Learning to Rank Short Text Pairs with Convolutional Deep
Neural Networks

Aliaksei Severyn*
Google Inc.

aseveryn@gmail.com

ABSTRACT

Learning a similarity function between pairs of objects is at the core
of learning to rank approaches. In information retrieval tasks we
typically deal with query-document pairs, in question answering
— question-answer pairs. However, before learning can take place,
such pairs needs to be mapped from the original space of symbolic
words into some feature space encoding various aspects of their
relatedness, e.g. lexical, syntactic and semantic. Feature engineer-
ing is often a laborious task and may require external knowledge
sources that are not always available or difficult to obtain. Recently,
deep learning approaches have gained a lot of attention from the
research community and industry for their ability to automatically
learn optimal feature representation for a given task, while claim-
ing state-of-the-art performance in many tasks in computer vision,
speech recognition and natural language processing. In this paper,
we present a convolutional neural network architecture for rerank-
ing pairs of short texts, where we learn the optimal representation
of text pairs and a similarity function to relate them in a supervised
way from the available training data. Our network takes only words
in the input, thus requiring minimal preprocessing. In particular,
we consider the task of reranking short text pairs where elements
of the pair are sentences. We test our deep learning system on two
popular retrieval tasks from TREC: Question Answering and Mi-
croblog Retrieval. Our model demonstrates strong performance on
the first task beating previous state-of-the-art systems by about 3%
absolute points in both MAP and MRR and shows comparable re-
sults on tweet reranking, while enjoying the benefits of no manual
feature engineering and no additional syntactic parsers.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.3 Information Search

and Retrieval; 1.5.1 [Pattern Recognition]: Models—Neural nets

Keywords

Convolutional neural networks; learning to rank; Question Answer-
ing; Microblog search

*The work of this paper was carried out at University of Trento.
Professor of DISI at University of Trento

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

SIGIR’15, August 09 - 13, 2015, Santiago, Chile.

(© 2015 ACM. ISBN 978-1-4503-3621-5/15/08 ...$15.00.

DOL: http://dx.doi.org/10.1145/2766462.2767738.

Alessandro Moschittit
Qatar Computing Research Institute

amoschitti@qgf.org.qa

1. INTRODUCTION

Encoding query-document pairs into discriminative feature vec-
tors that are input to a learning-to-rank algorithm is a critical step in
building an accurate reranker. The core assumption is that relevant
documents have high semantic similarity to the queries and, hence,
the main effort lies in mapping a query and a document into a joint
feature space where their similarity can be efficiently established.

The most widely used approach is to encode input text pairs us-
ing many complex lexical, syntactic and semantic features and then
compute various similarity measures between the obtained repre-
sentations. For example, in answer passage reranking [31] employ
complex linguistic features, modelling syntactic and semantic in-
formation as bags of syntactic and semantic role dependencies and
build similarity and translation models over these representations.

However, the choice of representations and features is a com-
pletely empirical process, driven by the intuition, experience and
domain expertise. Moreover, although using syntactic and seman-
tic information has been shown to improve performance, it can be
computationally expensive and require a large number of external
tools — syntactic parsers, lexicons, knowledge bases, etc. Further-
more, adapting to new domains requires additional effort to tune
feature extraction pipelines and adding new resources that may not
even exist.

Recently, it has been shown that the problem of semantic text
matching can be efficiently tackled using distributional word match-
ing, where a large number of lexical semantic resources are used for
matching questions with a candidate answer [33].

Deep learning approaches generalize the distributional word match-
ing problem to matching sentences and take it one step further by
learning the optimal sentence representations for a given task. Deep
neural networks are able to effectively capture the compositional
process of mapping the meaning of individual words in a sentence
to a continuous representation of the sentence. In particular, it has
been recently shown that convolutional neural networks are able
to efficiently learn to embed input sentences into low-dimensional
vector space preserving important syntactic and semantic aspects of
the input sentence, which leads to state-of-the-art results in many
NLP tasks [18, 19, 38]. Perhaps one of the greatest advantages of
deep neural networks is that they are trained in an end-to-end fash-
ion, thus removing the need for manual feature engineering and
greatly reducing the need for adapting to new tasks and domains.

In this paper, we describe a novel deep learning architecture for
reranking short texts, where questions and documents are limited
to a single sentence. The main building blocks of our architec-
ture are two distributional sentence models based on convolutional
neural networks. These underlying sentence models work in paral-
lel, mapping queries and documents to their distributional vectors,
which are then used to learn the semantic similarity between them.

The distinctive properties of our model are: (i) we use a state-
of-the-art distributional sentence model for learning to map input
sentences to vectors, which are then used to measure the similar-
ity between them; (ii) our model encodes query-document pairs in
a rich representation using not only their similarity score but also
their intermediate representations; (iii) the architecture of our net-
work makes it straightforward to include any additional similarity
features to the model; and finally (iv) our model does not require
manual feature engineering or external resources. We only require
to initialize word embeddings from some large unsupervised cor-
pora '

Our sentence model is based on a convolutional neural network
architecture that has recently showed state-of-the-art results on many
NLP sentence classification tasks [18, 19]. However, our model
uses it only to generate intermediate representation of input sen-
tences for computing their similarity. To compute the similarity
score we use an approach used in the deep learning model of [38],
which recently established new state-of-the-art results on answer
sentence selection task. However, their model operates only on
unigram or bigrams, while our architecture learns to extract and
compose n-grams of higher degrees, thus allowing for capturing
longer range dependencies. Additionally, our architecture uses not
only the intermediate representations of questions and answers to
compute their similarity but also includes them in the final rep-
resentation, which constitutes a much richer representation of the
question-answer pairs. Finally, our model is trained end-to-end,
while in [38] the output of the deep learning model is used to learn
a logistic regression classifier.

We test our model on two popular retrieval tasks from TREC: an-
swer sentence selection and Microblog retrieval. Our model shows
a considerable improvement on the first task beating recent state-
of-the-art system. On the second task, our model demonstrates that
previous state-of-the-art retrieval systems can benefit from using
our deep learning model.

In the following, we give a problem formulation and provide a
brief overview of learning to rank approaches. Next, we describe
our deep learning model and describe our experiments.

2. LEARNING TO RANK

This section briefly describes the problem of reranking text pairs
which encompasses a large set of tasks in IR, e.g., answer sentence
selection in question answering, microblog retrieval, etc. We argue
that deriving an efficient representation of query-document pairs
required to train a learning to rank model plays an important role
in training an accurate reranker.

2.1 Problem formulation

The most typical setup in supervised learning to rank tasks is
as follows: we are given a set of retrieved lists, where each query
q: € Q comes together with its list of candidate documents D; =
{di,,di,, ...,d;, }. The candidate set comes with their relevancy
judgements {yi, , Yis, - - - , Yi,, }» where documents that are relevant
have labels equal to 1 (or higher) and O otherwise. The goal is
to build a model that for each query q; and its candidate list D;
generates an optimal ranking R, s.t. relevant documents appear at
the top of the list.

More formally, the task is to learn a ranking function:

h(w,¥(aqi, D;)) - R,

'Given a large training corpora our network can also optimize the
embeddings directly for the task, thus omitting the need to pre-train
the embeddings.

where function () maps query-document pairs to a feature vec-
tor representation where each component reflects a certain type of
similarity, e.g., lexical, syntactic, and semantic. The weight vector
w is a parameter of the model and is learned during the training.

2.2 Learning to Rank approaches

There are three most common approaches in IR to learn the rank-
ing function h, namely, pointwise, pairwise and listwise.

Pointwise approach is perhaps the most simple way to build a
reranker where the training instances are triples (q, d;;, yi;) and
it is enough to train a binary classifier: h(w, ¥ (qs,di;)) — ¥ij,
where) maps query-document pair to a feature vector and w is a
vector of model weights.

The decision function h(-) typically takes a linear form simply
computing a dot product between the model weights w and a fea-
ture representation of a pair generated by (). At test time, the
learned model is used to classify unseen pairs (q;, di;), where the
raw scores are used to establish the global rank R of the documents
in the retrieved set. This approch is widely used in practice because
of its simplicity and effectiveness.

A more advanced approaches to reranking, is pairwise, where
the model is explicitly trained to score correct pairs higher than
incorrect pairs with a certain margin:

h(W,’l[}(q“d”)) 2 h(wyw(qlvdlk)) + €,

where document d;; is relevant and d;, is not. Conceptually simi-
lar to the pointwise method described above, the pairwise approach
exploits more information about the ground truth labelling of the
input candidates. However, it requires to consider a larger number
of training instances (potentially quadratic in the size of the candi-
date document set) than the pointwise method, which may lead to
slower training times. Still both pointwise and pairwise approaches
ignore the fact that ranking is a prediction task on a list of objects.

The third method, referred to as a listwise approach [6], treats a
query with its list of candidates as a single instance in learning, thus
able to capture considerably more information about the ground
truth ordering of input candidates.

While pairwise and listwise approaches claim to yield better per-
formance, they are more complicated to implement and less ef-
fective train. Most often, producing a better representation ()
that encodes various aspects of similarity between the input query-
document pairs plays a far more important role in training an accu-
rate reranker than choosing between different ranking approaches.
Hence, in this paper we adopt a simple pointwise method to rerank-
ing and focus on modelling a rich representation of query-document
pairs using deep learning approaches which is described next.

3. OUR DEEP LEARNING MODEL

This section explains our deep learning model for reranking short
text pairs. Its main building blocks are two distributional sentence
models based on convolutional neural networks (ConvNets). These
underlying sentence models work in parallel mapping queries and
documents to their distributional vectors, which are then used to
learn the semantic similarity between them.

In the following, we first describe our sentence model for map-
ping queries and documents to their intermediate representations
and then describe how they can be used for learning semantic match-
ing between input query-document pairs.

3.1 Sentence model

The architecture of our ConvNet for mapping sentences to fea-
ture vectors is shown on Fig. 1. It is mainly inspired by the archi-
tectures used in [18, 19] for performing various sentence classifica-

convolution

sentence matrix d x |s| feature maps ¢ pooling
1
—

filter: dxm
c I~
Qo
2 T
[]
£
©
()]
£ |
©
3 /
= g
o L~

The cat sat on the mat

Figure 1: Our sentence model for mapping input sentences to
their intermediate feature representations.

tion tasks. However, different from previous work the goal of our
distributional sentence model is to learn good intermediate repre-
sentations of the queries and documents, which are then used for
computing their semantic matching.

Our network is composed of a single wide convolutional layer
followed by a non-linearity and simple max pooling.

The input to the network are raw words that need to be translated
into real-valued feature vectors to be processed by subsequent lay-
ers of the network. In the following we give a brief explanation
of the main components of our convolutional neural network: sen-
tence matrix, activations, convolutional and pooling layers.

3.1.1 Sentence matrix

The input to our sentence model is a sentence s treated as a se-
quence of words: [wr, .., w|s], where each word is drawn from
a vocabulary V. Words are represented by distributional vectors
w € R? looked up in a word embeddings matrix W € RV
which is formed by concatenating embeddings of all words in V.
For convenience and ease of lookup operations in W, words are
mapped to integer indices 1,. .., |V].

For each input sentence s we build a sentence matrix S € R Isl,
where each column ¢ represents a word embedding w; at the corre-
sponding position ¢ in a sentence (see Fig. 1):

S = w1 ... W‘s‘
o

To learn to capture and compose features of individual words in a
given sentence from low-level word embeddings into higher level
semantic concepts, the neural network applies a series of trans-
formations to the input sentence matrix S using convolution, non-
linearity and pooling operations, which we describe next.

3.1.2 Convolution feature maps

The aim of the convolutional layer is to extract patterns, i.e., dis-
criminative word sequences found within the input sentences that
are common throughout the training instances.

More formally, the convolution operation * between two vectors
s € RI*l and f € R™ (called a filter of size m) results in a vector
¢ € RI*IF™~1 where each component is as follows:

i+m—1

ci=(sxf); = S[Ti_m+1:i] f= Z sk fr (D
k=i

The range of allowed values for ¢ defines two types of convo-
lution: narrow and wide. The narrow type restricts ¢ to be in the
range [1, |s| — m + 1], which in turn restricts the filter width to be
< |s|. To compute the wide type of convolution ¢ ranges from 1 to
|s| and sets no restrictions on the size of m and s. The benefits of
one type of convolution over the other when dealing with text are
discussed in detail in [18]. In short, the wide convolution is able
to better handle words at boundaries giving equal attention to all
words in the sentence, unlike in narrow convolution, where words
close to boundaries are seen fewer times. More importantly, wide
convolution also guarantees to always yield valid values even when
s is shorter than the filter size m. Hence, we use wide convolution
in our sentence model. In practice, to compute the wide convolu-
tion it is enough to pad the input sequence with m — 1 zeros from
left and right.

Given that the input to our ConvNet are sentence matrices S €
R¥1%l the arguments of Eq. 1 are matrices and a convolution filter
is also a matrix of weights: F € R**™. Note that the convo-
Iution filter is of the same dimensionality d as the input sentence
matrix. As shown in Fig. 1, it slides along the column dimension
of S producing a vector ¢ € RIsl=m+ g output. Each component
¢; is the result of computing an element-wise product between a
column slice of S and the filter matrix F', which is then flattened
and summed producing a single value.

It should be noted that an alternative way of computing a convo-
lution was explored in [18], where a series of convolutions are com-
puted between each row of a sentence matrix and a corresponding
row of the filter matrix. Essentially, it is a vectorized form of 1d
convolution applied between corresponding rows of S and F'. As a
result, the output feature map is a matrix C € R?*I*I=+1 rather
than a vector as above. While, intuitively, being a more general
way to process the input matrix S, where individual filters are ap-
plied to each respective dimension, it introduces more parameters
to the model and requires a way to reduce the dimensionality of the
resulting feature map. To address this issue, the authors apply a
folding operation, which sums every two rows element-wise, thus
effectively reducing the size of the representation by 2.

So far we have described a way to compute a convolution be-
tween the input sentence matrix and a single filter. In practice, deep
learning models apply a set of filters that work in parallel generat-
ing muliple feature maps (also shown on Fig. 1). The resulting filter
bank F € R™*4X™ produces a set of feature maps of dimension
nx(|s|—m+1).

In practice, we also add a bias vector’ b € R™ to the result of a
convolution — a single b; value for each feature map c;.

3.1.3 Activation units

To allow the network learn non-linear decision boundaries, each
convolutional layer is typically followed by a non-linear activation
function a() applied element-wise to the output of the preceding
layer. Among the most common choices of activation functions are
the following: sigmoid (or logistic), hyperbolic tangent tanh, and
a rectified linear (ReLU) function defined as simply maz(0, x) to
ensure that feature maps are always positive. The choice of acti-
vation function has been shown to affect the convergence rate and
the quality of obtained the solution. In particular, [22] shows that
rectified linear unit has significant benefits over sigmoid and tanh
overcoming some of the their shortcomings.

3.1.4 Pooling

The output from the convolutional layer (passed through the ac-
tivation function) are then passed to the pooling layer, whose goal

“bias is needed to allow the network learn an appropriate threshold

is to aggregate the information and reduce the representation. The
result of the pooling operation is:

pool(a(ci + by * €))
Cpooled = cee
pool(a(cr, + by * €))

where c; is the ith convolutional feature map with added bias (the
bias is added to each element of ¢; and e is a unit vector of the
same size as c;) and passed through the activation function «().

There are two conventional choices for the pool(-) operation:
average and max. Both operations apply to columns of the fea-
ture map matrix, by mapping them to a single value: pool(c;) :
R¥*(Usl+m=1) _ R This is also demonstrated in Fig. 1.

Both average and max pooling methods exhibit certain disadvan-
tages: in average pooling, all elements of the input are considered,
which may weaken strong activation values. This is especially crit-
ical with fanh non-linearity, where strong positive and negative ac-
tivations can cancel each other out.

The max pooling is used more widely and does not suffer from
the drawbacks of average pooling. However, as shown in [40], it
can lead to strong overfitting on the training set and, hence, poor
generalization on the test data. To mitigate the overfitting issue
of max pooling several variants of stochastic pooling have been
proposed in [40].

Recently, max pooling has been generalized to k-max pooling [18],
where instead of a single max value, k values are extracted in their
original order. This allows for extracting several largest activation
values from the input sentence. As a consequence deeper archi-
tectures with several convolutional layers can be used. In [18],
the authors also propose dynamic k-max pooling, where the value
of k depends on the sentence size and the level in the convolution
hierarchy [18].

Convolutional layer passed through the activation function to-
gether with pooling layer acts as a non-linear feature extractor.
Given that multiple feature maps are used in parallel to process
the input, deep learning networks are able to build rich feature rep-
resentations of the input.

This ends the description of our sentence model. In the following
we present our deep learning network for learning to match short
text pairs.

3.2 Our architecture for matching text pairs

The architecture of our model for matching query-document pairs
is presented in Fig. 2. Our sentence models based on ConvNets (de-
scribed in Sec. 3.1) learn to map input sentences to vectors, which
can then be used to compute their similarity. These are then used
to compute a query-document similarity score, which together with
the query and document vectors are joined in a single representa-
tion.

In the following we describe how the intermediate representa-
tions produced by the sentence model can be used to compute query-
document similarity scores and give a brief explanation of the re-
maining layers, e.g. hidden and softmax, used in our network.

3.2.1 Matching query and documents

Given the output of our sentence ConvNets for processing queries
and documents, their resulting vector representations x4 and x4,
can be used to compute a query-document similarity score. We fol-
low the approach of [2] that defines the similarity between x, and
X4 vectors as follows:

sim(xq,Xd) = qude,)

where M € R?*4 is a similarity matrix. The Eq. 2 can be viewed

as a model of the noisy channel approach from machine translation,
which has been widely used as a scoring model in information re-
trieval and question answering [13]. In this model, we seek a trans-
formation of the candidate document x/; = Mx that is the closest
to the input query x,. The similarity matrix M is a parameter of
the network and is optimized during the training.

3.2.2 Hidden layers

The hidden layer computes the following transformation:
a(wh - X+ b),

where wp, is the weight vector of the hidden layer and «() is the
non-linearity. Our model includes an additional hidden layer right
before the softmax layer (described next) to allow for modelling
interactions between the components of the intermediate represen-
tation.

3.2.3 Softmax

The output of the penultimate convolutional and pooling layers
is flattened to a dense vector x, which is passed to a fully connected
softmax layer. It computes the probability distribution over the la-
bels:

T
ex 03

ZkK:1 o
where 0, is a weight vector of the k-th class. x can be thought of
as a final abstract representation of the input example obtained by

a series of transformations from the input layer through a series of
convolutional and pooling operations.

3.2.4 The information flow

Here we provide a full description of our deep learning network
(shown on Fig. 2) that maps input sentences to class probabilities.

The output of our sentence models (Sec. 3.1) are distributional
representations of a query x4 and a document x4. These are then
matched using a similarity matrix IM according to Eq. 2. This pro-
duces a single score zsim capturing various aspects of similarity
(syntactic and semantic) between the input queries and documents.
Note that it is also straight-forward to add additional features Xfeat
to the model.

The join layer concatenates all intermediate vectors, the similar-
ity score and any additional features into a single vector:

ply = jlx) =

T, LT T
Xjoin = [Xq 5 Tsim; Xq 5 xfeat]

This vector is then passed through a fully connected hidden layer,

which allows for modelling interactions between the components

of the joined representation vector. Finally, the output of the hid-

den layer is further fed to the softmax classification layer, which
generates a distribution over the class labels.

3.3 Training

The model is trained to minimise the cross-entropy cost function:

C = —log [T, p(yilai, i) + A0 ,
= — 2 iz [viloga; + (1 — yi)log(1 — ai)] + All6]2,
3)
where a is the output from the softmax layer. € contains all the
parameters optimized by the network:

0 = {W;Fg;by; Fa;ba; M; wp; bn; we; bs b,

namely the word embeddings matrix W, filter weights and biases
of the convolutional layers, similarity matrix M, weights and bi-
ases of the hidden and softmax layers.

convolution pooled

sentence matrix .
feature maps representation

\\ N
I~
I
€
3 Fa
8 -
/// '/
The cat sat on the mat M

similarity join hidden

softmax

matching layer layer

\‘ [
N

Fq

query

|_—

Where was the cat ?

additional
features Xfeat

Figure 2: Our deep learning architecture for reranking short text pairs.

The parameters of the network are optimized with stochastic gra-
dient descent (SGD) using backpropogation algorithm to compute
the gradients. To speedup the convergence rate of SGD various
modifications to the update rule have been proposed: momentum,
Adagrad [12], Adadelta [39], etc. Adagrad scales the learning rate
of SGD on each dimension based on the [2 norm of the history of
the error gradient. Adadelta uses both the error gradient history like
Adagrad and the weight update history. It has the advantage of not
having to set a learning rate at all.

3.4 Regularization

While neural networks have a large capacity to learn complex
decision functions they tend to easily overfit especially on small
and medium sized datasets. To mitigate the overfitting issue we
augment the cost function with lo-norm regularization terms for
the parameters of the network.

We also experiment with another popular and effective technique
to improve regularization of the NNs — dropout [30]. Dropout
prevents feature co-adaptation by setting to zero (dropping out) a
portion of hidden units during the forward phase when computing
the activations at the softmax output layer. As suggested in [14]
dropout acts as an approximate model averaging.

4. EXPERIMENTS AND EVALUATION

We evaluate our deep learning model on two popular retrieval
benchmarks from TREC: answer sentence selection and TREC mi-
croblog retrieval.

4.1 Training and hyperparameters

The parameters of our deep learning model were (chosen on a
dev set of the answer sentence selection dataset) as follows: the
width m of the convolution filters is set to 5 and the number of
convolutional feature maps is 100. We use ReLU activation func-
tion and a simple max-pooling. The size of the hidden layer is equal

to the size of the o, vector obtained after concatenating query and
document vectors from the distributional models, similarity score
and additional features (if used).

To train the network we use stochastic gradient descent with
shuffled mini-batches. We eliminate the need to tune the learn-
ing rate by using the Adadelta update rule [39]. The batch size
is set to 50 examples. The network is trained for 25 epochs with
early stopping, i.e., we stop the training if no update to the best
accuracy on the dev set has been made for the last 5 epochs. The
accuracy computed on the dev set is the MAP score. At test time
we use the parameters of the network that were obtained with the
best MAP score on the development (dev) set, i.e., we compute the
MAP score after each 10 mini-batch updates and save the network
parameters if a new best dev MAP score was obtained. In practice,
the training converges after a few epochs. We set a value for L2 reg-
ularization term to 1e — 5 for the parameters of convolutional layers
and le — 4 for all the others. The dropout rate is set to p = 0.5.

4.2 Word embeddings

While our model allows for learning the word embeddings di-
rectly for a given task, we keep the word matrix parameter W
static. This is due to a common experience that a minimal size
of the dataset required for tuning the word embeddings for a given
task should be at least in the order of hundred thousands, while in
our case the number of query-document pairs is one order of mag-
nitude smaller. Hence, similar to [11, 19, 38] we keep the word
embeddings fixed and initialize the word matrix W from an un-
supervised neural language model. We choose the dimensionality
of our word embeddings to be 50 to be on the line with the deep
learning model of [38].

4.3 Size of the model

Given that the dimensionality of the word embeddings is 50, the
number of parameters in the convolution layer of each sentence

model is 100 x 5 x 50. Hence, the total number of parameters
in each of the two convolutional networks that map sentences to
vectors is 25k. The similarity matrix is M € R19°*190 which
adds another 10k parameters to the model. The fully connected
hidden layer is and a softmax add about 40k parameters. Hence the
total number of parameters in the network is about 100k.

5. ANSWER SENTENCE SELECTION

Our first experiment is on answer sentence selection dataset, where
answer candidates are limited to a single sentence. Given a question
with its list of candidate answers the task is to rank the candidate
answers based on their relatedness to the question.

5.1 Experimental setup

Data and setup. We test our model on the manually curated TREC
QA dataset® from Wang et al. [36], which appears to be one of the
most widely used benchmarks for answer reranking. The dataset
contains a set of factoid questions, where candidate answers are
limited to a single sentence. The set of questions are collected
from TREC QA tracks 8-13. The manual judgement of candidate
answer sentences is provided for the entire TREC 13 set and for
the first 100 questions from TREC 8-12. The motivation behind
this annotation effort is that TREC provides only the answer pat-
terns to identify if a given passage contains a correct answer key
or not. This results in many unrelated candidate answers marked
as correct simply because regular expressions cannot always match
the correct answer keys.

To enable direct comparison with the previous work, we use the

same train, dev and test sets. Table 1 summarizes the datasets used
in our experiments. An additional training set TRAIN-ALL pro-
vided by Wang et. al [36] contains 1,229 questions from the entire
TREC 8-12 collection and comes with automatic judgements. This
set represents a more noisy setting, nevertheless, it provides many
more QA pairs for learning.
Word embeddings. We initialize the word embeddings by run-
ning word2vec tool [20] on the English Wikipedia dump and the
AQUAINT corpus” containing roughly 375 million words. To train
the embeddings we use the skipgram model with window size 5
and filtering words with frequency less than 5. The resulting model
contains 50-dimensional vectors for about 3.5 million words. Em-
beddings for words not present in the word2vec model are ran-
domly initialized with each component sampled from the uniform
distribution U[—0.25, 0.25].

We minimally preprocess the data only performing tokenization

and lowercasing all words. To reduce the size of the resulting vo-
cabulary V, we also replace all digits with 0. The size of the word
vocabulary V' for experiments using TRAIN set is 17,023 with ap-
proximately 95% of words initialized using wor2vec embeddings
and the remaining 5% words are initialized at random as described
in Sec. 4.2. For the TRAIN-ALL setting the |V| = 56,953 with
85% words found in the word2vec model.
Additional features. Given that a certain percentage of the words
in our word embedding matrix are initialized at random (about 15%
for the TRAIN-ALL) and a relatively small number of QA pairs
prevents the network to directly learn them from the training data,
similarity matching performed by the network will be suboptimal
between many question-answer pairs.

Additionally, even for the words found in the word matrix, as
noted in [38], one of the weaknesses of approaches relying on dis-

3http ://cs.stanford.edu/people/menggiu/data/
gg—emnlpO07-data.tgz

*https://catalog.ldc.upenn.edu/LDC2002T31

Table 1: Summary of TREC QA datasets for answer reranking.

Data # Questions # QA pairs % Correct
TRAIN-ALL 1,229 53,417 12.0%
TRAIN 94 4,718 7.4%
DEV 82 1,148 19.3%
TEST 100 1,517 18.7%

tributional word vectors is their inability to deal with numbers and
proper nouns. This is especially important for factoid question an-
swering, where most of the questions are of type what, when, who
that are looking for answers containing numbers or proper nouns.

To mitigate the above two issues, we follow the approach in [38]
and include additional features establishing relatedness between
question-answer pairs. In particular, we compute word overlap
measures between each question-answer pair and include it as an
additional feature vector X, in our model. This feature vector
contains only four features: word overlap and IDF-weighted word
overlap computed between all words and only non-stop words. Com-
puting these features is straightforward and does not require addi-
tional pre-processing or external resources.

Evaluation. The two metrics used to evaluate the quality of our
model are Mean Average Precision (MAP) and Mean Reciprocal
Rank (MRR), which are common in Information Retrieval and Ques-
tion Answering.

MRR is computed as follows: M RR = \Til Z‘qzll m,
rank(q) is the position of the first correct answer in the candidate
list. MRR is only looking at the rank of the first correct answer,
hence it is more suitable in cases where for each question there is
only a single correct answer. Differently, MAP examines the ranks
of all the correct answers. It is computed as the mean over the av-
erage precision scores for each query ¢ € Q: é Zqul AveP(q).
We use the official trec_eval scorer to compute the above met-
rics.

where

5.2 Results and discussion

We report the results of our deep learning model on the TRAIN
and TRAIN-ALL sets also when additional word overlap features
are used. Additionally, we report the results from a recent deep
learning system in [38] that has established the new state-of-the-art
results in the same setting.

Table 2 summarises the results for the setting when the network
is trained using only input question-answer pairs without using any
additional features. As we can see our deep learning architecture
demonstrates a much stronger performance compared to the system
in [38]. The deep learning model from [38], similarly to ours, relies
on a convolutional neural network to learn intermediate represen-
tations. However, their convolutional neural network operates only
on unigram or bigrams, while in our architecture we use a larger
width of the convolution filter, thus allowing for capturing longer
range dependencies. Additionally, along with the question-answer
similarity score, our architecture includes intermediate representa-
tions of the question and the answer, which together constitute a
much richer representation. This results in a large improvement
of about 8% absolute points in MAP for TRAIN and almost 10%
when trained with more data from TRAIN-ALL. This emphasizes
the importance of learning high quality sentence models.

Table 3 provides the results when additional word overlap fea-
tures are added to the model. Simple word overlap features help to
improve the question-answer matching. Our model shows an im-
provement of about a significant improvement over previous state-

http://cs.stanford.edu/people/mengqiu/data/qg-emnlp07-data.tgz
http://cs.stanford.edu/people/mengqiu/data/qg-emnlp07-data.tgz
https://catalog.ldc.upenn.edu/LDC2002T31

Table 2: Results on TRAIN and TRAIN-ALL from Trec QA.
Model MAP MRR

TRAIN
Yu et al. [38] (unigram) .5387 .6284
Yu et al. [38] (bigram) 5476 .6437
Our model 6258 .6591

TRAIN-ALL
Yu et al. [38] (unigram) .5470 .6329
Yu et al. [38] (bigram) 5693 6613
Our model 6709 .7280

Table 3: Results on TREC QA when augmenting the deep
learning model with word overlap features.

Model MAP MRR

TRAIN
Yu et al. [38] (unigram) .6889 .7727
Yu et al. [38] (bigram) 7058 7800
Our model 7329 7962
TRAIN-ALL
Yu et al. [38] (unigram) .6934 .7677
Yu et al. [38] (bigram) 7113 7846
Our model 7459 .8078

Table 4: Survey of the results on the QA answer selection task.
Model MAP MRR
Wang et al. (2007) [36] .6029 .6852

Heilman and Smith (2010) [15] .6091 .6917
Wang and Manning (2010) [35] 5951 .6951

Yao et al. (2013) [37] .6307 7477
Severyn & Moschitti (2013) [26] .6781 .7358
Yih et al. (2013) [33] 7092 7700
Yu et al. (2014) [38] 113 7846
Our model (TRAIN) 7329 7962
Our model (TRAIN-ALL) 7459 .8078

of-the-art in both MAP and MRR when training on TRAIN and
TRAIN-ALL. Note that the results are significantly better than when
no overlap features are used. This is possibly due to the fact that
the distrubutional representations fail to establish the relatedness in
some cases and simple word overlap matching can help to drive the
model in the right direction.

Table 4 reports the results of the previously published systems
on this task. Our model trained on a small TRAIN dataset beats all
of the previous state-of-the-art systems. The improvement is fur-
ther emphasized when the system is trained using more question-
answer pairs from TRAIN-ALL showing an improvement of about
3% absolute points in both MAP and MRR. The results are very
promising considering that our system requires no manual feature
engineering (other than simple word overlap features), no expen-
sive preprocessing using various NLP parsers, and no external se-
mantic resources other than using pre-initialized word embeddings
that can be easily trained provided a large amount of unsupervised
text.

In the spirit, our system is most similar to a recent deep learn-
ing architecture from Yu et al. (2014) [38]. However, we employ
a more expressive convolutional neural network for learning inter-

Table 5: Summary of TREC Microblog datasets.

Data # Topic # Tweet pairs % Correct # Runs
TMB2011 49 60,129 5.1% 184
TMB2012 59 73,073 8.6% 120

mediate representations of the query and the answer. This allows
for performing a more accurate matching between question-answer
pairs. Additionally, our architecture includes intermediate question
and answer representations in the model, which result in a richer
representation of question-answer pairs. Finally, we train our sys-
tem in an end-to-end fashion, while [38] use the output of their deep
learning system as a feature in a logistic regression classifier.

6. TREC MICROBLOG RETRIEVAL

To assess the effectiveness and generality of our deep learning
model for text matching, we apply it on tweet reranking task. We
focus on the 2011 and 2012 editions of the ad-hoc retrieval task
at TREC microblog tracks [23, 29]. We follow the setup in [27],
where they represent query-tweet pairs with a shallow syntactic
models to learn a tree kernel reranker. In contrast, our model does
not rely on any syntactic parsers and requires virtually no prepro-
cessing other than tokenizaiton and lower-casing. Our main re-
search question is: Can our neural network that requires no manual
feature engineering and expensive pre-processing steps improve on
top of the state-of-the-art learning-to-rank and retrieval algorithms?

To answer this question, we test our model in the following set-
tings: we treat the participant systems in the TREC microblog tasks
as a black-box, and implement our model on top of them using only
their raw scores (ranks) as a single feature in our model. This al-
lows us to see whether our model is able to learn information com-
plementary to the approaches used by such retrieval algorithms.
Our setup replicates the experiments in [27] to allow for comparing
to their model.

6.1 Experimental setup

Data and setup. Our dataset is the tweet corpus used in both TREC
Microblog tracks in 2011 (TMB2011) and 2012 (TMB2012). It
consists of 16M tweets spread over two weeks, and a set of 49
(TMB2011) and 59 (TMB2012) timestamped topics. We mini-
mally preprocess the tweets—we normalize elongations (e.g., S000
— s0), normalize URLs and author ids. Additionally, we use the
system runs submitted at TMB2011 and TMB2012, which contain
184 and 120 models, respectively. This is summarized in Table 5.
Word embeddings. We used the word2vec tool to learn the word
embeddings from the provided 16M tweet corpus, with the follow-
ing setting: (i) we removed non-english tweets, which reduces the
corpus to 8.4M tweets and (ii) we used the skipgram model with
window size 5 and filtering words with frequency less than 5. The
trained model contains 330k words. We use word embeddings of
size 50 — same as for the previous task. To build the word embed-
ding matrix W, we extract the vocabulary from all tweets present
in TMB2011 and TMB2012. The resulting vocabulary contains
150k words out of which only 60% are found in the word embed-
dings model. This is due to a very large number of misspellings and
words occurring only once (hence they are filted by the word2vec
tool). This has a negative impact on the performance of our deep
learning model since around 40% of the word vectors are randomly
initialized. At the same time it is not possible to tune the word
embeddings on the training set, as it will overfit due to the small
number of the query-tweet pairs available for training.

Training. We train our system on the runs submitted at TMB2011,
and test it on the TMB2012 runs. We focus on one direction only
to avoid training bias, since TMB2011 topics were already used for
learning systems in TMB2012.

Submission run as a feature. We use the output of participant
systems as follows: we use rank positions of each tweet rather
than raw scores, since scores for each system are scaled differently,
while ranks are uniform across systems. We apply the following
transformation of the rank r: 1/log (r + 1). In the training phase,
we take the top 30 systems from the TMB2011 track (in terms of
P@30). For each query-tweet pair we compute the average trans-
formed rank over the top systems. This score is then used as a
single feature Z.. by our model. In the testing phase, we generate
this feature as follows: for each participant system that we want
to improve, we use the transformed rank of the query-tweet taken
from their submission run.

Evaluation. We report on the official evaluation metric for the
TREC 2012 Microblog track, i.e., precision at 30 (P@30), and also
on mean average precision (MAP). Following [4, 23], we regard
minimally and highly relevant documents as relevant and use the
TMB2012 evaluation script. For significance testing, we use a pair-
wise t-test, where A and A denote significance at &« = 0.05 and
a = 0.01, respectively. Triangles point up for improvement over
the baseline, and down otherwise. We also report the improvement
in the absolute rank (R) in the official TMB2012 ranking.

6.2 Results and discussion

Table 6 reports the results for re-ranking runs of the best 30 sys-
tems from TMB2012 (based on their P@30 score) when we train
our system using the top 30 runs from TMB2011.

First, we note that our model improves P@30 for the majority
of the systems with a relative improvement ranging from several
points up to 10% with about 6% on average. This is remarkable,
given that the pool of participants in TMB2012 was large, and the
top systems are therefore likely to be very strong baselines.

Secondly, we note that the relative improvement of our model
is on the par with the STRUCT model from [27], which relies on
using syntactic parsers to train a tree kernel reranker. In contrast,
our model requires no manual feature engineering and virtually no
preprocessing and external resources. Similar to the observation
made in [27], our model has a precision-enhancing effect. In cases
where MAP drops a bit it can be seen that our model sometimes
lowers relevant documents in the runs. It is possible that our model
favours query-tweet pairs that exhibit semantic matching of higher
quality, and that it down-ranks tweets that are of lower quality but
are nonetheless relevant. Another important aspect is the fact that
a large portion of the word embeddings (about 40%) used by the
network are initialized at random, which has a negative impact on
the accuracy of our model.

Looking at the improvement in absolute position in the official
ranking (R), we see that, on average, our deep learning model boosts
the absolute position in the official ranking for top 30 systems by
about 7.8 positions.

All in all, the results suggest that our deep learning model with
no changes in its architecture is able to capture additional infor-
mation and can be useful when coupled with many state-of-the-art
microblog search algorithms.

While improving the top systems from 2012 represents a chal-
lenging task, it is also interesting to assess the potential improve-
ment for systems that ranked lower. We follow [27] and report our
results on the 30 systems from the middle and the bottom of the
official ranking. Table 7 summarizes the average improvements for
three groups of 30 systems each: top-30, middle-30, and bottom-

Table 7: Comparison of the averaged relative improvements
for the top, middle (mid), and bottom (btm) 30 systems from
TMB2012.

STRUCT [27] Our model
band MAP P@30 MAP P@30

top 33% 53% 20% 62%
mid 122% 129% 9.8% 13.7%
btm 22.1% 25.1% 18.7% 243%

30.

We find that the improvement over underperforming systems is
much larger than for stronger systems. In particular, for the bottom
30 systems, our approach achieves an average relative improvement
of 20% in both MAP and P@30. The performance of our model is
on the par with the STRUCT model [27].

We expect that learning word embeddings on a larger corpora
such that the percentage of the words present in the word embed-
ding matrix W should help to improve the accuracy of our system.
Moreover, similar to the situation observed with answer selection
experiments, we expect that using more training data would im-
prove the generalization of our model. As one possible solution
to getting more training data, it could be interesting to experiment
with training our model on much larger pseudo test collections sim-
ilar to the ones proposed in [4]. We leave it for the future work.

7. RELATED WORK

Our learning to rank method is based on a deep learning model
for advanced text representations using distributional word embed-
dings. Distributional representations have a long tradition in IR,
e.g., Latent Semantic Analysis [10], which more recently has also
been characterized by studies on distributional models based on
word similarities. Their main properties is to alleviate the prob-
lem of data sparseness. In particular, such representations can be
derived with several methods, e.g., by counting the frequencies of
co-occurring words around a given token in large corpora. Such
distributed representations can be obtained by applying neural lan-
guage models that learn word embeddings, e.g., [3] and more re-
cently using recursive autoencoders [34], and convolutional neural
networks [8].

Our application of learning to rank models concerns passage
reranking. For example, [17, 24] designed classifiers of question
and answer passage pairs. Several approaches were devoted to
reranking passages containing definition/description, e.g., [21, 28,
31]. [1] used a cascading approach, where the ranking produced by
one ranker is used as input to the next stage.

Language models for reranking were applied in [7], where an-
swer ranks were computed based on the probabilities of bigram
models generating candidate answers. Language models were also
applied to definitional QA in [9, 25, 32].

Our work more directly targets the task of answer sentence se-
lection, i.e., the task of selecting a sentence that contains the infor-
mation required to answer a given question from a set of candidates
(for example, provided by a search engine). In particular, the state
of the art in answer sentence selection is given by Wang et al., 2007
[36], who use quasi-synchronous grammar to model relations be-
tween a question and a candidate answer with the syntactic transfor-
mations. Heilman & Smith, 2010 [15] develop an improved Tree
Edit Distance (TED) model for learning tree transformations in a
g/a pair. They search for a good sequence of tree edit operations
using complex and computationally expensive Tree Kernel-based

Table 6: System performance on the top 30 runs from TMB2012, using the top 10, 20 or 30 runs from TMB2011 for training.

TMB2012 STRUCT [27] Our model

runs MAP P@30 | MAP P@30 R% | MAP P@30 R%
1 hitURLrun3 0.3469 0.4695 | 0.3328 (-4.1%)7 0.4774 (1.7%) 0 | 0.3326 (-4.1%)" 0.4836 (3.0%) 0
2 kobeMHC2 0.3070 0.4689 | 0.3037 (-1.1%) 0.4768 (1.7%) 1 | 0.3052 (-0.6%) 0.4899 (4.5%)" 1
3 kobeMHC 0.2986 0.4616 | 0.2965 (-0.7%) 0.4718 (2.2%) 2 | 0.2999 (0.4%) 0.4830 (4.6%)> 2
4 uwatgclrman 0.2836 0.4571 | 0.2995 (5.6%)* 0.4712 (3.1%)* 3 | 02738 (-3.5%)" 0.4516 (-1.2%) -1
5 kobeL2R 0.2767 0.4429 | 0.2744 (-0.8%) 0.4463 (0.8%) 0 | 0.2677 (-3.3%)¥ 0.4409 (-0.5%) -2
6 hitQryFBrund 03186 04424 | 03118 (-2.1%) 0.4554 (2.9%) 2| 03220 (11%)% 0.4849 (9.6%) 5
7 hitLRrunl 0.3355 0.4379 | 0.3226 (-3.9%)" 0.4525 (3.3%) 2 | 03188 (-5.0%)" 0.4610 (5.3%)4 3
8 FASILKOMO1 0.2682 0.4367 | 0.2820 (5.2%)* 0.4531 (3.8%)* 3 | 02622 (-2.2%)7 0.4346 (-0.5%) -1
9 hitDELMrun2 0.3197 0.4345 | 0.3105 (-2.9%) 0.4424 (1.8%) 4 | 0.3246 (1.5%) 0.4723 (8.7%)* 8
10 tsqe 0.2843 0.4339 | 0.2836 (-0.3%) 0.4441 (2.4%) 5 | 0.2917 (2.6%) 0.4660 (7.4%)* 7
11 ICTWDSERUNI 0.2715 0.4299 | 0.2862 (5.4%)* 0.4582 (6.6%)* 7 | 0.2765 (1.8%)4 0.4484 (4.3%)" 6
12 ICTWDSERUN2 0.2671 0.4266 | 0.2785 (4.3%)> 0.4475 (4.9%)* 7 | 0.2786 (4.3%)% 0.4478 (5.0%)% 7
13 cmuPrfPhrE 0.3179 0.4254 | 0.3172 (-0.2%) 0.4469 (5.1%)* 8 | 0.3321 (4.5%)* 0.4585 (7.8%)* 9
14 cmuPrfPhrENo 0.3198 0.4249 | 0.3179 (-0.6%) 0.4486 (5.6%)* 9 | 0.3359 (5.0%)% 0.4591 (8.1%)* 10
15 cmuPrfPhr 0.3167 0.4198 | 0.3130 (-1.2%) 0.4379 (4.3%)> 8 | 0.3282 (3.6%)2 0.4572 (8.9%)* 11
16 FASILKOMO2 0.2454 0.4141 | 0.2718 (10.8%)* 0.4508 (8.9%)4 11 | 0.2489 (1.4%) 0.4201 (1.5%)> 1
17 IBMLTR 02630 04136 | 02734 (4.0%)> 04441 (74%)4 10 | 02703 (2.8%)" 0.4346 (5.1%) 8
18 otM12ihe 0.2995 0.4124 | 0.2969 (-0.9%) 0.4322 (4.8%)4 7 | 0.2900 (-3.2%)¥ 0.4239 (2.8%)" 3
19 FASILKOMO3 0.2716 0.4124 | 0.2859 (5.3%)* 0.4452 (8.0%)* 14 | 0.2740 (0.9%) 0.4270 (3.5%)* 7
20 FASILKOMO0O4 0.2461 0.4113 | 0.2575 (4.6%)* 0.4294 (4.4%)A 9 | 0.2414 (-1.9%)" 0.4220 (2.6%)* 5
21 IBMLTRFuture 0.2731 0.4090 | 0.2808 (2.8%) 0.4311 (5.4%)* 10 | 0.2785 (2.0%)% 0.4415 (8.0%)* 14
22 uiucGSLISO1 0.2445 0.4073 | 0.2575(5.3%)* 0.4260 (4.6%)* 9 | 0.2478 (1.4%) 0.4233 (3.9%)> 7
23 PKUICST4 0.2786 0.4062 | 0.2909 (4.4%)> 0.4514 (11.1%)4 18 | 0.2832 (1.7%)4 0.4491 (10.6%)4 18
24 uogTrLsE 0.2909 0.4028 | 0.2977 (2.3%) 0.4282 (6.3%)* 9 | 0.3131 (7.6%)4 0.4484 (11.3%)4 19
25 otM12ih 0.2777 0.3989 | 0.2810 (1.2%) 0.4175 (4.7%)* 10 | 0.2752 (-0.9%) 0.4119 (3.3%)> 5
26 ICTWDSERUN4 0.1877 0.3887 | 0.1985 (5.8%)* 0.4164 (7.1%)* 10 | 0.2040 (8.7%)4 0.4220 (8.6%)* 11
27 uwatrrfall 0.2620 0.3881 | 0.2812 (7.3%)* 0.4136 (6.6%)* 9 | 0.2942 (12.3%)% 0.4314 (11.2%)4 16
28 cmuPhrE 0.2731 0.3842 | 0.2797 (2.4%) 0.4136 (7.7%)* 12 | 0.2972 (8.8%)% 0.4352 (13.3%)4 19
29 Alrunl 0.2237 0.3842 | 0.2339 (4.6%)* 0.4102 (6.8%)4 5 | 0.2285 (2.2%)% 0.4157 (8.2%)4 13
30 PKUICST3 0.2118 0.3825 | 0.2318 (9.4%)* 0.4119 (7.7%)* 14 | 0.2363 (11.6%)4 0.4415 (15.4%)* 23

Average | 3.3% 5.3% 7.3 2.0% 6.2% 7.8

heuristic. Wang & Manning, 2010 [35] develop a probabilistic
model to learn tree-edit operations on dependency parse trees. They
cast the problem into the framework of structured output learning
with latent variables. The model of Yao et al., 2013 [37] applies
linear chain CRFs with features derived from TED to automatically
learn associations between questions and candidate answers. Sev-
eryn and Moschitti [26] applied SVM with tree kernels to shallow
syntactic representation, which provide automatic feature engineer-
ing. Yih et al. [33] use distributional models based on lexical se-
mantics to match semantic relations of aligned words in QA pairs.

More recently, Bordes et al. [5] used siamese networks for learn-
ing to project question and answer pairs into a joint space whereas
Iyyer et al. [16] modelled semantic composition with a recursive
neural network for a question answering task. The work closest
to ours is [38], where they apply deep learning to learn to match
question and answer sentences. However, their sentence model to
map questions and answers to vectors operates only on unigrams
or bigrams. Our sentence model is based on a convolutional neural
network with the state-of-the-art architecture, we use a relatively
large width of the convolution filter (5), thus allowing the network
to capture longer range dependencies. Moreover, the architecture
of deep learning model along with the question-answer similarity
score also encodes question and answer vector representations in
the model. Hence, our model constructs and learns a richer rep-
resentation of the question-answer pairs, which results in superior
results on the answer sentence selection dataset. Finally, our deep
learning reranker is trained end-to-end, while in [38] they use the
output of their neural network in a separate logistic scoring model.

Regarding learning to rank systems applied to TREC microblog

datasets, recently [27] have shown that richer linguistic representa-
tions of tweets can improve upon state of the art systems in TMB-
2011 and TMB-2012. We directly compare with their system, show-
ing that our deep learning model without any changes to its ar-
chitecture (we only pre-train word embeddings) is on the par with
their reranker. This is remarkable, since different from [27], which
requires additional pre-proccesing using syntactic parsers to con-
struct syntactic trees, our model requires no expensive pre-processing
and does not rely on any external resources.

8. CONCLUSIONS

In this paper, we propose a novel deep learning architecture for
reranking short texts. It has the benefits of requiring no manual
feature engineering or external resources, which may be expensive
or not available. The model with the same architecture can be suc-
cessfully applied to other domains and tasks.

Our experimental findings show that our deep learning model:
(i) greatly improves on the previous state-of-the-art systems and a
recent deep learning approach in [38] on answer sentence selec-
tion task showing a 3% absolute improvement in MAP and MRR;
(i1) our system is able to improve even the best system runs from
TREC Microblog 2012 challenge; (iii) is comparable to the syntac-
tic reranker in [27], while our system requires no external parsers
or resources.

Acknowledgments. This work has been supported by the EC project
CogNet, 671625 (H2020-ICT-2014-2, Research and Innovation ac-
tion). The first author was supported by the Google Europe Doc-
toral Fellowship Award 2013;

REFERENCES

(1]

(2]

(3]

(4]

(3]

(6]

(7]
(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

A. Agarwal, H. Raghavan, K. Subbian, P. Melville,

D. Gondek, and R. Lawrence. Learning to rank for robust
question answering. In CIKM, 2012.

J. W. Antoine Bordes and N. Usunier. Open question
answering with weakly supervised embedding models. In
ECML, Nancy, France, September 2014.

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural
probabilistic language model. Journal of Machine Learning
Research, 3:1137-1155, 2003.

R. Berendsen, M. Tsagkias, W. Weerkamp, and M. de Rijke.
Pseudo test collections for training and tuning microblog
rankers. In SIGIR, 2013.

A. Bordes, S. Chopra, and J. Weston. Question answering
with subgraph embeddings. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 615-620, Doha, Qatar, October
2014. Association for Computational Linguistics.

Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to
rank: From pairwise approach to listwise approach. In
Proceedings of the 24th International Conference on
Machine Learning, ICML °07, pages 129-136, New York,
NY, USA, 2007. ACM.

Y. Chen, M. Zhou, and S. Wang. Reranking answers from
definitional QA using language models. In ACL, 2006.

R. Collobert and J. Weston. A unified architecture for natural
language processing: deep neural networks with multitask
learning. In ICML, pages 160-167, 2008.

H. Cui, M. Kan, and T. Chua. Generic soft pattern models
for definitional QA. In SIGIR, Salvador, Brazil, 2005. ACM.
S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and

R. Harshman. Indexing by latent semantic analysis. Journal
of the American Society of Information Science, 1990.

M. Denil, A. Demiraj, N. Kalchbrenner, P. Blunsom, and

N. de Freitas. Modelling, visualising and summarising
documents with a single convolutional neural network.
Technical report, University of Oxford, 2014.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient
methods for online learning and stochastic optimization. J.
Mach. Learn. Res., 12:2121-2159, 2011.

A. Echihabi and D. Marcu. A noisy-channel approach to
question answering. In ACL, 2003.

L. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C.
Courville, and Y. Bengio. Maxout networks. In ICML, pages
1319-1327, 2013.

M. Heilman and N. A. Smith. Tree edit models for
recognizing textual entailments, paraphrases, and answers to
questions. In NAACL, 2010.

M. Iyyer, J. Boyd-Graber, L. Claudino, R. Socher, and

H. Daumé III. A neural network for factoid question
answering over paragraphs. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 633-644, Doha, Qatar, October
2014. Association for Computational Linguistics.

J. Jeon, W. B. Croft, and J. H. Lee. Finding similar questions
in large question and answer archives. In CIKM, 2005.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A
convolutional neural network for modelling sentences.
Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics, June 2014.

Y. Kim. Convolutional neural networks for sentence
classification. In EMNLP, pages 1746-1751, Doha, Qatar,
October 2014.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

(35]

[36]

(371

(38]
[39]

[40]

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and

J. Dean. Distributed representations of words and phrases
and their compositionality. In Advances in Neural
Information Processing Systems 26, pages 3111-3119, 2013.
A. Moschitti, S. Quarteroni, R. Basili, and S. Manandhar.
Exploiting syntactic and shallow semantic kernels for
question/answer classification. In ACL, 2007.

V. Nair and G. E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10),
pages 807-814, 2010.

L. Ounis, C. Macdonald, J. Lin, and I. Soboroff. Overview of
the TREC-2011 microblog track. In TREC, 2011.

F. Radlinski and T. Joachims. Query chains: Learning to
rank from implicit feedback. CoRR, 2006.

Y. Sasaki. Question answering as question-biased term
extraction: A new approach toward multilingual qa. In ACL,
2005.

A. Severyn and A. Moschitti. Automatic feature engineering
for answer selection and extraction. In Proceedings of the
2013 Conference on Empirical Methods in Natural Language
Processing, pages 458467, Seattle, Washington, USA,
October 2013. Association for Computational Linguistics.
A. Severyn, A. Moschitti, M. Tsagkias, R. Berendsen, and
M. de Rijke. A syntax-aware re-ranker for microblog
retrieval. In SIGIR, 2014.

D. Shen and M. Lapata. Using semantic roles to improve
question answering. In EMNLP-CoNLL, 2007.

1. Soboroff, I. Ounis, J. Lin, and 1. Soboroff. Overview of the
TREC-2012 microblog track. In TREC, 2012.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine Learning
Research, 15:1929-1958, 2014.

M. Surdeanu, M. Ciaramita, and H. Zaragoza. Learning to
rank answers to non-factoid questions from web collections.
Comput. Linguist., 37(2):351-383, June 2011.

J. Suzuki, Y. Sasaki, and E. Maeda. Svm answer selection
for open-domain question answering. In COLING, 2002.

W. tau Yih, M.-W. Chang, C. Meek, and A. Pastusiak.
Question answering using enhanced lexical semantic models.
In ACL, August 2013.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A.
Manzagol. Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising
criterion. J. Mach. Learn. Res., 11:3371-3408, Dec. 2010.
M. Wang and C. D. Manning. Probabilistic tree-edit models
with structured latent variables for textual entailment and
question answer- ing. In ACL, 2010.

M. Wang, N. A. Smith, and T. Mitaura. What is the jeopardy
model? a quasi-synchronous grammar for qa. In EMNLP,
2007.

P. C. Xuchen Yao, Benjamin Van Durme and

C. Callison-Burch. Answer extraction as sequence tagging
with tree edit distance. In NAACL, 2013.

L. Yu, K. M. Hermann, P. Blunsom, and S. Pulman. Deep
learning for answer sentence selection. CoRR, 2014.

M. D. Zeiler. Adadelta: An adaptive learning rate method.
CoRR, 2012.

M. D. Zeiler and R. Fergus. Stochastic pooling for
regularization of deep convolutional neural networks. CoRR,
abs/1301.3557, 2013.

	1 Introduction
	2 Learning to Rank
	2.1 Problem formulation
	2.2 Learning to Rank approaches

	3 Our Deep Learning Model
	3.1 Sentence model
	3.1.1 Sentence matrix
	3.1.2 Convolution feature maps
	3.1.3 Activation units
	3.1.4 Pooling

	3.2 Our architecture for matching text pairs
	3.2.1 Matching query and documents
	3.2.2 Hidden layers
	3.2.3 Softmax
	3.2.4 The information flow

	3.3 Training
	3.4 Regularization

	4 Experiments and Evaluation
	4.1 Training and hyperparameters
	4.2 Word embeddings
	4.3 Size of the model

	5 Answer Sentence Selection
	5.1 Experimental setup
	5.2 Results and discussion

	6 TREC Microblog Retrieval
	6.1 Experimental setup
	6.2 Results and discussion

	7 Related Work
	8 Conclusions

