
Maximizing the Sustained Throughput of Distributed
Continuous Queries

Ioana Stanoi, George Mihaila, Themis Palpanas, Christian Lang
IBM Research

irs,mihaila,themis,langc@us.ibm.com

ABSTRACT
Monitoring systems today often involve continuous queries
over streaming data, in a distributed collaborative system.
The distribution of query operators over a network of proces-
sors, and their processing sequence, form a query configura-
tion with inherent constraints on the throughput it can sup-
port. In this paper we propose to optimize stream queries
with respect to a version of throughput measure, the pro-
filed input throughput. This measure is focused on matching
the expected behavior of the input streams. To prune the
search space we used hill-climbing techniques that proved to
be efficient and effective.

Categories and Subject Descriptors: H.2 DATABASE
MANAGEMENT Miscellaneous

General Terms: Algorithms, Performance

Keywords: Data Management, Stream, Continuous

Queries, Query Optimization

1. INTRODUCTION
A continuous monitoring query can be deployed in various

configurations, some better than others with respect to opti-
mization criteria such as latency, work, or throughput. Most
previous work focused on choosing the query configuration
that minimizes total latency and/or work. Each operator of
a continuous query requires a certain amount of execution
time for every incoming data tuple, which leads to an upper
bound on the rate at which tuples can be processed. If the
input streams exhibit higher rates than the query operators
can process, then special mechanisms need to be in place to
handle them. When high input rates represent only short
bursts, buffers can be used to temporarily store the over-
flow of incoming data. If, instead, the high rates have to
be supported for a long period of time, then data need to
be purged out of the input to the operators. This approach
cannot avoid the deterioration of the quality of query re-
sults. There has been a large body of recent research that
focused on which events to shed in order to return a high-

Copyright is held by the author/owner(s).
CIKM’06, November 5–11, 2006, Arlington, Virginia, USA.
ACM 1-59593-433-2/06/0011.

quality result. However, some loss of quality is unavoidable
when information is discarded. For some applications any
event may contain critical information and the reduction in
the quality of results should be minimized.

We focus on a problem complementary to that of load
shedding: finding a query configuration that, given resource
and quality constraints, can successfully process the high-
est incoming stream rates. This translates into finding an
order of query operators and a placement of the operators
on physical nodes that maximize throughput. The measure
of throughput quantifies the number of tuples that can be
processed by the system in a unit of time. Since our goal is
to maximize the input rate that can be processed without
bottlenecks, we express throughput as a vector that quan-
tifies the processing of each input stream. Moreover, input
streams vary in behavior, knowledge that is incorporated
into an input profile (or simply a profile). The goal of maxi-
mizing throughput is often times relevant only if it satisfies
the requirements of the input profile. Out of the large space
of possible query configurations, our goal is to find the query
plans that maximize throughput and adhere to the input
profile.

Examples of data stream management systems are Au-
rora/Borealis [4, 1], STREAM [9], TelegraphCQ [3], and
Gigascope [5]. Designed to operated on single or multiple
nodes, they mostly focus on minimizing the end-to-end data
processing latency. Viglas and Naughton [8] proposed a rate-
based optimization technique for streams, that maximizes
the output rates. The problem of query execution for fixed
plans in widely-distributed environments is also studied by
Ahmad and Cetintemel [2] (minimize the bandwidth use,
or meet certain quality of service requirements) and Piet-
zuch et al. [6](targeted to minimize end-to-end latency in
distributed applications). Another recent study [7] describes
algorithms for efficient, in-network execution of filter queries
on streaming data.

2. MAXIMIZING A PROFILED THROUGH-
PUT

A query may receive input from multiple data streams
with different rate fluctuations. One stream may come from
a source that rarely emits events, while another stream may
be characterized by long bursts of data at very high rates. If
the query optimizer is given even coarse information on the
expected input behavior, it can generate a query plan that
is appropriate under these assumptions. Note that without
this additional knowledge, the query optimizer will have no
way of distinguishing between many feasible solutions, and



may decide that the best solution is one that accepts a high
input rate on the slower stream and a low input rate on the
fast stream. We profile the input as an assignment of val-
ues to the input rates that becomes a target for supported
throughput: < r

p

1
, r

p

2
, · · · rp

n >. A solution C.S is an assign-
ment of values to the input stream rate variables of a given
configuration C such that all the constraints are satisfied.
The quality Qp(C.S) of a solution C.S should then quantify
how much the solution achieves towards the goal of max-
imizing the throughput with respect to the profile. Note
that the goal can also be surpassed. The quality Qp(C.S)
of a solution C.S with respect to an input profile vector p is

defined as: Q
p(C.S) = min

1≤i≤n

„

rs
i

r
p

i

«

.

Note that a configuration has an infinite number of solu-
tions. Consider one solution C.S =< rs

1, r
s
2, · · · r

s
n >. Then

all possible C.S′ =< rs′

1 , rs′

2 , · · · rs′

n > such that rs′

i ≤ rs
i are

also solutions for this configuration. The quality of a con-
figuration is characterized by the best solution under that
configuration.

Let a set of constraints {fi} have the following properties
1)constraint fi is of the form fi(r1, · · · , rn) ≤ ci, 2) fi()
is a monotonically increasing function, and 3) ci is a con-
stant that measures the capacity of a resource or a quality
of service requirement. The constraints {fi} describe the
restrictions imposed in the distributed system by the phys-
ical resources (such as cpu and memory constraints of the
physical nodes) and the service quality guarantees (such as
application requirements on latency). Under these defini-
tions, the throughput optimization problem becomes a non-
linear programming problem, and can be formally defined as
follows: Given a query plan Q (representing multiple contin-
uous queries), a set of physical nodes {Ni} organized in a
network, and a set of constraints {fi}, find an assignment
of the operators in Q to the nodes {Ni} (called a configura-
tion), so as to maximize the objective function Qp(C), for
all the configurations C that satisfy the constraints {fi}.

To find a solution, the query optimizer needs to traverse
the search space of configurations, and compare each visited
configuration with the configuration that was the best so far.
Finding an optimal configuration is a hard problem, and hill-
climbing techniques can reach very good results efficiently.
Recall that each configuration can have an infinite number
of solutions that satisfy the given constraints. To quickly
identify the best solution for each configuration, we observe
the following: Let a query configuration C be restricted by
constraints that are of the form f(r1, · · · , rn) ≤ c, where c is
a constant and f() is monotonically increasing. For a profile
p =< r

p

1
, r

p

2
, · · · rp

n >, a solution with greatest Qp(C.S) lies
on the surface bounding the region of feasible solutions and
on the line through origin and p. The proof is omitted due
to lack of space.

Figure 1: Example of best solution for a configura-

tion C1

To illustrate this point in two dimensions, consider the
example in Figure 1. For configuration C1 the intersection
of the constraint boundary with the line through origin and
< 30, 45 > is at the solution C1.S. Any solution with same
or better quality according to the Qp(C.S) measure increases
either r1 or r2, or both. This solution lies in the darker
region where C1.S is the lower left corner. One can see
that, due to the shape of the feasible space imposed by the
properties of the constraints, no point in the feasible space
can also be in the shaded region. Note that Proposition 1
allows us to compare two configurations by comparing the
intersection points of the feasible space boundaries with the
line from origin to the profile point p.

In our implementation of a distributed query optimizer we
used hill-climbing techniques to prune the search space. We
experimented with greedy algorithms, Tabu, Reactive Tabu,
and Simulated Annealing. The various hill-climbing tech-
niques performed similarly, obtaining the optimal or near-
optimal solution in more than 90% of the time. Simulated
Annealing is orders of magnitude faster than the other ap-
proaches, and therefore it may be preferable especially for
large query plans.

3. CONCLUSION
In this paper we explore continuous query optimization,

which maximizes the system’s runtime capacity with respect
to input rates that have an observed profile. An input pro-
file represents the knowledge on input behavior, that is use-
ful in targeting solutions appropriate for the specific run-
time requirements of the system. The notion of a profile
can be generalized further to include a set of target points,
representing characteristics of input streams. Fitting the
solution to the line segments described in this way by the
profile corresponds to finding a solution that can support
an evolving set of requirements. We plan to look into op-
timizing throughput according to various types of profiles,
incremental query re-configuration, and improving parame-
ters through learning.

4. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The
Design of the Borealis Stream Processing Engine. In CIDR,
Asilomar, CA, January 2005.

[2] Y. Ahmad and U. Çetintemel. Networked query processing for
distributed stream-based applications. In VLDB, 2004.

[3] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden,
V. Raman, F. Reiss, and M. A. Shah. Telegraphcq: Continuous
dataflow processing for an uncertain world. In CIDR, 2003.

[4] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. Zdonik. Scalable Distributed
Stream Processing. In CIDR, Asilomar, CA, 2003.

[5] C. D. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
Gigascope: A stream database for network applications. In
SIGMOD, 2003.

[6] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. Seltzer. Network-Aware Operator Placement
for Stream-Processing Systems. In ICDE, 2006.

[7] U. Srivastava, K. Munagala, and J. Widom. Operator placement
for in-network stream query processing. In PODS, New York,
NY, USA, 2005. ACM Press.

[8] S. Viglas and J. F. Naughton. Rate-based query optimization for
streaming information sources. In SIGMOD, 2002.

[9] J. Widom and R. Motwani. Query processing, resource
management, and approximation in a data stream management
system, 2003.


