
Collaborative Partitioning for Coreference Resolution

Olga Uryupina♦ and Alessandro Moschitti
♦DISI, University of Trento 38123 Povo (TN), Italy

Qatar Computing Research Institute, HBKU, 34110, Doha, Qatar
{uryupina,amoschitti}@gmail.com

Abstract

This paper presents a collaborative par-
titioning algorithm—a novel ensemble-
based approach to coreference resolution.
Starting from the all-singleton partition,
we search for a solution close to the en-
semble’s outputs in terms of a task-specific
similarity measure. Our approach assumes
a loose integration of individual compo-
nents of the ensemble and can therefore
combine arbitrary coreference resolvers,
regardless of their models. Our experi-
ments on the CoNLL dataset show that
collaborative partitioning yields results su-
perior to those attained by the individual
components, for ensembles of both strong
and weak systems. Moreover, by applying
the collaborative partitioning algorithm on
top of three state-of-the-art resolvers, we
obtain the second-best coreference per-
formance reported so far in the literature
(MELA v08 score of 64.47).

1 Introduction
Coreference resolution has been one of the key
areas of NLP for several decades. Major mod-
eling breakthroughs have been achieved, not sur-
prisingly, following three successful shared tasks,
such as MUC (?), ACE (?) and, most re-
cently, CoNLL (?; ?). As of today, several high-
performing systems are available publicly and, in
addition, novel algorithms are being proposed reg-
ularly, even if without any code release. Our study
aims at making a good use of these resources
through a novel ensemble resolution method.

Coreference is a heterogeneous task that re-
quires a combination of accurate and robust pro-
cessing for relatively easy cases (e.g., name-
matching) with very complex modeling of diffi-
cult cases (e.g., nominal anaphora or some types

of pronouns). The general feeling in the commu-
nity is that we are currently approaching the upper
bound for the easy cases and our next step should
involve more complex resolution. If true, this
means that most state-of-the-art systems should
produce very similar outputs: correctly resolving
easy anaphora and failing on less trivial examples.
Table 1 scores the outputs of the three best sys-
tems from the CoNLL-2012 shared task against
each other. As it can be seen, the three systems are
rather different, each of them being only slightly
closer to each other than to the gold key.1 This
suggests that a meta-algorithm could merge their
outputs in an intelligent way, combining the cor-
rect decisions of individual systems to arrive at a
superior partition.

Although several coreference resolution toolk-
its exist for over a decade, to our knowledge, there
have been no attempts at trying to merge their out-
puts. The very few ensemble methods reported in
the literature focus on combining several resolu-
tion strategies within the same system. Follow-
ing the success of the CoNLL shared task (?; ?),
however, multiple complex approaches have been
investigated, with very different underlying mod-
els. This means that a re-implementation of all
these algorithms within a single system requires
a considerable engineering effort. In the present
study, we combine the final outputs of the individ-
ual systems, without making any assumptions on
their specifications. This means that our approach
is completely modular, allowing to combine third-
party software as black boxes.

The present study aims at finding a partition
combining the outputs of individual coreference
resolvers in a collaborative way. To this end,
we search the space of possible partitions, start-

1Across all the systems, the two most different submis-
sions are zhekova vs. li (34.10 MELA) and the two clos-
est ones are chunyang vs. shou (95.85 MELA).



key fernandes martschat bjorkelund
fernandes 60.64 100 66.74 67.07
martschat 57.67 100 64.22
bjorkelund 57.41 100

Table 1: Scoring top CoNLL-2012 systems
against each other, MELA v08.

ing from the all-singleton solution and incremen-
tally growing coreference entities, with the objec-
tive of getting a partition similar to the individual
outputs. As a measure of similarity, we rely on
task-specific metrics, such as, for example, MUC
or MELA scores. To our knowledge, this is the
first ensemble-based approach to coreference, op-
erating directly on the partition level. While tra-
ditional ensemble techniques, such as boosting or
co-training, have been successfully used for coref-
erence resolution before, they are applicable to
classification tasks and can only be used on lower
levels (e.g., for classifying mention pairs). Com-
bining partitions directly is a non-trivial problem
that requires an extra modeling effort.

The rest of the paper is organized as fol-
lows. In the next section, we discuss the previous
ensemble-based approaches to coreference resolu-
tion. Section 3 presents our collaborative parti-
tioning algorithm. In Section 4, we evaluate our
approach on the English portion of the OntoNotes
dataset. Section 5 summarizes our contributions
and highlights directions for future research.

2 Related Work
Only very few studies have so far investigated pos-
sibilities of using multiple resolvers for corefer-
ence. The first group of approaches aim at param-
eter optimization for choosing the best overall par-
tition from the components’ outputs. This line of
research is motivated by the fact that in most ap-
proaches to coreference, the underlying classifier
does not take into account the task metric, such as,
for example, MUC or MELA scores. For instance,
in the classical mention-pair model (?), the clas-
sifier is trained to distinguish between coreferent
and non-coreferent pairs. The output of this classi-
fier is then processed heuristically to create coref-
erence partitions. There is therefore no guarantee
that the classifier optimized on pairs would lead to
the best-scoring partition. One way to overcome
this issue involves training a collection of models
and then picking the globally best one on the de-
velopment data (?; ?). Another possible solution
is to learn a ranker that would pick the best model

on a per-document basis, using partition-specific
features (?). While these approaches can integrate
arbitrary systems, they only allow to pick the best
output partition, thus, only considering a single so-
lution at a given time. Our algorithm, on the con-
trary, builds a new partition in a collaborative way,
manipulating entities produced by individual com-
ponents.

The second research line involves training en-
sembles of classifiers within the same model, us-
ing bagging, boosting or co-training (?; ?; ?; ?).
Building upon these studies, ?) combine differ-
ent coreference algorithms in an ensemble-based
approach. For each mention in the document,
they run several models (mention-pair, mention-
ranking, entity-ranking) and heuristically merge
their outputs. All these approaches, however, as-
sume a very tight integration of individual com-
ponents into the ensemble. Thus, they all assume
the same set of mentions to be classified.2 More-
over, most algorithms can only make ensembles of
rather similar components, for example, varying
feature sets or parameters within the same model
of coreference. While ?) allow for a combination
of different models, they do it via model-specific
rules, assuming the same set of mentions and a
left-to-right per-mention resolution strategy—so a
completely different novel model cannot be inte-
grated. Finally, most ensembles use some inter-
nal information from their individual components,
e.g., the confidence scores for mention-pairs. In
practice, these considerations mean that all the in-
dividual systems should be re-implemented in a
single framework before they can be combined in
an ensemble. Our study, on the contrary, makes
no assumptions about individual components. We
combine their outputs at the partition level, with-
out any requirements on their internal structure.
Thus, the individual systems can rely on different
mention detection approaches. They can have ar-
bitrary models. We do not use any system-internal
information, which allows us to use individual
components as black boxes. Most importantly, our
approach can be run without any modification on
top of any resolver, present or future, thus benefit-
ing from other studies on coreference and advanc-
ing the state of the art performance.

The machine learning community offers several

2The CoNLL systems differ considerably with respect to
their underlying mentions, thus, the mention detection F-
score between two systems varies from 50.11 (xinxin vs.
li) to 99.07 (chunyang vs. shou).



algorithms combining multiple solutions for tasks
going beyond simple classification or regression.
The work of ?) is of particular relevance for our
problem. Thus, ?) introduce the task of ensemble
or consensus clustering, where the combiner aims
at creating a meta-clustering on top of several in-
dividual solutions, without accessing their internal
representations, e.g., features. The formulation of
?) is identical to ours. However, there are sev-
eral important differences. Thus, ?) focus on the
clustering problem, in particular, for large sets of
data points. They show that the optimal solution
to the consensus clustering problem is not com-
putationally feasible and investigate several very
greedy approaches.

Although coreference is formally a partitioning
problem, the setting is rather different from a typ-
ical clustering scenario. Thus, individual men-
tions and mention properties are very important
for coreference and should carefully be assessed
one by one. The resolution clues are very hetero-
geneous and different elements (mentions) of clus-
ters (entities) can be rather dissimilar in a strict
sense. This is why, for example, clustering evalu-
ation measures are not reliable for coreference—
and, indeed, task-specific metrics have been put
forward. While algorithms of (?) constitute
the state of the art in the ensemble clustering
in general, we propose a coreference-specific ap-
proach. More specifically, (i) while ?) rely on
task-agnostic measures of similarity between par-
titions (mutual information), approximating the
search for its maximum with various heuristics,
we explicitly integrate coreference metrics, such
as MUC and MELA and (ii) since our partitions
are much smaller than typical clustering outputs,
we can afford a less greedy agglomerative search
strategy, again, motivated by the specifics of the
final task. In our future work, we plan to evalu-
ate our approach against the general-purpose al-
gorithms proposed in (?).

3 Collaborative Partitioning
This section first describes our collaborative par-
titioning algorithms, summarized in Algorithm 1
and then addresses technical details essential for
running it in a practical scenario. The main idea
behind collaborative partitioning is rather straight-
forward: we aim at finding a partition that is sim-
ilar to all the outputs produced by the individual
components of the ensemble. To implement this
strategy, we have to specify two aspects: (a) the

Algorithm 1 Collaborative Partitioning
Require: P = {p1..pn}: list of partitions generated by

n systems; each partition pi is a set of entities pi =
{ei1..eikn

}, each entity is a set of mentions m
Require: coreference score: an external metric, e.g.

MUC or MELA
1: begin
2: create a list of all the mentions M = {m1..mk}
3: init the all-singleton partition p = {e1..ek}, ei = {mi}
4: while ‖p‖ > 1 do
5: current similarity = vote(p, P )
6: max = 0
7: for all ea, eb ∈ p do
8: p′ = p ∪ {ea ∪ eb} \ {ea} \ {eb}
9: cand similarity = vote(p′, P )

10: if cand similarity > max then
11: max = cand similarity,maxp = p′

12: if max < current similarity then
13: break;
14: p = maxp

15: end
16: function VOTE(p,P )
17: sim = 0
18: for all pi ∈ P do
19: sim+ = coreference score(p, pi)

20: return sim

procedure to effectively search the space of possi-
ble partitions generating outputs to be tested and
(b) the way to measure similarity between a can-
didate partition and a component’s output. In both
cases, we propose task-specific solutions.

Thus, we start with the all-singleton partition,
where each mention makes its own entity and then
try to incrementally grow our entities. At each
iteration, we try to merge two clusters, compar-
ing the similarity to the components’ outputs be-
fore and after the candidate merge. If a candi-
date merge leads to the highest voting score, we
execute this merge and proceed to the next iter-
ation. If no candidate merges improve the sim-
ilarity score for more than a predefined termina-
tion threshold, the algorithm stops. Several things
should be noted. First, when trying to build a new
partition, we only allow for merging: we never go
back and split already constructed entities. This
decision is motivated by the cost of a single op-
eration: while there is only one way to merge two
entities, there are exponentially many ways to split
an entity in two, making the latter operation much
more computationally expensive. Second, unlike
most approaches to coreference, we do not pro-
cess the text in the left-to-right order. Instead, we
consider the whole set of mentions from the initial
iteration, doing first the merges supported by the
majority of the components in the ensemble.

To compute the voting score, we first define the



President Clinton has told a memorial service for the victims of the deadly bomb attack on the USS Cole that justice will prevail . Mr. Clinton promised the
gathering at the Norfolk Naval station Wednesday that those who carried out the deadly attack that killed 17 sailors will be found . To those who attacked them ,
we say you will not find a safe harbor , we will find you and justice will prevail . Meanwhile , in Yemen President Ali Abdul Salay said important evidence had
been uncovered in the investigation . President Salay was quoted as saying two people responsible for the blast were killed in a suicide mission and that the attack
had been planned for a long time . His comments were not immediately confirmed by US officials who are leading the investigation with Yemen ’s help .
fernandes martschat bjorkelund ensemble
[1,2]: President Clinton [1,2]: President Clinton [1,2]: President Clinton [1,2] President Clinton
[25,26] Mr. Clinton [25,26] Mr. Clinton [25,26] Mr. Clinton [25,26] Mr. Clinton
[12,15]: the deadly bomb attack [12,19]: the deadly .. Cole [12,15]: the deadly bomb attack
[115,116]: the attack [115,116]: the attack [115,116]: the attack [115,116]: the attack

[41,47]: the deadly attack .. sailors [41,47]: the deadly attack .. sailors [41,47]: the deadly attack .. sailors
[46,47]: 17 sailors [46,47]: 17 sailors [46,47]: 17 sailors

[56,56]: them [56,56] them [56,56] them [56,56] them
[37,47]: those who carried .. sailors [37,47]: those who carried .. sailors [37,47]: those who carried .. sailors
[53,56]: those who attacked them [53,56]: those who attacked them [53,56]: those who attacked them
[60,60]: you [60,60]: you [60,60]: you
[71,71]: you [71,71]: you [71,71]: you
[58,58]: we [58,58]: we [58,58]: we [58,58]: we
[68,68]: we [68,68]: we [68,68]: we [68,68]: we
[80,80]: Yemen [80,80]: Yemen [80,80]: Yemen [80,80]: Yemen
[140,141]: Yemen ’s [140,141]: Yemen ’s [140,141]: Yemen ’s [140,141]: Yemen ’s
[81,84]: President Ali Abdul Salay [81,84]: President Ali Abdul Salay [81,84]: President Ali Abdul Salay
[95,96]: President Salay [95,96]: President Salay [95,96]: President Salay [95,96]: President Salay
[125,125]: His [125,125]: His [125,125]: His [125,125]: His
[92,93]: the investigation [92,93]: the investigation [92,93]: the investigation
[137,138]: the investigation [137,142]: the inv. with Yemen ’s help [137,138]: the investigation

Table 2: Collaborative partitioning on a sample OntoNotes document: 3 top systems and their ensemble,
using MELA similarity. Each row corresponds to a mention, each (multi-row) cell corresponds to an
entity created by a specific system. Bracketed numbers indicate word ids.

similarity between two partitions, based on coref-
erence metrics, as implemented in the CoNLL
scorer (?): we score our generated partitions
against the outputs of the ensemble components.
This way we ensure that the final partition is re-
lated to the individual outputs in the way that is
relevant for the task. There are multiple ways to
derive the voting score from existing metrics. The
parameters to consider here are: the specific mea-
sure to be used (e.g., MUC vs. CEAF vs. MELA),
the granularity (e.g., whether to measure the in-
crease/decrease of the specific metric as a con-
tinuous or binary value) and the way to combine
measures from the different ensemble components
in a single score (e.g., weighted vs. unweighted
voting). In Section 3.1 below, we discuss several
practical considerations for making this choice.

Note that our approach does not make any as-
sumptions about mention detection for individual
components: to initialize the run, we simply lump
together all the mentions. This, however, leads to
performance drops if several individual systems
suggest different boundaries for the same men-
tion: the final solution will then keep all the vari-
ants merging them into the same entity. To avoid
this issue, we implement a post-processing clean-
up step: if the final solution contains entities with
nested mentions, we keep the most popular vari-
ants (or the shorter one for the same popularity).
This post-processing helps us avoid any complex

merging machinery at the mention level.
Table 2 shows a sample OntoNotes document

with outputs of the three top systems and the par-
tition created by the collaborative ensemble. Some
entities (e.g. Yemen) are easy for all the systems.
Some entities (attack; investigation; Salay) are re-
covered fully only by two systems, probably for
the lack of required features. Note that although
each system misses some coreference relations, al-
together they resolve all the three entities, leading
to a considerable improvement in the collaborative
partition. Finally, the two entities for attackers and
sailors, central to the document, are represented
with pronominal mentions that are hard to resolve.
Not surprisingly, the systems make several spuri-
ous decisions w.r.t. these entities. The collabora-
tive partitioning algorithm, however, manages to
filter out erroneous assignments and produce the
correct partition.

3.1 Performance Issues
The collaborative partitioning algorithm starts
from the all-singleton solution and tries to incre-
mentally merge entities. Each candidate merge is
evaluated with the coreference scorer. This means
that, in the worst case, the system requires 0(n3)
scorer runs, where n is the total number of men-
tions: it does n merges and for each merge i, it
searches for a pair among n − i + 1 entities that
maximizes the overall similarity score, requiring
(n−i+1)∗(n−i)

2 scorer runs. This can become pro-



hibitively slow, making the approach not practical.
Below we discuss three solutions to speed up the
algorithm.

First, the voting function can be simplified.
Thus, instead of using continuous similarity values
(i.e., how much a candidate merge brings the solu-
tion closer to the components’ output via increas-
ing or decreasing the specific coreference metric),
we can rely on binary indicators: the component
up-/down- votes a merge if the metric’s value in-
creases/decreases. To compute the final score, we
use unweighted voting (or, alternatively, weighted
voting with very simple integer weights). This
way, the final score can only take a small num-
ber of values and, for each merge, we can stop
the search once the highest possible score is ob-
served, instead of assessing all the (n−i+1)∗(n−i)

2
possible pairs. This trick does not affect the worst-
case complexity, but can help a lot on the average.
Moreover, a simple voting function is necessary
for the second speed-up adjustment.

Each merge only involves two entities. Thus, at
the merge iteration i, the system observes n−i en-
tities it has already seen before and one new entity
generated at the merge iteration i−1. To speed up
the processing, we can therefore store voting val-
ues for merge attempts and reuse them at each iter-
ation. With this adjustments, the algorithm needs
only to evaluate candidate merges with the newly
constructed entity and therefore each iteration re-
quires a linear number of scoring runs, leading to
O(n2) runs overall. Two considerations should be
taken into account. Suppose we evaluate a merge
attempt for two entities, e1 and e2, at the iteration
i and store the value for the voting function. If we
then attempt to merge the same two entities at the
iteration i′, the coreference scoring functions will
be different, since they assess the whole partition.
This means that this speed-up trick only works if
the ensemble voting function is very simple and
is not affected by slight changes in the individual
coreference scores. The second consideration is
more troublesome. Hashing of voting results only
works if the underlying coreference scoring func-
tion respects certain monotonicity properties: sup-
pose a (candidate) merge of two entities, e1 and e2
at iteration i improves the coreference score with
respect to a component’s output; the same merge
should improve the coreference score also at any
later iteration i′. Intuitively speaking, this means
that two entities should or shouldn’t be merged,

according to a specific coreference metric, regard-
less of the rest of the partition. While link- or
mention-based metrics respect this property, the
CEAF scores evaluate partitions as a whole and
therefore are not monotonic.

Finally, some coreference metrics, such as B3

and, most importantly, MUC are very fast to com-
pute. The CEAF scores, on the contrary, re-
quire a computationally expensive partition align-
ment procedure. A considerable speed-up can be
achieved by opting for a faster scorer. In the exper-
imental section, we evaluate the algorithm’s per-
formance with different scoring metrics.

3.2 Algorithm adjustments for the
CoNLL/OntoNotes setting

Following the state of the art, we evaluate our ap-
proach within the CoNLL framework (?): we use
the OntoNotes dataset (?) and rely on the official
release (v8) of the scorer (?). Several important
adjustments should be made to our algorithm to
account for peculiarities of this set-up. In partic-
ular, (a) the OntoNotes guidelines do not provide
annotations for singleton entities and (b) the offi-
cial shared task score (MELA) relies strongly on
B3 and CEAF metrics. These two properties in
combination lead to a number of counter-intuitive
effects. We refer the reader to a recent study by ?)
for an extensive discussion of problematic issues
with the CoNLL scoring strategy.

The following adjustments have been made to
run the algorithm in the CoNLL setting. First,
each mention has been duplicated to mitigate
the mention identification effect (?): we expand
each document by several lines and fill them with
dummy mentions. This prevents the system from
making spurious merges at the initial iterations as
a result of problematic CEAF values.

Second, we employ several clean-up strategies
to post-process the final partition. Thus, we re-
move mentions recognized by a single system
only, unless they are considered coreferent with
exactly one popular (recognized by multiple sys-
tems) mention. This rather inelegant solution
could be replaced with a simple requirement that
each mention should be recognized by several sys-
tems if the singletons were not removed from the
evaluation.

4 Experiments
In this section, we evaluate empirically the perfor-
mance of the collaborative partitioning approach
for a variety of ensembles. In particular, we inves-



tigate ensembles of different size and composition
with respect to the components’ quality and assess
different coreference scoring metrics as criteria for
partition similarity.

4.1 Experimental setup
In our experiments, we rely on the English portion
of the CoNLL-2012 dataset (?). We use the out-
puts of the CoNLL submissions on the test data,
made available publicly by the organizers.

To speed up the system, we use the techniques
discussed in Section 3.1 above. In particular, we
rely on a very simple unweighted voting scheme:
each component contributes equally to the final
score. The per-component score for a candidate
merge between e1 and e2 is computed as follows:
if either e1 or e2 are not represented in a compo-
nent’s output, it abstains from voting (score =
0). Otherwise, the component upvotes candi-
date merges if the underlying coreference score
increases (score = 2) and downvotes, if it de-
creases (score = −1). The preference for positive
votes (2 vs. 1) is motivated by the fact, that most
state-of-the-art models explicitly model corefer-
ence, but not non-coreference: if two entities are
annotated as non-coreferent by the system, it can
be due to several factors, such as the lack of rel-
evant features or algorithm peculiarities that limit
the search space. The positive information in the
systems’ output is therefore more reliable than the
negative one. The specific threshold (2 : 1) has
been chosen arbitrary without any tuning. Finally,
the termination threshold has been set to 0.

4.2 Choosing the scoring metric
In our first experiment, we evaluate different ways
of defining similarity between partitions. Recall
that each merge is evaluated based on whether
it makes the constructed partition closer to the
outputs of individual components. The similar-
ity between two partitions is assessed with a task-
specific measure. Multiple metrics have been pro-
posed to evaluate coreference resolvers, we re-
fer the reader to (?) for a detailed description
and to (?) for a discussion of their problematic
properties. In the present experiment, we assess
three commonly accepted metrics, MUC, B3 and
CEAFE as well as their average, MELA, used for
the official ranking of the CoNLL shared task.

Table 3 summarizes the results achieved by en-
sembles of the top-3 CoNLL systems. The upper
half of the table presents individual components,
re-evaluated with the v8 scorer. The lower part

presents the performance achieved by four differ-
ent ensembles, varying the underlying similarity
measure used for growing up the partitions. For
each performance metric, we highlight the best ap-
proach with boldface.

This experiment suggests several findings.
First, the collaborative partitioning clearly brings a
considerable improvement: depending on the un-
derlying similarity score, the ensemble performs
up to 3.5 percentage points better than the best
individual components. Moreover, all the four
created ensembles yield scores comparable to the
very best state-of-the-art systems.

Second, all the four ensembles outperform indi-
vidual components according to all the evaluation
metrics. This means that the overall improvement
(MELA) reflects a real quality increase and not
just some fortunate re-shuffling of the individual
scores to be averaged.

Third, the best overall improvement is achieved
with the voting function based on the MELA sim-
ilarity. The much faster MUC-based method per-
forms 1.5 percentage points worse. This is an am-
biguous result: on the one hand, a difference of
1.5% on the CoNLL dataset is non-negligible. On
the other hand, even the MUC-based method out-
performs each individual component.

4.3 Ensembles of top vs. bottom CoNLL
systems

The performance of different systems submitted to
CoNLL varies considerably, from 36.11 to 60.64
(MELA score, v08). In this experiment, we try to
combine different types of systems. We split all
the CoNLL systems into “tiers” of 3 submissions,
based on their ranking. We do not use the system
scores; however, we rely on the ranking computed
on the same dataset.3

Tables 4 and 5 report the performance figures
for ensembles composed of systems from each
tier. The former uses MELA as a similarity mea-
sure, the latter—MUC. In both tables, the up-
per half reports performance figures for individ-
ual components (each cell in the upper half con-
tains three values for the performance of the three
systems of each tier). The lower half reports
performance figures for collaborative partitioning
with the components from each tier. The best-

3This is a rather unfortunate set-up, but there are no means
to roughly evaluate CoNLL systems without using the test
data. We assume, however, that an external evaluation, if
possible, would be able to differentiate top against bottom
submissions.



components MUC F CEAFE F B3 F MELA
CoNLL system outputs

fernandes 70.51 53.86 57.58 60.64
martschat 66.97 51.46 54.62 57.67
bjorkelund 67.58 50.21 54.47 57.41

Per-tier ensembles (3 systems per ensemble), score>0
fernandes, martschat,bjorkelund; MUC similarity 72.45 55.71 59.87 62.67
fernandes, martschat,bjorkelund; CEAFE similarity 71.73 58.04 61.00 63.58
fernandes, martschat,bjorkelund; B3 similarity 71.75 58.31 61.08 63.70
fernandes, martschat,bjorkelund; MELA similarity 71.96 58.95 61.35 64.08

Table 3: Collaborative partitioning with the 3 top CoNLL-2012 systems, using different coreference
metrics when assessing candidate merges. Boldface indicates the best performing system for each score.

components MUC F CEAFE F B3 F MELA
CoNLL system outputs

tier1: fernandes, martschat,bjorkelund 70.51 66.97 67.58 53.86 51.46 50.21 57.58 54.62 54.47 60.65 57.68 57.42
tier2: chang,chen,chunyang 66.38 63.71 63.82 48.94 48.10 47.58 52.99 51.76 51.21 56.10 54.52 54.20
tier3: stamborg,yuan,xu 64.26 62.55 66.18 46.60 45.99 41.25 51.66 50.11 50.30 54.17 52.88 52.57
tier4: shou,uryupina,songyang 62.91 60.89 59.83 46.66 42.93 42.36 49.44 46.24 45.90 53.00 50.02 49.36
tier5: zhekova,xinxin,li 53.52 48.27 50.84 32.16 31.90 25.21 35.66 35.73 32.29 40.44 38.63 36.11

Per-tier ensembles (3 systems per ensemble)
tier1: fernandes, martschat,bjorkelund 71.96 58.95 61.35 64.08
tier2: chang,chen,chunyang 66.35 53.54 56.11 58.66
tier3: stamborg,yuan,xu 68.60 52.98 57.89 59.22
tier4: shou,uryupina,songyang 66.75 51.25 55.10 57.70
tier5: zhekova,xinxin,li 56.18 34.67 41.51 44.12

Table 4: Ensembles of 3 classifiers for different tiers, using MELA for merging. Boldface indicates the
best performing system for each tier.

components tier MUC (R) tier MUC (P) tier MUC (F) tier MELA
CoNLL system outputs

tier1: fernandes,martschat,bjorkelund 65.83 65.21 65.23 75.91 68.83 70.10 70.51 66.97 67.58 60.64 57.67 57.41
tier2: chang,chen,chunyang 64.77 63.47 64.08 68.06 63.96 63.57 66.38 63.71 63.82 56.10 54.51 54.20
tier3: stamborg,yuan,xu 65.41 62.08 59.11 63.15 63.02 75.18 64.26 62.55 66.18 54.17 52.87 52.57
tier4: shou,uryupina,songyang 63.45 61.00 55.29 62.38 60.78 65.19 62.91 60.89 59.83 53.00 50.01 49.35
tier5: zhekova,xinxin,li 54.28 55.48 39.12 52.79 42.72 72.57 53.52 48.27 50.84 40.44 38.62 36.11

Per-tier ensembles (3 systems per ensemble)
tier1: fernandes,martschat,bjorkelund 69.60 75.55 72.45 62.67
tier2: chang,chen,chunyang 69.26 64.61 66.85 54.63
tier3: stamborg,yuan,xu 67.48 69.12 68.29 54.26
tier4: shou,uryupina,songyang 69.26 66.07 67.63 52.23
tier5: zhekova,xinxin,li 57.07 61.77 59.33 40.85

Table 5: Ensembles of 3 classifiers for different tiers, using MUC for merging. Boldface indicates the
best performing system for each tier.

performing system for each performance metric is
shown in boldface: for example, the MUC-based
ensemble of the three tier1 systems outperforms
its individual components in MUC Recall, MUC
F and MELA (Table 5, lower half, first row), with
the scores of 69.6%, 72.45% and 62.67% respec-
tively; the best MUC Precision for tier1 (75.91%)
is, however, achieved by an individual component,
the system fernandes (Table 5, upper half, first
row).

As these two tables suggest, collaborative parti-
tioning yields improvement over individual com-
ponents, for both stronger and weaker tiers. This
suggests that collaborative partitioning can be
used on top of any systems: unlike many other
ensemble techniques, it does not suffer from the
error propagation problem when operating on en-
sembles of weaker components.

The final partition depends on the similar-

ity measure used by the collaborative algorithm.
Thus, the MELA measure, being an average of
MUC, B3 and CEAF, leads to more balanced fi-
nal partitions, improving on each individual score.
MUC-based ensembles, on the contrary, improve
on MUC (through a drastic increase in MUC recall
without much precision loss), but do not guarantee
any increase in B3 or CEAF, leading to mixed re-
sults on MELA.

4.4 Ensembles of different size
In this experiment, we consider ensembles of dif-
ferent sizes, starting from tier1 and adding less
performing components. Table 6 reports the re-
sults for ensembles of different size, using MUC
for measuring the similarity while growing parti-
tions. The upper half presents the results with the
default termination parameter. As it shows, the
inclusion of more lower-quality systems leads to
better MUC recall values at the cost of the sharp



components MUC R MUC P MUC F MELA
best individual component (fernandes)

fernandes 65.83 75.91 70.51 60.65
ensembles, default termination threshold (= 0)

tier1 69.60 75.55 72.45 62.67
tier1+2 74.85 61.73 67.66 52.38
tier1+2+3 75.78 56.43 64.69 43.97
tier1+2+3+4 74.85 53.34 62.29 39.58
tier1+2+3+4+5 (all) 74.08 48.02 58.27 33.10

ensembles, optimal termination threshold
tier1 69.60 75.55 72.45 62.67
tier1+2 70.53 75.93 73.13 53.60
tier1+2+3 71.54 75.24 73.35 44.41
tier1+2+3+4 68.50 77.12 72.55 49.06
tier1+2+3+4+5 (all) 65.36 80.24 72.04 45.78

Table 6: Ensembles of different sizes, using MUC
for merging.

MUC CEAFE B3 MELA
competitive upper bound, tier1 71.53 56.46 59.74 62.57
competitive upper bound, tier1+2 71.53 56.46 59.74 62.57
competitive upper bound , all 72.12 57.55 60.53 63.39
collaborative, tier1 71.96 58.95 61.35 64.08

Table 7: Competitive vs. collaborative partition-
ing, using MELA for selection (competitive) or
merging (collaborative).

deterioration in precision and the overall scores.
The lower half shows the results obtained with

the optimal value of the termination parameter. In
a practical scenario, this parameter can be tuned on
the development data. Here, the best MUC results
(F = 73.35) are achieved with the top nine sys-
tems. However, this MUC improvement comes at
a high cost in B3 and CEAF, leading to low MELA
values even with the optimal parametrization.

4.5 Collaborative vs. Competitive
Partitioning

One of the key advantages of the collaborative par-
titioning algorithm is its loose coupling approach
with respect to individual components. This al-
lows for straightforward integration of any coref-
erence resolver at the moment of its release. The
only other approach with the same property has
been advocated by ?), where a ranker is learned to
select the best partition from the individual out-
puts. We refer to this algorithm as competitive
partitioning, since individual components com-
pete with each other for each document instead of
collaborating to build a new improved partition.

The competitive partitioning algorithm has a
natural upper bound: by using an oracle to always
select the best-performing component for each in-
dividual document, we can get the highest perfor-
mance level possibly attainable with this model.
Table 7 shows these upper bounds for the first 3, 6
and 15 (all) CoNLL systems. Note that these num-

components MUC CEAFE B3 MELA
berkeleycoref 69.13 54.30 57.40 60.27
ims-hotcoref 70.25 55.44 58.03 61.23
LSPE 72.34 57.40 60.36 63.36
ensemble 71.98 60.01 61.44 64.47

Table 8: Collaborative partitioning for state-of-
the-art systems, using MELA for merging. Bold-
face indicates the best result for each score.

bers are obtained with an oracle—the results with
a real ranker will, obviously, be lower. The last
row of the table shows, for comparison, the tier1
performance for the collaborative partitioning al-
gorithm.

First, it is clear that competitive partitioning on
top of CoNLL systems is hardly promising: even
in the oracle setting, the performance improves by
only 2-3 percentage points. This is due to the
fact that CoNLL has a clear winner, the system
fernandes, yielding the best solution for more
than half of the documents and never losing too
much for the remaining half.

Second, collaborative partitioning, on the con-
trary, seems more beneficial, yielding the results
superior to the upper bound of the competitive par-
titioning algorithm. This is due to the fact that the
collaborative approach makes a better use of in-
dividual components, combining their entities to
arrive at a better new solution.

4.6 Ensembles of post-CoNLL systems
In our last experiment, we depart from the
CoNLL outputs to run the collaborative parti-
tioning algorithm on top of the state-of-the-art
coreference resolvers. In particular, we com-
bine three very different high-performing systems,
berkeleycoref (?), ims-hotcoref (?) and
lspe (?; ?). The former relies on an entity-
level modeling, whereas the latter two use dif-
ferent structural learning approaches to corefer-
ence. All these systems represent state-of-the-art
research in the field. Note that we do not include
the very latest deep learning based approaches (?;
?) to allow for a fair comparison: since, as we
have seen in the experiments above, the collabora-
tive partitioning algorithm consistently improves
over individual ensemble components, integrating
the very best systems would be a trivial but not
very informative way of advancing the state of the
art.

Table 8 shows the performance level of each
of these systems on the English portion of the
CoNLL-2012 dataset, individually and of the col-



laborative ensemble. The best performing sys-
tem according to each metric is shown in bold.
The numbers were obtained by running the v08
scorer on the outputs provided by the developers
(berkeleycoref, lspe) or created using the
official distribution and the provided pre-trained
model (ims-hotcoref). No adjustments have
been made to the collaborative partitioning algo-
rithm.

Similarly to the experimental findings presented
in the previous sections, the collaborative parti-
tioning algorithm outperforms the best individ-
ual components. Most importantly, it yields the
second-best results reported in the literature, out-
performing the system of ?) by 0.26 percentage
points.

5 Conclusion
This paper presents collaborative partitioning—
a novel ensemble-based approach to coreference
resolution. Starting from the all-singleton solu-
tion, we search the space of all partitions, aiming
at finding the solution close to the components’
partitions according to a coreference-specific met-
ric. Our algorithm assumes a loose coupling of in-
dividual components within the ensemble, allow-
ing for a straightforward integration of any third
party coreference resolution system.

Our evaluation experiments on the CoNLL
dataset show that the collaborative partitioning
method improves upon individual components,
both for high and low performing ensembles. This
performance improvement is consistent across all
the metrics. Moreover, when combining three
state-of-the-art systems, the collaborative ensem-
ble achieves the second-best results reported in the
literature so far (MELA score of 64.47).

In the future, we plan to concentrate on improv-
ing the voting scheme for the ensemble. Currently,
the model relies on a very simplistic unweighted
voting strategy. This choice is motivated by practi-
cal considerations: a more complex scheme would
not make possible the necessary system speed up
techniques. The unweighted voting, however, is
problematic for ensembles that (a) contain com-
ponents of very different quality or (b) contain
some extremely similar components. This issue
has been investigated within the ensemble classifi-
cation framework, where several approaches have
been put forward to construct large ensembles that
ensure diversity of their components, e.g., through
splitting training data and/or feature sets. In our

scenario, however, we can not rely on such tech-
niques, since we build ensembles of few existing
high-quality systems, each of them being an out-
come of a considerable research and engineering
effort. We plan to overcome these issues, investi-
gating different versions of heterogeneous voting.

Another direction of our future work involves
an extensive comparison of our approach with en-
semble clustering algorithms proposed within the
machine learning and data mining community, in
particular, by ?). Thus, we plan to (i) evaluate our
model against these general-purpose techniques in
terms of both accuracy and efficiency and (ii) in-
vestigate possibilities of adapting the existing en-
semble clustering algorithms to explicitly incorpo-
rate task-specific metrics.

Finally, we plan to extend our approach to other
NLP tasks, investigating collaborative ensembles
for other problems with complex outputs, going
beyond simple classification-based ensemble tech-
niques.

Acknowledgments

This work has been partially supported by the EC
project CogNet, 671625 (H2020-ICT-2014-2, Re-
search and Innovation action).


