�(x
i

) · �(x
j

) =
nX

t=1

�
t

v
ti

v
tj

= (V ⇤V

0)
ij

= K

ij

= K(x
i

, x
j

).

This proves that K(x,z) is a valid kernel function that corresponds to the mapping
�. Therefore, the only requirement to derive the mapping � is that the eigenvalues
of K are non-negatives since if we had a negative eigenvalue �

s

associated with the
eigenvector v

s

, the point

z =
nX

i=1

v

si

�(x
i

) =
p

⇤V

0
v

s

.

in the feature space would have norm squared

||z||2 = z · z = v

0
s

V

p
⇤

p
⇤V

0
v

s

= v

0
s

V ⇤V

0
v

s

= v

0
s

Kv

s

= �
s

< 0,

which contradicts the geometry of the space [20].

4.2 Polynomial Kernel

The above section has shown that kernel functions can be used to map a vector space in
other spaces in which the target classification problem becomes linearly separable (or
in general easier). Another advantage is the possibility to map the initial feature space



Mercer’s Theorem (finite space) 

!   Let us consider 
  

€ 

K =  K(  x i,
 x j )( )i, j=1

n

!   K symmetric ⇒ ∃ V:                      for Takagi factorization of a 

complex-symmetric matrix, where:  

!   Λ is the diagonal matrix of the eigenvalues λt of K  

!                          are the eigenvectors, i.e. the columns of V 

!   Let us assume lambda values non-negative 

€ 

K = VΛ # V 

  

€ 

 v t  =  vti( )i=1
n

  

€ 

φ :  x i →  λt vti( )t =1

n
∈ ℜn , i =1,..,n



Mercer’s Theorem 
(sufficient conditions) 

  

€ 

Φ(  x i) ⋅ Φ( x j ) = λtvti
t=1

n

∑ vtj = VΛ ' V ( )ij = K ij = K( x i,
 x j )

     

!   Therefore 

                                                                    ,  

!   which implies that K is a kernel function       



Mercer’s Theorem 
(necessary conditions) 
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 z 2
=
 z ⋅  z = Λ $ V  v s Λ $ V  v s =

 v s' V Λ Λ $ V  v s =

  v s' K  v s =   v s' λs
 v s = λs

 v s
2

< 0

!   Suppose we have negative eigenvalues λs and 

eigenvectors       the following point 

                                                                

!   has the following norm: 

 

this contradicts the geometry of the space. 
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 v s
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 z = vsiΦ( x i)
i=1

n

∑ = vsi λt vti( )t
=

i=1

n

∑ Λ & V  v s   



Is it a valid kernel? 

!   It may not be a kernel so we can use M´·M 

B.2. Matrixes VII

Def. B.13 Positive (Semi-) definite Matrix
A square matrix A 2 Rn ⇥ Rn is said to be positive (semi-) definite if its
eigenvalues are all positive (non-negative).

Proposition B.14 Let A be a symmetric matrix. Then A is positive (semi-)
definite iff for any vector ~x 6= 0

~x0A~x > �~x (� 0).

From the previous proposition it follows that: If we find a decomposition
A in M 0M , then A is semi-definite positive matrix as

~x0A~x = ~x0M 0M~x = (M~x)0(M~x) = M~x · M~x = ||M~x||2 � 0.

Theorem B.15 Schur Decomposition, (Real Values)
Every square real matrix A is orthogonally similar to an upper block triangu-
lar matrix D: A = Q0DQ where each block of D is either a 1#1 matrix or
a 2#2 matrix having complex conjugate eigenvalues. D is diagonal iff A is
symmetric.



Valid Kernel operations 

!   k(x,z) = k1(x,z)+k2(x,z) 

!   k(x,z) = k1(x,z)*k2(x,z) 

!   k(x,z) = α k1(x,z) 

!   k(x,z) = f(x)f(z) 

!   k(x,z) = x'Bz 

!   k(x,z) = k1(φ(x),φ(z)) 



Object Transformation [Moschitti et al, CLJ 2008] 

!     

 

!   Canonical Mapping, φM()  
!   object transformation, 

!   e. g., a syntactic parse tree into a verb subcategorization frame 
tree. 

!   Feature Extraction, φE() 
!   maps the canonical structure in all its fragments 

!   different fragment spaces, e.g. String and Tree Kernels 
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Part I: Basic Kernels 
(Feature Extraction Functions) 



Basic Kernels for unstructured data 

!   Linear Kernel 

!   Polynomial Kernel 

!   Lexical Kernel 

!   String Kernel 

!   Tree Kernels: Subtree, Syntactic, Partial Tree Kernels 

(PTK), and Smoothed PTK 



Linear Kernel 

!   In Text Categorization documents are word vectors 

!   The dot product            counts the number of features in 

common 

!   This provides a sort of similarity 

  

€ 

Φ(dx ) =
 x = (0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,1)

                         buy       acquisition     stocks          sell     market

zx

⋅

  

€ 

Φ(dz ) =
 z = (0,..,1,..,0,..,1,..,0,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

                         buy   company            stocks          sell     



Feature Conjunction (polynomial Kernel) 

!   The initial vectors are mapped in a higher space 

!   More expressive, as            encodes  

      Stock+Market vs. Downtown+Market features 

!   We can smartly compute the scalar product as 
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Sub-hierarchies in WordNet 



Similarity based on WordNet 

Inverted Path Length:

simIPL(c1, c2) =
1

(1 + d(c1, c2))Æ

Wu & Palmer:

simWUP (c1, c2) =

2 dep(lso(c1, c2))
d(c1, lso(c1, c2)) + d(c2, lso(c1, c2)) + 2 dep(lso(c1, c2))

Resnik:
simRES(c1, c2) = ° log P (lso(c1, c2))

Lin:

simLIN (c1, c2) =
2 log P (lso(c1, c2))

log P (c1) + log P (c2)

Table 1. Measures of semantic similarity.

3.1 Semantic Networks and Similarity

The formal description of semantic kernels requires the introduction of some
definitions. We denote terms as t1, t2, . . . 2 T and concepts as c1, c2, . . . 2 C;
we also sometimes use the somewhat informal disambiguation operator c(·) to
map terms to concept representations. To compute useful notions of semantic
similarity among the input terms, we employ semantic reference structures which
we call, for simplicity, Semantic Networks. These can be seen as directed graphs
semantically linking concepts by means of taxonomic relations (e.g. [cat] is-a

[mammal]). Research in Computational Linguistics has led to a variety of well-
known measures of semantic similarity in semantic networks.

The measures relevant in the context of this paper are summarized in table 1.
These measures make use of several notions. (i) The distance (d) of two concepts
c1 and c2, is the number of superconcept edges between c1 and c2. (ii) The
depth (dep) of a concept refers to the distance of the concept to the unique
root node3. (iii) The lowest super ordinate (lso) of two concepts refers to the
concept with maximal depth that subsumes them both. (iv) The probability
P (c) of encountering a concept c which can be estimated from corpus statistics.
When probabilities are used, the measures follow the trail of information theory
in quantifying the information concept (IC) of an observation as the negative
log likelihood. We point the interested reader to [17] for a detailed and recent
survey of the field.

3 If the structure is not a perfect tree structure, we use the minimal depth.



Document Similarity 

industry 

telephone 

 market 

company 

product 

Doc 1 Doc 2 



Lexical Semantic Kernels 

!   The document similarity is the SK function: 

!   where s is any similarity function between words, e.g. 
WordNet [Basili et al.,2005] similarity or LSA [Cristianini et 
al., 2002] 

!   Good results when training data is small 

€ 

SK(d1,d2) = s(w1,w2)
w1 ∈d1 ,w2 ∈d2

∑



String Kernel 

!   Given two strings, the number of matches between their 

substrings is evaluated 

!   E.g. Bank and Rank 

!   B, a, n, k, Ba, Ban, Bank, Bk, an, ank, nk,.. 

!   R, a , n , k, Ra, Ran, Rank, Rk, an, ank, nk,.. 

!   String kernel over sentences and texts 

!   Huge space but there are efficient algorithms 



Using character sequences 

zx 

⋅

  

€ 

φ("bank") =
 x = (0,..,1,..,0,..,1,..,0,......1,..,0,..,1,..,0,..,1,..,0)

!            counts the number of common substrings 

 bank       ank           bnk          bk          b 

  

€ 

φ("rank") =
 z = (1,..,0,..,0,..,1,..,0,......0,..,1,..,0,..,1,..,0,..,1)

 rank               ank                  rnk          rk            r 

  

€ 

 x ⋅  z = φ("bank") ⋅ φ("rank") = k("bank","rank")
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Note that the second summation introduces n individual features (i.e. xi)
whose weights are controlled by the parameter c which also determines the
strength of the degree 0. Thus, we add (n+1) new features to the

�
n+1

2

�
features

of the previous kernel of degree 2. If we consider a generic degree d, i.e. the
kernel (~x · ~z + c)d, we will obtain

�
n+d�1

d

�
+ n + d � 1 =

�
n+d

d

�
distinct

features (which have at least distinct weights). These are all monomials up to
and including the degree d.

2.4.3 String Kernel

Kernel functions can be applied also to discrete space. As a first example, we
show their potentiality on the space of finite strings.

Let ⌃ be a finite alphabet. A string is a finite sequence of characters from
⌃, including the empty sequence. For string s and t we denote by |s| the length
of the string s = s1, .., s|s|, and by st the string obtained by concatenating the
string s and t. The string s[i : j] is the substring si, .., sj of s. We say that u is
a subsequence of s, if there exist indices ~I = (i1, ..., i|u|), with 1  i1 < ... <

i|u|  |s|, such that uj = si
j

, for j = 1, ..., |u|, or u = s[~I] for short. The
length l(~I) of the subsequence in s is i|u| � ii + 1. We denote by ⌃⇤ the set of
all string

⌃⇤ =
1[

n=0

⌃n

We now define the feature space, F = {u1, u2..} = ⌃⇤, i.e. the space of
all possible substrings. We map a string s in R1 space as follows:

�u(s) =
X

~I:u=s[~I]

�l(~I) (2.25)
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for some �  1. These features measure the number of occurrences of subse-
quences in the string s weighting them according to their lengths. Hence, the
inner product of the feature vectors for two strings s and t give a sum over all
common subsequences weighted according to their frequency of occurrences
and lengths, i.e.

K(s, t) =
X

u2⌃⇤

�u(s) · �u(t) =
X

u2⌃⇤

X

~I:u=s[~I]

�l(~I)
X

~J :u=t[ ~J ]

�l( ~J) =

=
X

u2⌃⇤

X

~I:u=s[~I]

X

~J :u=t[ ~J ]

�l(~I)+l( ~J) (2.26)

The above equation defines a class of similarity functions known as string
kernels or sequence kernels. These functions are interesting for text catego-
rization as it allows the learning algorithm to quantify the matching between
two different words, phrases, sentences or whole documents. For example,
given two strings, Bank and Rank:

• B, a, n, k, Ba, Ban, Bank, an, ank, nk, Bn, Bnk, Bk and ak are the
substrings of Bank.

• R, a, n, k, Ra, Ran, Rank, an, ank, nk, Rn, Rnk, Rk and ak are the
substrings of Rank.

Such substrings are the features in the ⌃⇤ that have non-null weights.
These are evaluated by means of Eq. 2.25, e.g. �B(Bank) = �(i1�i1+1) =
�(1�1+1) = �, �k(Bank) = �(i1�i1+1) = �(4�4+1) = �, �an(Bank) =
�(i2�i1+1) = �(3�2+1) = �2 and �Bk(Bank) = �(i2�i1+1) = �(4�1+1) = �4.

Since Eq. 2.26 requires that the substrings in Bank and Rank match, we
need to evaluate Eq. 2.25 only for the common substrings, i.e.:

- �a(Bank) = �a(Rank) = �(i1�i1+1) = �(2�2+1) = �,

- �n(Bank) = �n(Rank) = �(i1�i1+1) = �(3�3+1) = �,

- �k(Bank) = �k(Rank) = �(i1�i1+1) = �(4�4+1) = �,

- �an(Bank) = �an(Rank) = �(i1�i2+1) = �(3�2+1) = �2,

- �ank(Bank) = �ank(Rank) = �(i1�i3+1) = �(4�2+1) = �3,
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l(~I) of the subsequence in s is i|u| � i
1

+ 1. We denote by ⌃⇤ the set
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for some �  1. These features measure the number of occurrences of subse-
quences in the string s weighting them according to their lengths. Hence, the
inner product of the feature vectors for two strings s and t give a sum over all
common subsequences weighted according to their frequency of occurrences
and lengths, i.e.

K(s, t) =
X

u2⌃⇤

�u(s) · �u(t) =
X

u2⌃⇤

X

~I:u=s[~I]

�l(~I)
X

~J :u=t[ ~J ]

�l( ~J) =

=
X

u2⌃⇤

X

~I:u=s[~I]

X

~J :u=t[ ~J ]

�l(~I)+l( ~J) (2.26)

The above equation defines a class of similarity functions known as string
kernels or sequence kernels. These functions are interesting for text catego-
rization as it allows the learning algorithm to quantify the matching between
two different words, phrases, sentences or whole documents. For example,
given two strings, Bank and Rank:

• B, a, n, k, Ba, Ban, Bank, an, ank, nk, Bn, Bnk, Bk and ak are the
substrings of Bank.

• R, a, n, k, Ra, Ran, Rank, an, ank, nk, Rn, Rnk, Rk and ak are the
substrings of Rank.

Such substrings are the features in the ⌃⇤ that have non-null weights.
These are evaluated by means of Eq. 2.25, e.g. �B(Bank) = �(i1�i1+1) =
�(1�1+1) = �, �k(Bank) = �(i1�i1+1) = �(4�4+1) = �, �an(Bank) =
�(i2�i1+1) = �(3�2+1) = �2 and �Bk(Bank) = �(i2�i1+1) = �(4�1+1) = �4.

Since Eq. 2.26 requires that the substrings in Bank and Rank match, we
need to evaluate Eq. 2.25 only for the common substrings, i.e.:

- �a(Bank) = �a(Rank) = �(i1�i1+1) = �(2�2+1) = �,

- �n(Bank) = �n(Rank) = �(i1�i1+1) = �(3�3+1) = �,

- �k(Bank) = �k(Rank) = �(i1�i1+1) = �(4�4+1) = �,

- �an(Bank) = �an(Rank) = �(i1�i2+1) = �(3�2+1) = �2,

- �ank(Bank) = �ank(Rank) = �(i1�i3+1) = �(4�2+1) = �3,



An example of string kernel computation 



Efficient Evaluation: Intuition 

!   Dynamic Programming technique 

!   Evaluate the spectrum string kernels 

!   Substrings of size p 

!   Sum the contribution of the different spectra 



Efficient Evaluation 



Evaluating DP2 

!   Evaluate the weight of the string of size p in case a 

character will be matched  

!   This is done by multiplying the double summation by the 

number of substrings of size p-1 



Tree kernels 

!   Syntactic Tree Kernel, Partial Tree kernel (PTK), Semantic 

Syntactic Tree Kernel, Smoothed PTK 

!   Efficient computation 



Example of a parse tree 

!   “John delivers a talk in Rome” 

S → N VP 

VP → V NP PP 

PP → IN N 

N → Rome 

N 

Rome 

S 

N 

NP 

D N 

VP 

V John 

in 

 delivers  

a talk 

PP 

IN 



The Syntactic Tree Kernel (STK)  
[Collins and Duffy, 2002] 

NP 

D N 

VP 

V 

delivers 

a    talk 

NP 

D N 

VP 

V 

delivers 

a 

NP 

D N 

VP 

V 

delivers 

NP 

D N 

VP 

V NP 

VP 

V 



The overall fragment set 

NP 

D 

VP 

a 

Children are not divided 



Explicit kernel space 

zx

⋅

  

€ 

φ(Tx ) =
 x = (0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)

!            counts the number of common substructures 

  

€ 

φ(Tz) =
 z = (1,..,0,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,0,..,1,..,0,..,0)



Efficient evaluation of the scalar product 

  

€ 

 x ⋅  z = φ(Tx ) ⋅ φ(Tz ) = K(Tx,Tz ) =

                    =
nx ∈Tx

∑ Δ(nx,nz)
nz ∈Tz

∑



Efficient evaluation of the scalar product 

!   [Collins and Duffy, ACL 2002] evaluate Δ in O(n2): 

 

€ 

Δ(nx,nz ) = 0,  if the productions are different else
Δ(nx,nz ) =1,   if pre - terminals else

Δ(nx,nz ) = (1+ Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx )

∏

  

€ 

 x ⋅  z = φ(Tx ) ⋅ φ(Tz ) = K(Tx,Tz ) =

                    =
nx ∈Tx

∑ Δ(nx,nz)
nz ∈Tz

∑



Other Adjustments 

!   Normalization 

€ 

Δ(nx,nz ) = λ,    if pre - terminals else

Δ(nx,nz ) = λ (1+ Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx )

∏

€ 

" K (Tx,Tz ) =
K(Tx,Tz )

K(Tx,Tx ) ×K(Tz,Tz)
 

!   Decay factor 



Observations 

!   We order the production rules used in Tx and Tz,  at 

loading time 

!   At learning time we can evaluate NP in  

    |Tx|+|Tz | running time [Moschitti, EACL 2006] 

!   If Tx and Tz are generated by only one production rule ⇒ 
O(|Tx|×|Tz | )…Very Unlikely!!!! 



Labeled Ordered Tree Kernel 
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D N 
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a    talk 
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D N 

VP 

a    talk 

NP 

D N 

VP 

a 

NP 

D

VP 

a 

NP 

D

VP 

NP 

N 

VP 

NP 

N 

NP NP 

D N 
D

NP 

… 

VP 

!   STK satisfies the constraint “remove 0 or all children at a 

time”. 

!   If we relax such constraint we get more general 

substructures [Kashima and Koyanagi, 2002] 



Weighting Problems 

!   Both matched pairs give the same 

contribution 

!   Gap based weighting is needed 

!   A novel efficient evaluation has to 

be defined 
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a   talk 

NP 

D N 
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a    talk 

NP 

D N 
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a   talk 
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N 

  math 

NP 

D N 

VP 

V 

   gives 

a   talk 

JJ 

  bad 



Partial Tree Kernel (PTK) 
[Moschitti, ECML 2006] 

NP 

D N 

VP 

V 

brought 

a    cat 

NP 

D N 

VP 

V 

a    cat 

NP 

D N 

VP 

a    cat 

NP 

D N 

VP 

a 

NP 

D

VP 

a 

NP 

D

VP 

NP 

N 

VP 

NP 

N 

NP NP 

D N 
D

NP 

… 

VP 

!   STK + String Kernel with weighted gaps on nodes’ 

children 



Partial Tree Kernel - Definition 

!   By adding two decay factors we obtain: 



Efficient Evaluation (1) 

!   In [Taylor and Cristianini, 2004 book], sequence kernels with 
weighted gaps are factorized with respect to different 
subsequence sizes. 

!   We treat children as sequences and apply the same theory 

Dp 

those defined in [7, 2, 3, 5, 13]. Additionally, we add two decay factors: µ for the
height of the tree and ∏ for the length of the child sequences. It follows that

¢(n1, n2) = µ

≥
∏

2 +
X

J1,J2,l(J1)=l(J2)

∏

d(J1)+d(J2)

l(J1)Y

i=1

¢(cn1 [J1i], cn2 [J2i])
¥

(3)

where d(J1) = J1l(J1) ° J11 and d(J2) = J2l(J2) ° J21. In this way, we pe-
nalize both larger trees and subtrees built on child subsequences that contain
gaps. Moreover, to have a similarity score between 0 and 1, we also apply the
normalization in the kernel space, i.e. K

0(T1, T2) = K(T1,T2)p
K(T1,T1)£K(T2,T2)

.

3.2 E±cient tree kernel computation

Clearly, the naive approach to evaluate Eq. 3 requires exponential time. We can
e±ciently compute it by considering that the summation in Eq. 3 can be dis-
tributed with respect to diÆerent types of sequences, e.g. those composed by p
children; it follows that ¢(n1, n2) = µ

°
∏2 +

P
lm

p=1 ¢
p

(c
n1 , cn2)

¢
, (4)

where ¢
p

evaluates the number of common subtrees rooted in subsequences of
exactly p children (of n1 and n2) and lm = min{l(c

n1), l(cn2)}. Note also that
if we consider only the contribution of the longest child sequence from node
pairs that have the same children, we implement the SST kernel. For the STs
computation we need also to remove the ∏2 term from Eq. 4.

Given the two child sequences s1a = c
n1 and s2b = c

n2 (a and b are the last
children),

¢
p

(s1a, s2b) = ¢(a, b)£
|s1|X

i=1

|s2|X

r=1

∏|s1|°i+|s2|°r £¢
p°1(s1[1 : i], s2[1 : r]),

where s1[1 : i] and s2[1 : r] are the child subsequences from 1 to i and from
1 to r of s1 and s2. If we name the double summation term as D

p

, we can
rewrite the relation as:

¢
p

(s1a, s2b) =

(
¢(a, b)D

p

(|s1|, |s2|) if a = b;

0 otherwise.

Note that D
p

satisfies the recursive relation: D
p

(k, l) =
¢

p°1(s1[1 : k], s2[1 : l]) + ∏D
p

(k, l° 1) + ∏D
p

(k° 1, l) + ∏2D
p

(k° 1, l° 1) (5)

By means of the above relation, we can compute the child subsequences of two
sequences s1 and s2 in O(p|s1||s2|). This means that the worst case complexity
of the PT kernel is O(pΩ2|N

T1 ||NT2 |), where Ω is the maximum branching factor
of the two trees. Note that the average Ω in natural language parse trees is very
small and the overall complexity can be reduced by avoiding the computation
of node pairs with diÆerent labels. The next section shows our fast algorithm to
find non-null node pairs.
3.3 Fast non-null node pair computation

To compute the tree kernels, we sum the ¢ function for each pair hn1, n2i2
N

T1 £ N
T2 (Eq. 1). When the labels associated with n1 and n2 are diÆerent,

we can avoid evaluating ¢(n1, n2) since it is 0. Thus, we look for a node pair



Efficient Evaluation (2) 

!   The complexity of finding the subsequences is                         

!   Therefore the overall complexity is 

    where ρ  is the maximum branching factor (p = ρ) 



Running Time of Tree Kernel Functions 

FSTK 
STK 

FPTK 

!   STK vs. Fast STK (FSTK) and Fast PTK (FPTK)  



Syntactic/Semantic Tree Kernels (SSTK) 
[Bloehdorn & Moschitti, ECIR 2007 & CIKM 2007] 

NP 

D N 

VP 

V 

   gives 

a   talk 

JJ 

 good  

NP 

D N 

VP 

V 

   gives 

a   talk 

JJ 

  solid 

!   Similarity between the fragment leaves 
!   Tree kernel + Lexical Similarity Kernel 



Equations of SSTK 

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments

f1, f2 2 F , we define the Tree Fragment Similarity Kernel as

6
:

∑F (f1, f2) = comp(f1, f2)
nt(f1)Y

t=1

∑S(f1(t), f2(t))

where comp(f1, f2) (compatible) is 1 if f1 diÆers from f2 only in the terminal

nodes and is 0 otherwise, nt(fi) is the number of terminal nodes and fi(t) is the

t-th terminal symbol of fi (numbered from left to right).

Conceptually, this means that the similarity of two tree fragments is above
zero only if the tree fragments have an identical structure. The fragment sim-
ilarity is evaluated as the product of all semantic similarities of corresponding
terminal nodes (i.e. sitting at identical positions). It is maximal if all pairs have
a similarity score of 1. We now define the overall tree kernel as the sum over the
evaluations of ∑F over all pairs of tree fragments in the argument trees. Techni-
cally, this means changing the summation in the second formula of definition 3
as in the following definition.

Definition 5 (Semantic Syntactic Tree Kernel). Given two trees T1 and

T2 we define the Semantic Syntactic Tree Kernel as:

∑T (T1, T2) =
X

n12NT1

X

n22NT2

¢(n1, n2)

where ¢(n1, n2) =
P|F|

i=1

P|F|
j=1 Ii(n1)Ij(n2)∑F (fi, fj).

Obviously, the naive evaluation of this kernel would require even more com-
putation and memory than for the naive computation of the standard kernel as
also all compatible pairs of tree fragments would need to be considered in the
summation. Luckily, this enhanced kernel can be evaluated in the same way as
the standard tree kernel by adding the following step

0. if n1 and n2 are pre-terminals and label(n1) = label(n2) then ¢(n1, n2) =
∏∑S(ch1

n1
, ch

1
n2

),

as the first condition of the ¢ function definition (Section 4), where label(ni)
is the label of node ni and ∑S is a term similarity kernel, e.g. based on the
superconcept kernel defined in section 3.2. Note that: (a) since n1 and n2 are
pre-terminals of a parse tree they can have only one child (i.e. ch

1
n1

and ch

1
n2

)
and such children are words and (b) Step 2 is no longer necessary.

Beside the novelty of taking into account tree fragments that are not identical
it should be noted that the lexical semantic similarity is constrained in syntactic
structures, which limit errors/noise due to incorrect (or, as in our case, not
provided) word sense disambiguation.
6 Note that, as the tree fragments need to be compatible, they have the same number

of terminal symbols at compatible positions.

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments

f1, f2 2 F , we define the Tree Fragment Similarity Kernel as

6
:

∑F (f1, f2) = comp(f1, f2)
nt(f1)Y

t=1

∑S(f1(t), f2(t))

where comp(f1, f2) (compatible) is 1 if f1 diÆers from f2 only in the terminal

nodes and is 0 otherwise, nt(fi) is the number of terminal nodes and fi(t) is the

t-th terminal symbol of fi (numbered from left to right).

Conceptually, this means that the similarity of two tree fragments is above
zero only if the tree fragments have an identical structure. The fragment sim-
ilarity is evaluated as the product of all semantic similarities of corresponding
terminal nodes (i.e. sitting at identical positions). It is maximal if all pairs have
a similarity score of 1. We now define the overall tree kernel as the sum over the
evaluations of ∑F over all pairs of tree fragments in the argument trees. Techni-
cally, this means changing the summation in the second formula of definition 3
as in the following definition.

Definition 5 (Semantic Syntactic Tree Kernel). Given two trees T1 and

T2 we define the Semantic Syntactic Tree Kernel as:

∑T (T1, T2) =
X

n12NT1

X

n22NT2

¢(n1, n2)

where ¢(n1, n2) =
P|F|

i=1

P|F|
j=1 Ii(n1)Ij(n2)∑F (fi, fj).

Obviously, the naive evaluation of this kernel would require even more com-
putation and memory than for the naive computation of the standard kernel as
also all compatible pairs of tree fragments would need to be considered in the
summation. Luckily, this enhanced kernel can be evaluated in the same way as
the standard tree kernel by adding the following step

0. if n1 and n2 are pre-terminals and label(n1) = label(n2) then ¢(n1, n2) =
∏∑S(ch1

n1
, ch

1
n2

),

as the first condition of the ¢ function definition (Section 4), where label(ni)
is the label of node ni and ∑S is a term similarity kernel, e.g. based on the
superconcept kernel defined in section 3.2. Note that: (a) since n1 and n2 are
pre-terminals of a parse tree they can have only one child (i.e. ch

1
n1

and ch

1
n2

)
and such children are words and (b) Step 2 is no longer necessary.

Beside the novelty of taking into account tree fragments that are not identical
it should be noted that the lexical semantic similarity is constrained in syntactic
structures, which limit errors/noise due to incorrect (or, as in our case, not
provided) word sense disambiguation.
6 Note that, as the tree fragments need to be compatible, they have the same number

of terminal symbols at compatible positions.



Example of an SSTK evaluation 

NP 

D N 
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   gives 

a   talk 

JJ 

 good  

NP 

D N 

VP 

V 

   gives 

a   talk 

JJ 

  solid 

KS(gives,gives)*KS(a,a)* 

KS(good,solid)*KS(talk,talk) 

= 1 * 1 * 0.5 * 1 = 0.5 

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments

f1, f2 2 F , we define the Tree Fragment Similarity Kernel as

6
:

∑F (f1, f2) = comp(f1, f2)
nt(f1)Y

t=1

∑S(f1(t), f2(t))

where comp(f1, f2) (compatible) is 1 if f1 diÆers from f2 only in the terminal

nodes and is 0 otherwise, nt(fi) is the number of terminal nodes and fi(t) is the

t-th terminal symbol of fi (numbered from left to right).

Conceptually, this means that the similarity of two tree fragments is above
zero only if the tree fragments have an identical structure. The fragment sim-
ilarity is evaluated as the product of all semantic similarities of corresponding
terminal nodes (i.e. sitting at identical positions). It is maximal if all pairs have
a similarity score of 1. We now define the overall tree kernel as the sum over the
evaluations of ∑F over all pairs of tree fragments in the argument trees. Techni-
cally, this means changing the summation in the second formula of definition 3
as in the following definition.

Definition 5 (Semantic Syntactic Tree Kernel). Given two trees T1 and

T2 we define the Semantic Syntactic Tree Kernel as:

∑T (T1, T2) =
X

n12NT1

X

n22NT2

¢(n1, n2)

where ¢(n1, n2) =
P|F|

i=1

P|F|
j=1 Ii(n1)Ij(n2)∑F (fi, fj).

Obviously, the naive evaluation of this kernel would require even more com-
putation and memory than for the naive computation of the standard kernel as
also all compatible pairs of tree fragments would need to be considered in the
summation. Luckily, this enhanced kernel can be evaluated in the same way as
the standard tree kernel by adding the following step

0. if n1 and n2 are pre-terminals and label(n1) = label(n2) then ¢(n1, n2) =
∏∑S(ch1

n1
, ch

1
n2

),

as the first condition of the ¢ function definition (Section 4), where label(ni)
is the label of node ni and ∑S is a term similarity kernel, e.g. based on the
superconcept kernel defined in section 3.2. Note that: (a) since n1 and n2 are
pre-terminals of a parse tree they can have only one child (i.e. ch

1
n1

and ch

1
n2

)
and such children are words and (b) Step 2 is no longer necessary.

Beside the novelty of taking into account tree fragments that are not identical
it should be noted that the lexical semantic similarity is constrained in syntactic
structures, which limit errors/noise due to incorrect (or, as in our case, not
provided) word sense disambiguation.
6 Note that, as the tree fragments need to be compatible, they have the same number

of terminal symbols at compatible positions.



Delta Evaluation is very simple 

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments

f1, f2 2 F , we define the Tree Fragment Similarity Kernel as

6
:

∑F (f1, f2) = comp(f1, f2)
nt(f1)Y

t=1

∑S(f1(t), f2(t))

where comp(f1, f2) (compatible) is 1 if f1 diÆers from f2 only in the terminal

nodes and is 0 otherwise, nt(fi) is the number of terminal nodes and fi(t) is the

t-th terminal symbol of fi (numbered from left to right).

Conceptually, this means that the similarity of two tree fragments is above
zero only if the tree fragments have an identical structure. The fragment sim-
ilarity is evaluated as the product of all semantic similarities of corresponding
terminal nodes (i.e. sitting at identical positions). It is maximal if all pairs have
a similarity score of 1. We now define the overall tree kernel as the sum over the
evaluations of ∑F over all pairs of tree fragments in the argument trees. Techni-
cally, this means changing the summation in the second formula of definition 3
as in the following definition.

Definition 5 (Semantic Syntactic Tree Kernel). Given two trees T1 and

T2 we define the Semantic Syntactic Tree Kernel as:

∑T (T1, T2) =
X

n12NT1

X

n22NT2

¢(n1, n2)

where ¢(n1, n2) =
P|F|

i=1

P|F|
j=1 Ii(n1)Ij(n2)∑F (fi, fj).

Obviously, the naive evaluation of this kernel would require even more com-
putation and memory than for the naive computation of the standard kernel as
also all compatible pairs of tree fragments would need to be considered in the
summation. Luckily, this enhanced kernel can be evaluated in the same way as
the standard tree kernel by adding the following step

0. if n1 and n2 are pre-terminals and label(n1) = label(n2) then ¢(n1, n2) =
∏∑S(ch1

n1
, ch

1
n2

),

as the first condition of the ¢ function definition (Section 4), where label(ni)
is the label of node ni and ∑S is a term similarity kernel, e.g. based on the
superconcept kernel defined in section 3.2. Note that: (a) since n1 and n2 are
pre-terminals of a parse tree they can have only one child (i.e. ch

1
n1

and ch

1
n2

)
and such children are words and (b) Step 2 is no longer necessary.

Beside the novelty of taking into account tree fragments that are not identical
it should be noted that the lexical semantic similarity is constrained in syntactic
structures, which limit errors/noise due to incorrect (or, as in our case, not
provided) word sense disambiguation.
6 Note that, as the tree fragments need to be compatible, they have the same number

of terminal symbols at compatible positions.

where ¢(n1, n2) =
P|F|

i=1 Ii(n1)Ii(n2), and where Ii(n) is an indicator function

which determines whether fragment fi is rooted in node n.

¢ is equal to the number of common fragments rooted at nodes n1 and n2.
We can compute it more e±ciently as follows:

1. if the productions at n1 and n2 are diÆerent then ¢(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 only have

leaf children (i.e. the argument nodes are pre-terminals symbols) then
¢(n1, n2) = 1;

3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-
terminals then

¢(n1, n2) =
nc(n1)Y

j=1

(1 + ¢(chj
n1

, ch

j
n2

)).

where nc(n1) is the number of children of n1 and ch

j
n is the j-th child of node

n. Note that, since the productions are the same, nc(n1) = nc(n2). Of course,
the kernel can again be normalized using the cosine normalization modifier.
Additionally, a decay factor ∏ can be added by modifying steps (2) and (3) as
follows:

2. ¢(n1, n2) = ∏,
3. ¢(n1, n2) = ∏

Qnc(n1)
j=1 (1 + ¢(chj

n1
, ch

j
n2

)).

As an example, Figure 1 shows a parse tree of the sentence (fragment)
‘‘bought a cat’’ with some of the substructures that the tree kernel uses
to represent it5.

5 Designing Semantic Syntactic Tree Kernels

The Tree Kernel introduced in the previous section relies on the intuition of
counting all common substructures of two trees. However, if two trees have simi-
lar structures but employ diÆerent though related terminology at the leaves, they
will not be matched. From a semantic point of view, this is an evident drawback
as ‘‘brought a cat’’ should be more related to ‘‘brought a tomcat’’ than
to ‘‘brought a note’’.

In analogy with the semantic smoothing kernels for the bag-of-words kernel
as described in section 3.2, we are now interested in also counting partial matches

between tree fragments. A partial match occurs when two fragments diÆer only
by their terminal symbols, e.g. [N [cat]] and [N [tomcat]]. In this case the
match should give a contribution smaller than 1, depending on the semantic
similarity of the respective terminal nodes. For this purpose, we first define the
similarity of two such tree fragments.
5 The number of such fragments can be obtained by evaluating the kernel function

between the tree with itself.

where ¢(n1, n2) =
P|F|

i=1 Ii(n1)Ii(n2), and where Ii(n) is an indicator function

which determines whether fragment fi is rooted in node n.

¢ is equal to the number of common fragments rooted at nodes n1 and n2.
We can compute it more e±ciently as follows:

1. if the productions at n1 and n2 are diÆerent then ¢(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 only have

leaf children (i.e. the argument nodes are pre-terminals symbols) then
¢(n1, n2) = 1;
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to represent it5.
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between the tree with itself.
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Equation of SPTK 

If	  n1	  and	  n2	  are	  leaves	  then 

else 

PTK Lexical Similarity 



Different versions of Computational 
Dependency Trees for PTK/SPTK 

be::v

?::.width::n

of::i

field::n

football::na::d

the::d

what::w

Figure 2: Lexical Only Centered Tree (LOCT).

be::v

VBZROOT?::.

.P

width::n

NNPRDof::i

INNMODfield::n

the::d

DTNMOD

what::w

WPSBJ

field::n

NNPMODfootball::n

NNNMOD

a::d

DTNMOD

Figure 3: Lexical Centered Tree (LCT).

TOP

.

?::.

NN

field::n

NN

football::n

DT

a::d

IN

of::i

NN

width::n

DT

the::d

VBZ

be::v

WP

what::w

Figure 4: Lexical and PoS-Tag Sequences Tree (LPST).

presents the experimental evaluation for QC and Section 4 derives
the conclusions.

2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification
(QC) task can be easily modeled by representing questions, i.e.,
the classification objects, with their parse trees. Several syntactic
representations exist, we report the most interesting and effective
structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,
i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-
tion to the lexicals to improve generalization and, at the same time,
we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective
(::a), determiner (::d) and so on, to them. This is useful to mea-
sure similarity between lexicals belonging to the same grammatical
category. Our conversion of dependency structures in dependency
trees is done in two steps:

• we generate the tree that includes only lexicals, where the
edges encode their dependencies. We call it the Lexical Only
Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which
encode the grammatical function and POS-Tag, i.e. node fea-
tures. We call this structure the Lexical Centered Tree (LCT),
e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-
ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-
ure 4, which ignores the syntactic structure of the sentence being a

STK PTK SPTK(LSA)
CT 91.20% 90.80% 91.00%
LOCT - 89.20% 93.20%
LCT - 90.80% 94.80%
LPST - 89.40% 89.60%
BOW 88.80%

Table 1: Accuracy of structural kernels applied to different
structures on QC

simple sequence of PoS-tag nodes, where lexicals are simply added
as children.

3. EXPERIMENTS
The aim of the experiments is to analyze the role of lexical simi-

larity embedded in syntactic structures. For this purpose, we present
results on QC and the related error analysis.

3.1 Setup
Our referring corpus is the UIUC dataset [13]. It is composed

by a training set of 5,452 questions and a test set of 500 questions1.
The latter are organized in six coarse-grained classes, i.e., ABBRE-
VIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and
NUMBER.

For learning our models, we extended the SVM-LightTK soft-
ware2 [14, 15] (which includes structural kernels, i.e., STK and
PTK in SVMLight [8]) with the smooth match between tree nodes,
i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]
whereas we applied LTH syntactic parser (described in [12]) to gen-
erate dependency trees.

The lexical similarity was designed with LSA applied to uk-
Wak [1], which is a large scale document collection made by 2
billion tokens (see [7] for more details). We implemented multi-
classification using one-vs-all scheme and selecting the category
associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-
ble 1. The first column shows the different structures described
in Section 2. The first row lists the tree kernel models. The last
row reports the accuracy of bag-of-words (BOW), which is a linear
kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved
by STK, current state-of-the-art3 in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
slightly lower value (non-statistically significant difference);
and

• PTK applied to LCT, which contains structures but also gram-
matical functions and PoS-tags, achieves higher accuracy than
when applied to LOCT (no grammatical/syntactic features)
or to LPST (no structure).

1http://cogcomp.cs.illinois.edu/Data/QA/QC/
2http://disi.unitn.it/moschitti/Tree-Kernel.htm
3Note that higher accuracy values for smoothed STK are shown in
[4] but the one optimizing a validation set is not shown.
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Question Classification 

!   Definition: What does HTML stand for?     

!   Description: What's the final line in the Edgar Allan Poe 
poem "The Raven"?   

!   Entity: What foods can cause allergic reaction in people? 

!   Human: Who won the Nobel Peace Prize in 1992?    

!   Location: Where is the Statue of Liberty?     

!   Manner: How did Bob Marley die?      

!   Numeric: When was Martin Luther King Jr. born?    

!   Organization: What company makes Bentley cars?   



Question Classifier based on Tree Kernels 

!   Question dataset (http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/)   

[Lin and Roth, 2005]) 
!   Distributed on 6 categories: Abbreviations, Descriptions, Entity, 

Human, Location, and Numeric. 

!   Fixed split 5500 training and 500 test questions  

!   Using the whole question parse trees 
!   Constituent parsing 

!   Example 

        “What is an offer of direct stock purchase plan ?” 

 



Syntactic Parse Trees (PT) 



Some fragments 



Explicit kernel space 
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φ(Tx ) =
 x = (0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)

!            counts the number of common substructures 
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φ(Tz) =
 z = (1,..,0,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,0,..,1,..,0,..,0)



Question Classification with SSTK 
[Blohedorn&Moschitti, CIKM2007] 
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Dependency Trees 
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• we generate the tree that includes only lexicals, where the
edges encode their dependencies. We call it the Lexical Only
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tures. We call this structure the Lexical Centered Tree (LCT),
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Additionally, for comparative purposes, we define a flat struc-
ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-
ure 4, which ignores the syntactic structure of the sentence being a
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PTK in SVMLight [8]) with the smooth match between tree nodes,
i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]
whereas we applied LTH syntactic parser (described in [12]) to gen-
erate dependency trees.

The lexical similarity was designed with LSA applied to uk-
Wak [1], which is a large scale document collection made by 2
billion tokens (see [7] for more details). We implemented multi-
classification using one-vs-all scheme and selecting the category
associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-
ble 1. The first column shows the different structures described
in Section 2. The first row lists the tree kernel models. The last
row reports the accuracy of bag-of-words (BOW), which is a linear
kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved
by STK, current state-of-the-art3 in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
slightly lower value (non-statistically significant difference);
and

• PTK applied to LCT, which contains structures but also gram-
matical functions and PoS-tags, achieves higher accuracy than
when applied to LOCT (no grammatical/syntactic features)
or to LPST (no structure).

1http://cogcomp.cs.illinois.edu/Data/QA/QC/
2http://disi.unitn.it/moschitti/Tree-Kernel.htm
3Note that higher accuracy values for smoothed STK are shown in
[4] but the one optimizing a validation set is not shown.
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presents the experimental evaluation for QC and Section 4 derives
the conclusions.

2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification
(QC) task can be easily modeled by representing questions, i.e.,
the classification objects, with their parse trees. Several syntactic
representations exist, we report the most interesting and effective
structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,
i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-
tion to the lexicals to improve generalization and, at the same time,
we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective
(::a), determiner (::d) and so on, to them. This is useful to mea-
sure similarity between lexicals belonging to the same grammatical
category. Our conversion of dependency structures in dependency
trees is done in two steps:

• we generate the tree that includes only lexicals, where the
edges encode their dependencies. We call it the Lexical Only
Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which
encode the grammatical function and POS-Tag, i.e. node fea-
tures. We call this structure the Lexical Centered Tree (LCT),
e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-
ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-
ure 4, which ignores the syntactic structure of the sentence being a

STK PTK SPTK(LSA)
CT 91.20% 90.80% 91.00%
LOCT - 89.20% 93.20%
LCT - 90.80% 94.80%
LPST - 89.40% 89.60%
BOW 88.80%

Table 1: Accuracy of structural kernels applied to different
structures on QC

simple sequence of PoS-tag nodes, where lexicals are simply added
as children.
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SPTK applied to the several structures for QC is reported in Ta-
ble 1. The first column shows the different structures described
in Section 2. The first row lists the tree kernel models. The last
row reports the accuracy of bag-of-words (BOW), which is a linear
kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved
by STK, current state-of-the-art3 in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
slightly lower value (non-statistically significant difference);
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• PTK applied to LCT, which contains structures but also gram-
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the classification objects, with their parse trees. Several syntactic
representations exist, we report the most interesting and effective
structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,
i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-
tion to the lexicals to improve generalization and, at the same time,
we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective
(::a), determiner (::d) and so on, to them. This is useful to mea-
sure similarity between lexicals belonging to the same grammatical
category. Our conversion of dependency structures in dependency
trees is done in two steps:

• we generate the tree that includes only lexicals, where the
edges encode their dependencies. We call it the Lexical Only
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• To each lexical node, we add two leftmost children, which
encode the grammatical function and POS-Tag, i.e. node fea-
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For learning our models, we extended the SVM-LightTK soft-
ware2 [14, 15] (which includes structural kernels, i.e., STK and
PTK in SVMLight [8]) with the smooth match between tree nodes,
i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]
whereas we applied LTH syntactic parser (described in [12]) to gen-
erate dependency trees.

The lexical similarity was designed with LSA applied to uk-
Wak [1], which is a large scale document collection made by 2
billion tokens (see [7] for more details). We implemented multi-
classification using one-vs-all scheme and selecting the category
associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-
ble 1. The first column shows the different structures described
in Section 2. The first row lists the tree kernel models. The last
row reports the accuracy of bag-of-words (BOW), which is a linear
kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved
by STK, current state-of-the-art3 in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
slightly lower value (non-statistically significant difference);
and

• PTK applied to LCT, which contains structures but also gram-
matical functions and PoS-tags, achieves higher accuracy than
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Classification in Definition vs not 
Definition in Jeopardy! 

!   Definition: Usually, to do this is to lose a game 

without playing it   

   (solution: forfeit) 

!   Non Definition: When hit by electrons, a 

phosphor gives off electromagnetic energy in this 

form 

!   Complex linguistic problem: let us learn it from 

training examples using a syntactic similarity  



Automatic Learning of a Question 
Classifier 

!   Similarity between definition vs non definition 

questions 

!   Instead of using features-based similarity we use 

kernels 

!   Combining several linguistic structures with 

several kernels for representing a question q: 

!   K1(⟨q1,q2⟩)+K2(⟨q1,q2⟩)+…+Kn(⟨q1,q2⟩) 

!   Tree kernels measure similarity between trees 



NP 
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a  phosphor 

Syntactic Tree Kernel (STK) 
(Collins and Duffy 2002) 



Syntactic Tree Kernel (STK) 
(Collins and Duffy 2002) 



The resulting explicit kernel space 

zx

⋅!            counts the number of common substructures 

	  	  	  	  hit	  

phosphor phosphor 

phosphor phosphor 
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Experimental setup 

!   Corpus: a random sample from 33 Jeopardy! 

Games 

!   306 definition and 4,964 non-definition clues 

!   Tools:  
!   SVM-Light-TK 

! Charniak’s constituency parser 

!   Syntactic/Semantic parser by Johansson and Nugues 
(2008) 

!   Measures derived with leave-on-out 



Constituency Tree (CT) 
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Dependency Tree (DT) 
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Predicate Argument Structure Set 
(PASS) 
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Sequence Kernels 

CSK: [general][science] 
(category sequence kernel) 

WSK: 

PSK: 

CSK: 



Individual models 



Model Combinations 



Impact of QC in Watson 

!   Specific evaluation on definition questions 
!   1,000 unseen games (60,000 questions) 

!   Two test sets of 1,606 and 1,875 questions derived with:  

!   Statistical model (StatDef) 
!   RBC (RuleDef) 

!   Direct comparison only with NoDef 

!   All questions evaluation 
!   Selected 66 unseen Jeopardy! games 

!   3,546 questions 



Watson’s Accuracy, Precision and 
Earnings 

!   Comparison between use or not QC 

!   Different set of questions 



Error Analysis 

Test Example 
•  PTK ok 
•  STK not ok  

Training 
Example 

PTK 
similarity 

STK 
similarity 



Question and Answer 
Classification 



Answer/Passage Reranking 

Answer/Passage 
Reranking 

 



TASK: Question/Answer Classification 
[Moschitti, CIKM 2008] 

!   The classifier detects if a pair (question and answer) is 

correct or not 

!   A representation for the pair is needed 

!   The classifier can be used to re-rank the output of a basic 

QA system 



Bags of words (BOW) and POS-tags (POS) 

!   To save time, apply tree kernels to these trees: 

 

 

 

 

… 

BOX 

is What an offer of 

* * * * * 

… 

BOX 

VBZ WHNP DT NN IN 

* * * * * 



Word and POS Sequences 

!   What is an offer of…? (word sequence, WSK) 

 è What_is_offer 

 è What_is 

! WHNP VBZ DT NN IN…(POS sequence, POSSK) 

 è WHNP_VBZ_NN 

 è WHNP_NN_IN 

 



Predicate Argument Structures for 
describing answers (PASPTK) 

!   [ARG1 Antigens] were [AM−TMP originally] [rel defined] [ARG2 as non-
self molecules]. 

!   [ARG0 Researchers] [rel describe] [ARG1 antigens][ARG2 as foreign 

molecules] [ARGM−LOC in the body] 



Dataset 2: TREC data 

!   138 TREC 2001 test questions labeled as “description”  

!   2,256 sentences, extracted from the best ranked 

paragraphs (using a basic QA system based on Lucene 

search engine on TREC dataset) 

!    216 of which labeled as correct by one annotator 



Kernels and Combinations 

!   Exploiting the property: k(x,z) = k1(x,z)+k2(x,z) 

!   Given: BOW, POS, WSK, POSSK, PT, PASPTK 

⇒ BOW+POS, BOW+PT, PT+POS, … 

 



Results on TREC Data 
(5 folds cross validation) 
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Kernel Type 

BOW ≈ 24 
POSSK+STK+PAS_PTK≈ 39 
⇒62 % of improvement 



Break 



Practical Exercise 



SVM-light-TK Software 

!   Encodes STK, PTK and combination kernels  

    in SVM-light [Joachims, 1999] 

!   Available at http://disi.unitn.it/moschitti 

!   Tree forests, vector sets 

!   You can download the version I am using from: 

!   http://disi.unitn.it/moschitti/material/ACL2012-

Tutorial.Moschitti.zip 



Data Format 

!   “What does S.O.S. stand for?” 
!   1  |BT| (SBARQ (WHNP (WP What))(SQ (AUX does)(NP (NNP S.O.S.))

(VP (VB stand)(PP (IN for))))(. ?))  

|BT|    (BOW (What *)(does *)(S.O.S. *)(stand *)(for *)(? *))  

|BT|    (BOP (WP *)(AUX *)(NNP *)(VB *)(IN *)(. *))  

|BT|   (PAS (ARG0 (R-A1 (What *)))(ARG1 (A1 (S.O.S. NNP)))(ARG2 (rel 
stand)))  

|ET| 1:1 21:2.742439465642236E-4 23:1 30:1 36:1 39:1 41:1 46:1 49:1 66:1 
152:1 274:1 333:1  

|BV| 2:1 21:1.4421347148614654E-4 23:1 31:1 36:1 39:1 41:1 46:1 49:1 52:1 
66:1 152:1 246:1 333:1 392:1 |EV|  



Kernel Combinations an example 

!   Kernel Combinations: 
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Basic Commands 

!   Training and classification 

!   ./svm_learn -t 5 -C T train.dat model 

!   ./svm_classify test.dat model 

!   Learning with a vector sequence 

!   ./svm_learn -t 5 -C V train.dat model 

!   Learning with the sum of vector and kernel sequences 

!   ./svm_learn -t 5 -C + train.dat model 



More on kernel 
applications 



Semantic Role Labeling 

!   In an event: 
!   target words describe relation among different entities 

!   the participants are often seen as predicate's arguments. 

! Example: 
Paul gives a talk in Rome 



Example on Predicate Argument 
Classification 

!   In an event: 
!   target words describe relation among different entities 

!   the participants are often seen as predicate's arguments. 

! Example: 
[ Arg0 Paul] [ predicate gives ] [ Arg1 a talk] [ ArgM in Rome] 



Predicate-Argument Feature 
Representation 

Given a sentence, a predicate p: 

1.  Derive the sentence parse tree 

2.  For each node pair <Np,Nx>  
a.  Extract a feature representation set 

F 

b.  If Nx exactly covers the Arg-i, F is 
one of its positive examples 

c.  F is a negative example otherwise 



Vector Representation for the linear kernel 
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PAT Kernel [Moschitti, ACL 2004] 
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c) 

Arg.M 

!   These are Semantic Structures 

!   Given the sentence: 

  [ Arg0 Paul] [ predicate delivers] [ Arg1 a talk] [ ArgM in formal Style] 

 



In other words we consider… 
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Sub-Categorization Kernel (SCF) 
[Moschitti, ACL 2004] 

S 

N 

NP 

D N 

VP 

V Paul 

in 

delivers 

a    talk 

PP 

IN   NP 

jj 

 formal 

 N 

      style 

Arg. 1 

Arg. M 

Arg. 0 

Predicate 



Experiments on Gold Standard Trees 

! PropBank and PennTree bank 
!   about 53,700 sentences 

!   Sections from 2 to 21 train., 23 test., 1 and 22 dev. 

!   Arguments from Arg0 to Arg5, ArgA and ArgM for 
    a total of 122,774 and 7,359 

! FrameNet and Collins’ automatic trees 
!   24,558 sentences from the 40 frames of Senseval 3 
!   18 roles (same names are mapped together) 

!   Only verbs  

!   70% for training and 30% for testing 



Argument Classification with Poly Kernel 

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

1 2 3 4 5d

A
cc

ur
ac

y 
  d

 

FrameNet
PropBank



PropBank Results 

Args P3 PAT PAT+P PAT×P SCF+P SCF×P 
Arg0 90.8 88.3 92.6 90.5 94.6 94.7 
Arg1 91.1 87.4 91.9 91.2 92.9 94.1 
Arg2 80.0 68.5 77.5 74.7 77.4 82.0 
Arg3 57.9 56.5 55.6 49.7 56.2 56.4 
Arg4 70.5 68.7 71.2 62.7 69.6 71.1 
ArgM 95.4 94.1 96.2 96.2 96.1 96.3 
Global 
Accuracy 

90.5 88.7 91.3 90.4 92.4 93.2 

 



Argument Classification on PAT using 
different Tree Fragment Extractor 
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Boundary Detection 
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Improvement by Marking Boundary nodes 



Node Marking Effect  



Experiments 

! PropBank and PennTree bank 
!   about 53,700 sentences 

! Charniak trees from CoNLL 2005 

!   Boundary detection: 
!   Section 2 training 

!   Section 24 testing 

! PAF and MPAF 



Number of examples/nodes of Section 2 



Predicate Argument Feature (PAF) vs. Marked 
PAF (MPAF) [Moschitti et al, CLJ 2008] 

  



Results on FrameNet SRL 
[Coppola and Moschitti, LREC 2010] 
!   135,293 annotated and parsed sentences. 

!   782 different frames (including split per pos-tag) 

!   90% of training data for BD and BC 121,798 sentences 

!   10% of testing data (1,345 sentences) 



Experiments on Luna Corpus 
[Coppola at al, SLT 2008] 

Evaluation Stage Precision Recall F1 

Boundary Detection 0.905 0.873 0.889 

Boundary Detection 

+ Role Classification 

0.774 0.747 0.760 

!   BD and RC over 50 Human-Human dialogs 
!   1,677 target words spanning 162 different frames 

!   manually-corrected syntactic trees 

!   Training 90% data and testing on remaining 10% 

 

!   Automatic SRL viable for Spoken Dialog Data 



The Relation Extraction Problem 

EMPLOYMENT 
CEO ↔ Google 

LOCATED 

research center ↔ Beijing 

Given a text with some available entities, 
how to recognize relations ? 

Last Wednesday, Eric 
Schmidt, the CEO of 
Google, defended the 
s e a r c h e n g i n e ' s 
c o o p e r a t i o n  w i t h 
Chinese censorship as 
h e a n n o u n c e d t h e 
creation of a research 
center in Beijing. 



Relation Extraction: The task 

!   Task definition: to label the semantic relation between 

pairs of entities in a sentence 
!   The governor from Connecticut 

 
 
 
 

!   Is there a relation between M1 and M2? 
If, so what kind of relation? 

M1 
type: PER 

M2 
type: LOC 

M := Entity Mention 



Relation Extraction defined in ACE 

!   Major relation types (from ACE 2004) 

 

 

 

 

 

 

!   Entity types: PER, ORG, LOC, GPE, FAC, VEH, WEA  



System Description (Nguyen et al, 2009) 

Tree Kernel-
based SVMs 

Multi-class 
Classification 

RELATIONS 

Stanford 
Parser 

Parse Trees with 
Entities Raw texts 

ACE documents 

Entities and 
Relations 



Relation Representation  
(Moschitti 2004;Zhang et al. 2006) 

corporation in established Iowa the by Pylant Andrew 

NNP VBN IN NNP 

NP 

T1-ORG 

NP 

DT 

T2-LOC 

PP 

VP 

NP 

IN NNP NNP 

NP 

PP 

PER 

!   The Path-enclosed tree captures the “PHYSICAL.LOCATED” relation 
between “corporation” and “Iowa” 



Comparison 

Method Data P (%) R (%) F1 (%) 

Zhang et al. 
(2006) 

Composite Kernel 
(linear) with Context-
Free Parse Tree  

ACE 2004 73.5 67.0 70.1 

Ours 
Composite Kernel 
(linear) with Context-
Free Parse Tree  

ACE 2004 69.6 68.2 69.2 

Both use the Path-Enclosed Tree for Relation Representation 



Several Combination Kernels  
[Vien et al, EMNLP 2009] 



Results on ACE 2004 



Coreference Resolution 

!   Subtree that covers both anaphor and antecedent candidate 

⇒ syntactic relations between anaphor & candidate (subject, object, 
c-commanding, predicate structure) 

!   Include the nodes in path between anaphor and candidate, as 
well as their first_level children 

– “the man in the room saw him”	

–  inst(“the man”, “him”)	




Context Sequence Feature 

!   A word sequence representing the mention 
expression and its context 
!   Create a sequence for a mention 

–   “Even so, Bill Gates says that he just doesn’t 
understand our infatuation with thin client versions of 
Word  ”	


–   (so)(,) (Bill)(Gates)(says)(that)	




Composite Kernel 

!   Different kernels for different features 
!   Poly Kernel for baseline flat features 

!   Tree Kernel for syntax trees 

!   Sequence Kernel for word sequences 

!   A composite kernel for all kinds of features 

!   Composite Kernel = TK*PolyK+PolyK+SK 



Results for pronoun resolution 
[Vesley et al, Coling 2008] 

MUC-6 ACE-02-BNews 

R P F R P F 

All attribute 

value features 
64.3 63.1 63.7 58.9 68.1 63.1 

+ Syntactic Tree 

+ Word 

Sequence 

65.2 80.1 71.9 65.6 69.7 67.6 



Results on the overall Coreference 
Resolution using SVMs 

MUC-6 ACE02-BNews 

R P F R P F 

Basic Features 

SVMs  
61.5 67.2 64.2 54.8 66.1 59.9 

Basic Features +  

Syntax Tree 
63.4 67.5 65.4 56.6 66.0 60.9 

Basic Features + 
SyntaxTree + Word 

Sequences 

64.4 67.8 66.0 57.1 65.4 61.0 

All Sources of Knowledge 60.1 76.2 67.2 60.0 65.4 63.0 



Kernels for Reranking 



Reranking framework 

Local Model 



More formally 

!   Build a set of hypotheses: Q and A pairs 

!    These are used to build pairs of pairs,                 

!   positive instances if Hi is correct and Hj is not correct 

!   A binary classifier decides if Hi is more probable than Hj 

!   Each candidate annotation Hi is described by a structural 
representation 

!   This way kernels can exploit all dependencies between 
features and labels 

Hi , Hj



Preference Kernel 

where K is a kernels on the text, e.g., in case of 
question and answer: 

K x
1
, y

1( ) = PTK q
x1
, q

y1( )+PTK a
x1
, a

y1( )

φ(x
1
)−φ(x

2
),φ(y

1
)−φ(y

2
) =



Syntactic Parsing Reranking 

!   Pairs of parse trees (Collins and Duffy, 2002) 

! N-best parse generated by the Collins’ parser 

!   Re-ranking using STK in a perceptron algorithm 



Concept Segmentation and Classification 
of speech  

!   Given a transcription, i.e., a sequence of words, chunk 

and label subsequences with concepts 

!   Air Travel Information System (ATIS) 
!   Dialog systems answering user questions 

!   Conceptually annotated dataset 

!   Frames 



An example of concept annotation in ATIS 

!   User request: list TWA flights from Boston to 

Philadelphia 

!   The concepts are used to build rules for the dialog manager 

(e.g. actions for using the DB) 
!   from location 
!   to location 

!   airline code 



Our Approach  
[Dinarelli et al., TASL 2012] 

!   Use of Finite State Transducer (or CRF) to generate word 

sequences and concepts 

!   Probability of each annotation 

⇒ m best hypothesis can be generated 

!   Idea: use a discriminative model to choose the best one 
!   Re-ranking and selecting the top one 



Reranking for SLU 

FST 

Input 
Utterance 

ASR 



Reranking concept labeling 

!   I have a problem with my monitor 

Hi: I NULL have NULL a PROBLEM-B problem PROBLEM-I 
with NULL my HW-B monitor HW-I 

Hj: I NULL have NULL a NULL problem HW-B with NULL 
my NULL monitor 



Luna Corpus 

!   Wizard of OZ, helpdesk scenario 



Media Corpus 



Flat tree representation  

have	
 a	
 problem	
 with	
 my	


NULL	


I	


NULL	




Cross-language approach: Italian version 



Multilevel Tree 



Enriched Multilevel Tree 



Results on LUNA 



Results on Media 



Reranking for Named-Entity Recognition 
[Vien et al, 2010] 

! CRF F1 from 84.86 to 88.16 

!   Best Italian system F1 82, improved to 84.33 



Today	
 a car	
 a ravine	


pushed	


Reranking Predicate Argument Structures 
[Moschitti et al, CoNLL 2006] 

!   SVMs F1 from 75.89 

to 77.25 

!   Today, a car was pushed into a ravine. 



Relational Kernels 



Recognizing Textual Entailment  

T1 

H1 

“At the end of the year, all solid companies pay dividends.” 

“At the end of the year, all solid insurance companies pay dividends.” 

T1 ⇒ H1 

… the textual entailment recognition task:  
 determine whether or not a text T implies a hypothesis H  

“Traditional” machine learning approaches:  

similarity-based methods à distance in feature spaces 

learning textual entailment recognition rules 
from annotated examples 



Determine Intra-pair links 



Determine cross pair links 



Our Model (Zanzotto and Moschitti, ACL2006) 

Defining a similarity between pairs based on: 

 Kent((T´,H´),(T´´,H´´))= 

         KI((T´,H´),(T´´,H´´))+KS((T´,H´),(T´´,H´´)) 

! Intra-pair similarity  

KI((T´,H´),(T´´,H´´))=TK(T´,H´)×TK(T´´,H´´) 

! Cross-pair similarity 

KS((T´,H´),(T´´,H´´))≈ TK(T´,T´´)+ TK(H´,H´´) 
 



The final kernel 

where: 
!   c is an assignment of placeholders  

!   t transforms the trees according to the assigned 
placeholders 



Experimental Results 

BOW+LS + TK + Kent  
System 

Avg. 

RTE1 0.5888 0.6213 0.6300 0.54 

RTE2 0.6038 0.6238 0.6388 0.59 

!   RTE1 (1st Recognising Textual Entailment Challenge) [Dagan et al., 
2005] 
!   567 training and 800 test examples 

!   RTE2, [Bar Haim et al., 2006] 
!   800 training and 800 test examples 



RTE-2 results 

!   Most systems use ML 

!   Best systems use a lot of knowledge 

!   Average accuracy still low: 0.59 



Relational Kernels for 
Answer Reranking 





An example of Jeopardy! Question 





Baseline Model 

Question 

Answer 

 

 

 

Methodology: 

1-Applying PTK without any extra annotation and 
evaluate the model as baseline. 
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Best Model 
 

Methodology: 

1-Applying lemmatization and stemming in 
leaves level. 

2-Add an anchor to pre-terminal and higher 
levels if the sub-trees are shared in Q and A. 

3-Ignore stop words in matching procedure. 

 

Question 

Answer 



!"#$%&'(



Representation Issues 

!   Very large sentences 

!   The Jeopardy! cues can be constituted by more than one 

sentence 

!   The answer is typically composed by several sentences 

!   Too large structures cause inaccuracies in the similarity 

and the learning algorithm looses some of its power 



Running example (randomly picked Q/A 
pair from Answerbag ) 

Question: Is movie theater popcorn vegan? 

Answer:  

(01) Any movie theater popcorn that includes butter -- and 

therefore dairy products -- is not vegan.  

(02) However, the popcorn kernels alone can be considered 

vegan if popped using canola, coconut or other plant oils 

which some theaters offer as an alternative to standard 

popcorn. 



Shallow models for Reranking: 
[Sveryn&Moschitti, SIGIR2012] 

SQ
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JJ

popcorn

NN
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bag	  of	  pos	  tags	  

bag	  of	  words	  

and	  their	  
combina3on	  
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NN
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CC
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RB
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JJ
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NNS
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VBZ

is

RB
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NN

vegan

Ques%on	  

Answer	  

(is)	  (movie)	  (theater)	  (popcorn)	  (vegan)	  

(any)	  (movie)	  (theater)	  (popcorn)	  (that)	  (includes)	  (bu:er)	  (and)	  (therefore)	  (dairy)	  (products)	  (is)	  (not)	  (vegan)	  

(DT)	  (NN)	  (NN)	  (NN)	  (WDT)	  (VBZ)	  (NN)	  (CC)	  (RB)	  (JJ)	  (NNS)	  (VBZ)	  (RB)	  (NN)	  

(VBZ)	  (NN)	  (NN)	  (JJ)	  (NN)	  



Linking question with the answer 01 
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Lexical	  matching	  is	  on	  word	  
lemmas	  (using	  WordNet	  
lemma3zer)	  
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Linking question with the answer 02 
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Ques3on	  sentence	  

Lexical	  matching	  is	  on	  word	  
lemmas	  (using	  WordNet	  
lemma3zer)	  
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Linking question with the answer: 
relational tag 

Marking	  pos	  tags	  of	  the	  aligned	  
words	  by	  a	  rela3onal	  tag:	  “REL”	  



Answerbag data 

! www.answerbag.com: professional question answer 

interactions 

!   Divided in 30 categories, Art, education, culture,… 

!   180,000 question-answer pairs 



Learning Curve for Answerbag 
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on relatively small datasets. Hence we studied the learn-
ing curves for these models on 50k and 100k training sets
and found that CH+REL with pruning at ray=1 provided
the steepest learning curve, while maintaining the optimal
tradeo� between the training runtime and accuracy. We also
prefer a simpler CH+REL model, which only requires to per-
form POS-tagging and chunking, over more refined models
with NER and WNSS tags, which require additional pre-
processing. Thus, we build learning curves for the CH+REL
models using STK and PTK reporting MRR (Fig. 11) and
REC1@1 (Fig. 12). The plots demonstrate nice scaling be-
havior when training CH+REL re-ranker model on larger
data. For example, the PTK-based rerankers improve BM25
by about 6 absolute points in MRR, i.e., 71.6 vs. 77.8, and
about 7 points in R1@1, i.e., 59.1 vs. 66.5, for a relative
error reduction of about 18-20% in R1@1.

5.5 Jeopardy! experiments
Since the size of Jeopardy! dataset does not allow for

building a meaningful learning curve we report the plot of
R1@x, which measures the percentage of questions with at
least one correct answer in the first x positions. We exper-
imented with PTK applied to CH+REL structures also en-
coding NER and WNSS. Figure 13 shows that for any rank
position, the simplest model outperforms semantic mod-
els. Most importantly, the Primary Search of Watson is
improved up to 5 points for an error reduction of 20%.

6. CONCLUSIONS
The key aspect in learning to rank answer passages for

QA systems is the use of relationships between the ques-
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Figure 13: Recall of 1 at di�erent rank position for the
Jeopardy! dataset.

tion and the supporting passages of its answer candidates.
Supervised methods can generalize the properties found in
di�erent question/answer pairs and use them to evaluate
the validity of new candidates. In this perspective, the most
di⇤cult aspect is the design of relational features that can
enable the learning algorithm to learn the properties above.
In this paper, we propose robust and simple models to learn
such properties from large datasets. On one hand, we use
shallow syntactic and semantic (at lexical level) represen-
tations, which can be e⇤ciently and automatically derived
with high accuracy. On the other hand, we exploit the power
of structural kernels for automatic engineering of a huge
number of structural features. Applied to large training sets
(hundreds of thousands) our models allow for e⇤cient learn-
ing of complex question/answer relationships.
Our experiments with Support Vector Machines (SVMs)

and various shallow models on two datasets: Answerbag and
Jeopardy! show that: (i) bag-of-features of question and
answer passages, ranging from words to POS-tags or trans-
lation probabilities are not e�ective; (ii) relational features,
i.e., encoding pair properties, become e�ective only when
used in structures, e.g, using SK; and (iii) the best compro-
mise between e⇤ciency and accuracy is given by the pure
shallow syntactic tree structures as NER or WNSS may in-
troduce noise. Additionally, large scale experiments show
significant improvement - about 18-20% of reduction in Re-
call error, on two strong baselines for passage re-ranking,
i.e., BM25 and IBM Watson primary search.
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Jeopardy! data (T9) 

!   Total number of questions: 517 

!   50+ candidate answer passages per question 

!   Questions with at least one correct answer: 375 

!   Use only questions with at least one correct answer 

!   Each relevant passage is paired with each irrelevant 

!   Split the data: 

!   train 70% (259 questions): 63361 examples for re-ranker 

!   test 30% (116 question): 5706 examples for re-ranker 



Jeopardy! data 
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on relatively small datasets. Hence we studied the learn-
ing curves for these models on 50k and 100k training sets
and found that CH+REL with pruning at ray=1 provided
the steepest learning curve, while maintaining the optimal
tradeo� between the training runtime and accuracy. We also
prefer a simpler CH+REL model, which only requires to per-
form POS-tagging and chunking, over more refined models
with NER and WNSS tags, which require additional pre-
processing. Thus, we build learning curves for the CH+REL
models using STK and PTK reporting MRR (Fig. 11) and
REC1@1 (Fig. 12). The plots demonstrate nice scaling be-
havior when training CH+REL re-ranker model on larger
data. For example, the PTK-based rerankers improve BM25
by about 6 absolute points in MRR, i.e., 71.6 vs. 77.8, and
about 7 points in R1@1, i.e., 59.1 vs. 66.5, for a relative
error reduction of about 18-20% in R1@1.

5.5 Jeopardy! experiments
Since the size of Jeopardy! dataset does not allow for

building a meaningful learning curve we report the plot of
R1@x, which measures the percentage of questions with at
least one correct answer in the first x positions. We exper-
imented with PTK applied to CH+REL structures also en-
coding NER and WNSS. Figure 13 shows that for any rank
position, the simplest model outperforms semantic mod-
els. Most importantly, the Primary Search of Watson is
improved up to 5 points for an error reduction of 20%.

6. CONCLUSIONS
The key aspect in learning to rank answer passages for

QA systems is the use of relationships between the ques-
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Figure 13: Recall of 1 at di�erent rank position for the
Jeopardy! dataset.

tion and the supporting passages of its answer candidates.
Supervised methods can generalize the properties found in
di�erent question/answer pairs and use them to evaluate
the validity of new candidates. In this perspective, the most
di⇤cult aspect is the design of relational features that can
enable the learning algorithm to learn the properties above.
In this paper, we propose robust and simple models to learn
such properties from large datasets. On one hand, we use
shallow syntactic and semantic (at lexical level) represen-
tations, which can be e⇤ciently and automatically derived
with high accuracy. On the other hand, we exploit the power
of structural kernels for automatic engineering of a huge
number of structural features. Applied to large training sets
(hundreds of thousands) our models allow for e⇤cient learn-
ing of complex question/answer relationships.
Our experiments with Support Vector Machines (SVMs)

and various shallow models on two datasets: Answerbag and
Jeopardy! show that: (i) bag-of-features of question and
answer passages, ranging from words to POS-tags or trans-
lation probabilities are not e�ective; (ii) relational features,
i.e., encoding pair properties, become e�ective only when
used in structures, e.g, using SK; and (iii) the best compro-
mise between e⇤ciency and accuracy is given by the pure
shallow syntactic tree structures as NER or WNSS may in-
troduce noise. Additionally, large scale experiments show
significant improvement - about 18-20% of reduction in Re-
call error, on two strong baselines for passage re-ranking,
i.e., BM25 and IBM Watson primary search.
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Part II: Advanced Topics 



Efficiency Issue 

!   Working in dual space with SVMs implies quadratic 

complexity 

!   Our solutions: 

!   cutting-plane algorithm with sampling uSVMs  

[Yu & Joachims, 2009] [Severyn&Moschitti, ECML PKDD 2010] 

!   Compacting SVM models with DAGs  

     [Severyn&Moschitti, ECML PKDD 2011] 

!   Compacting SVM models with DAGs in on line models [Aiolli et al, 
CIDM 2007] 



CPA in a nutshell 

Original SVM Problem 
!     Exponential constraints 

!     Most are dominated by a small set of     

“important” constraints 

CPA SVM Approach 
!     Repeatedly finds the next most 

violated constraint… 

!     …until set of constraints is a good 

approximation. 
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!     Exponential constraints 

!     Most are dominated by a small set of 

“important” constraints 

CPA SVM Approach 
!     Repeatedly finds the next most 

violated constraint… 

!     …until set of constraints is a good 

approximation. 
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Approximate CPA (Yu & Joachims, 2009) 

!   Main bottleneck to apply kernels comes from the inner 

product: 

 

!   Use sampling to approximate exact cutting plane models 
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SDAG 

!   Compacts each CPA model into a single DAG 
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SDAG+ 

!   Compacts all CPA models in the working set into a single 

DAG 

~w · �(~xi) = Kdag(
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Reverse Kernel Engineering 

!   Input: an SVM model, i.e.,       

!   Output: a ranked list of tree fragments 

!   Intuitively the more a fragment is important the higher is its 

weight 

!   Mine tree structures with higher weight first 
!   Start from the smallest structures  
!   Add nodes to them 

!   Stop when reached the max size of the list 

!   More in detail… 

  

€ 

 w 





Mining the weight of a fragment 
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Reverse Engineering Framework 



Semantic Role Labeling 



Setting 



Results 
About 10 time faster -Training (and testing) 
Parallelizable! 



Question 
Classification 

 



Question Classification 

!   Definition: What does HTML stand for?     

!   Description: What's the final line in the Edgar Allan Poe 
poem "The Raven"?   

!   Entity: What foods can cause allergic reaction in people? 

!   Human: Who won the Nobel Peace Prize in 1992?    

!   Location: Where is the Statue of Liberty?     

!   Manner: How did Bob Marley die?      

!   Numeric: When was Martin Luther King Jr. born?    

!   Organization: What company makes Bentley cars?   



Results 

! Tr+, Te+: number of positive/negative training instances 

! SSTl  : linearized tree kernel 	



Interpretation (Abbreviation Class) 

(NN(abbreviation)) 

(NP(DT)(NN(abbreviation))) 
(NP(DT(the))(NN(abbreviation))) 

(IN(for)) 

(VB(stand)) 

(VBZ(does)) 

(PP(IN)) 
(VP(VB(stand))(PP)) 

(NP(NP(DT)(NN(abbreviation)))(PP)) 

(SQ(VBZ)(NP)(VP(VB(stand))(PP))) 

(SBARQ(WHNP)(SQ(VBZ)(NP)(VP(VB(stand))(PP)))(.)) 

(SQ(VBZ(does))(NP)(VP(VB(stand))(PP))) 
(VP(VBZ)(NP(NP(DT)(NN(abbreviation)))(PP))) 



Interpretation (Numeric Class) 

(WRB(How)) 

(WHADVP(WRB(When))) 
(WRB(When)) 

(JJ(many)) 

(NN(year)) 

(WHADJP(WRB)(JJ)) 

(NP(NN(year))) 
(WHADJP(WRB(How))(JJ)) 

(NN(date)) 

(SBARQ(WHADVP(WRB(When)))(SQ)(.(?))) 

(SBARQ(WHADVP(WRB(When)))(SQ)(.)) 

(NN(day)) 



Interpretation (Description Class) 

(WRB(Why)) 

(WHADVP(WRB(Why))) 
(WHADVP(WRB(How))) 

(WHADVP(WRB)) 

(VB(mean)) 

(VBZ(causes)) 

(VB(do)) 
(SBARQ(WHADVP(WRB(How)))(SQ)) 

(WRB(How)) 

(SBARQ(WHADVP(WRB(How)))(SQ)(.)) 

(SBARQ(WHADVP(WRB(How)))(SQ)(.(?))) 



Conclusions 

!   We used powerful ML algorithms 
!   e.g., Support Vector Machines 

!   Robust to noise 

!   Abstract representations of examples 
!   Similarity functions (Kernel Methods) 

!   Structural syntactic/semantic similarity 

!   Modeling NLP tasks with: advanced syntactic and shallow 

semantic structures and relational marker 

!   Experiments demonstrate the benefit of such approach 



Conclusions (cont’d) 

!   Kernel methods and SVMs are useful tools to design 
language applications 

!   Basic general kernel functions can be used to engineer 
new kernels 

!   Little effort in selecting and marking/tailoring/decorating/
designing trees or designing sequences 

!   Easy modeling produces state-of-the-art accuracy in many 
tasks, SRL, RE, CR, QA, NER, SLU, RTE 

!   Fast prototyping and model adaptation 



Future (on going work) 

!   Deeper modeling of paragraphs: shallow semantics and 

discourse structures 

!   The objective is to design more compact and accurate 

models applicable to whole paragraphs. 

!   Use of reverse kernel engineering to study linguistic 

phenomena: 
!   [Pighin&Moschitti, CoNLL2009, EMNLP2009, CoNLL2010] 

!   To mine the most relevant fragments according to SVMs gradient 

!   To use the linear space 

!   Experimenting with combined uSVMs and linearized 

models: learning on large-scale data 



Structural Kernels at ACL 2012 

!   Session 2E: (July 9, 14:00 - 15:30) Lexical semantics 

(Chair: Lillian Lee):   

1.  Verb Classification using Distributional Similarity in 

Syntactic and Semantic Structures, Danilo Croce, 

Alessandro Moschitti, Roberto Basili and Martha Palmer 

!   Session 6D: (July 10, 16:00 -17:30) Topics (Chair: 

Tadashi Nomoto): 

1.  Modeling Topic Dependencies in Hierarchical Text 

Categorization, Alessandro Moschitti, Qi Ju and Richard 

Johansson 

 

 



Structural Kernels at ACL 2012 

!   String Re-writing Kernel, F. Bu, H. Li, and X. Zhu 

(best paper award)     

!   Poster session:S-27 

!   Identifying High-Impact Sub-Structures for Convolution 

Kernels in Document-level Sentiment Classification, 

Zhaopeng Tu, Yifan He, Jennifer Foster, Josef van 

Genabith, Qun Liu and Shouxun Lin   

 



Thank you 
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