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Abstract

The problem of detecting frequent items in streaming datléyant to many different applications across
many domains. Several algorithms, diverse in nature, haea Iproposed in the literature for the solution of
the above problem. In this paper, we review these algorittamag we present the results of the first extensive
comparative experimental study of the most prominent élgos in the literature. The algorithms were
comprehensively tested using a common test framework omigtywaf real and synthetic data. Their
performance with respect to the different parameters, (p@rameters intrinsic to the algorithms, and data

related parameters) was studied. We report the results,imgights gained through these experiments.

1 Introduction

Over the past few years, there has been a substantial isdretiee volume of data generated and the rate
at which these data are generated by various applicatidresenwo factors render the traditiosédre first
and process latedata analysis approach obsolete for several applicatiormss many domains. Instead,
a growing number of applications relies on the new paradigrateaming data processing8, 2, 19].
Consequently, the area of data stream mining has receivesidevable attention in the recent years.

An important problem in data stream mining is that of findirggluent items in the stream. This problem
finds applications across several domains [10, 11, 9], sadinancial systems, web traffic monitoring,
internet advertising, retail and e-business. Furthermbserves as the basis for the solution of other relevant
problems, like identifying frequentemsetq16] andrecentfrequent items [21]. A common requirement in

these settings is to identify frequent items in real timehvaitlimited amount of memory, usually orders of



magnitude less than the size of the problem.

Several novel algorithms have been proposed in the literdtutackle this problem. There are generally
two approaches: counter-based methods, and sketch-batbdds. Counter-based algorithms maintain
counters for and monitor a fixed number of elements of thestrdf an item arrives in the stream that is
monitored, the associated counter is incremented, elsgldgbethm decides whether to discard the item or
reassign an existing counter to this item. The prominentbttbased algorithms include Sticky Sampling
and Lossy Counting(C ) [16], Frequentreq ) [14, 12], and Space-Saving$) [17].

The other approach is to maintain a sketch of the data stnesing techniques such as hashing, to map
items to a reduced set of counters. Sketch-based technigaggain approximate frequency counts of
all elements in the stream. The prominent sketch-basedithlgs include CountSketéh(CCFC ) [4],
GroupTest CGT ) [6], Count Min-Sketch CM ) [5], and hCountiC ) [13].

Although similar in some aspects, each algorithm has its olaracteristics and peculiarities. As far
as we are aware, there has not been a comprehensive conpatatly of all these algorithms. In this
paper, we independently compare all approaches, using enoantest framework and a common set of
synthetic and real datasets, the real datasets coming fuolmdiverse domains as retail, web blogs, and
space measurements. It is interesting to note that sevietla¢ previous studies have not reported results
on real datasets. This work represents a comprehensivé sgperiments that provide statistically robust
indicators of performance under a broad range of operatimgliions. Moreover, we make sure that the
results of our experiments are completely reproducibleergtore, we make publicly available the source
code for all the algorithms used in our experiments, as veaiha datasets upon which we tested them [20].

In summary, in this work we make the following contributions

e We evaluate the performance of the most prominent algosithraposed in the literature for the prob-
lem of identifying frequent items in data streams. We corafhbe performance of these algorithms

along several different dimensions, using a common anddsirframework.

¢ In our experimental framework, we use the most extensivelamse set of synthetic and real datasets

that has been employed in the related literature.

e Our experiments reveal how the parameters of each algostiould be tweaked in order to suit the
requirements of a particular application or data charesties, and they indicate promising directions

for future work in this area.

'We refer to the CountSketch algorithm as CCFC, after theaasitlnitials, to avoid confusion with the Count Min-Sketch
algorithm.



¢ Finally, we provide a ‘practitioner’'s guide’ for helping Belecting the appropriate algorithm for a

given problem scenario.

The rest of the paper is organized as follows: in Section Zjle@fme the problem formally; in Section 3,
we give brief descriptions of the algorithms we test; in 8ectd, we describe factors influencing the test
designs. In Section 5, we present the tests and the reslibsyéd by a discussion of the results in Section 6.

Finally, we conclude in Section 7.
2 Problem Definition

All the algorithms make the simplifying assumption that tlaa stream is a set of integers. That is, each
item or transactiohin the stream is represented by a single integer.

The Frequent Iltems problem (FI) is defined as follows.

Problem 1 [Frequent Items (FD{Given a support parametef, where0 < ¢ < 1, find all the items in the
data stream, which have a frequency of at leaat, where NV is the number of transactions seen so far in

the stream.

Since the algorithms deal with approximate solutions tdrbguent items problem, the problem is some-
times expressed in a modified form that takes into accountriam parametere. This variation of the
problem, known as the-deficient problem, is posed as follows: given a supportmatarg, and an error
parametet, find all the items in the stream which have a frequency ofatle/N, with a tolerance of — e.

e is usually chosen to be much smaller tharypically e = ¢/10 may be used.

The probabilistic algorithms use another input parameteiThis parameter represents the probability
that the algorithm mis-classifies an item as frequent, whismiot, or not frequent, when it actually is.

The significance of the above two parameters (@ndJd) is that they represent the trade-off between
the desired accuracy and the space used by the algorithnh IdVier values ok andd, the algorithms
guarantee a more accurate performance, but at the costredrhsgace usage.

We should note that two of the algorithms, thaG€FC andFreq , are designed to address a slightly
different, but related problem. They identify the tbpnost frequent items in the data stream. Thus, they
take as input the integér, instead of the suppott.

Nevertheless, with a careful, yet straightforward, s@éacof the parameters, the above variations of the
problem become equivalent. In our experiments, we maketbatall the algorithms solve the exact same

problem, and can therefore be directly compared to each.othe

2For the rest of this paper, we use the terms ‘item’ and ‘treiisa’ interchangeably.
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3 The Algorithms
3.1 Short Descriptions of the Algorithms

3.1.1 Freq

The Frequent algorithm keeps countfof= 1/¢ number of items. This is based on the observation that
there can be at the mokt¢ items having frequency more thaiV.

Freq keeps count of each incoming item by assigning a unique eofmteach item, until all the available
counters are occupied. The algorithm then decrements atitess by 1 until one of the counters becomes
zero. It then uses that counter for the newest item. This dédgtes all the non-frequent item counters.

When the query is posed, the algorithm simply returng @#ms as the frequent items.

3.1.2 LC

The Lossy Counting algorithm maintains a data struciyevhich is a set of entries of the forfa, f, A),
wheree is an element in the streanf, is an integer representing the estimated frequencyZand the
maximum possible error ifi. LC conceptually divides the incoming stream into buckets aftiviv = 1/¢
transactions each. If an item arrives that already exisI?, ithhe corresponding is incremented, else a new
entry is createdD is pruned by deleting some of the entries at the bucket boigsda

A query is answered by presenting as output the entriéswheref > (¢ — ¢) V.

3.1.3 CGT

The Combinatorial Group Testing algorithm is based on a @éoation of group testing and error correcting
codes. Each item is assigned to groups using a family of hastiibns. Within each group there is a group
counter which indicates how many items are present in thepgrand a set dbg M counters with\/ being
the largest item in the dataset. The group counter and thetesuwhich correspond to the bits 1 in the
binary representation of the item are updated accordingly.

Frequent items are identified by performing ‘majority teste., by identifying items which occur more

than half the time in a group.

3.1.4 CCFC

CCFC uses a data structure called CountSketch, which israp aft hash tables each containihdpuck-

ets. Two sets of hash functions are used: one/sget (., h;) hashes items to buckets, and the other set



(s1,...,s:) hashes items to the sét1,—1}. When an item arrives, thebuckets corresponding to that
item are identified using the first set, and updated by addingr+1 using the second set.
The estimated count of itemis the median of;[q] - s;[g]. For each item, CCFC uses the CountSketch

data structure to estimate its count and maintain a heagedbf¥ items seen so far.

3.15 CM

The Count-Min algorithm makes use of a new sketch structated the Count-Min Sketch. It is a two
dimensional array with widtlv and depthi, wherew andd are determined by the parameter,§ supplied
to the algorithm. Additionallyd pairwise independent hash functions are chosen at randbith Wwash each
item to a column in the sketch.

When an itemy arrives, one counter in each row is incremented; the cousitgetermined by the hash
function. The estimated frequency for any item is the minimaf the values of its associated counters. For
each new item, its estimated frequency is calculated, aiidsfgreater than the required threshold, it is

added to a heap. At the end, all items whose estimated costill sbove the threshold are output.

3.1.6 hC

The hCount algorithm also uses a Count-Min sketch. It maista sketch of sizen x h, where the

parametersn and h are determined according to the data characteristics aodeal error. This sketch
can be thought of as a hash-tablenofx h counters. The algorithm uses a sethdfiash functions to map
each item of the dataset todifferent counters, one in each column of the table.

The hash functions are of the form:
HZ(/{) = (ai '/{—I—bi) modP) modm,1 <i<h

wherea; andb; are two random numbers, and P is a large prime number.

Thus each data item has a sethofissociated counters, which are all incremented at the @wme of
that item. The estimated frequency of an item is simply theimiim of the values of all its associated
counters. Clearly, the frequency of an item can only be ®tenated. The error is estimated by using the
data structure for calculating the frequency of a few eleeitich are not part of the stream. The average

frequency of these as estimated by the algorithm is clogeeterror.

3The authors include this error correction scheme and naenerthanced algorithm hCount*. In this paper we refer to h@oun

whenever we mentiohC or hCount.



3.1.7 SS

The Space-Saving algorithm uses a data structure calledr8tSummary to monitor the frequent items.
The Stream-Summary data structure consists of a linkedflasfixed number of counters, each correspond-
ing to an item to be monitored. All counters with the same t@we associated with a bucket which stores
the count. Buckets are created and destroyed dynamicalywstems come in. They are stored as an
always-sorted doubly linked list. Each counter also sttiiesestimated error in the frequency count of the
corresponding item, which is used later to provide guaemnsgbout the accuracy of the frequency estimate
returned by the algorithm.

When a query is posed, the algorithm scans through the Isiaketreturns the items whose counters are

associated with the buckets that have values greater teahrishold) /N .
4 Experimental Framework
4.1 Parameters and Performance Measures

The performance of the algorithms is affected by three dgtamameters (see Table 1).

e The intrinsic parameters of the algorithms: the toleran@nd error probability.

e The characteristics of the data stream: the number of itarttsei stream/V, the maximum value in

the item domaif, M, and the distribution of the item values (e.qg., zipf paranet).

e The query parameters: suppatt,or & (for the algorithms that cater to the the tbgtems problem).

In practical applications, a reasonably high accuracydsired, and we decided to keep the parameters
e and ¢ constant throughout the experiments to reflect this reqmerg. Through a few preliminary tests
values ofe = ¢/10, andd = 0.01 were found to be sufficiently restrictive. We have used thedaes
throughout, unless mentioned otherwise.

Four main indicators of performance were recorded for eapkrément, as follows.

Recall : This is the fraction of the actual frequent items that tlggathm identified.

Precision : This is the fraction of the items identified by the algorittimat are actually frequent.

“For the datasets we used in our experimefifsrepresents the largest item in the stream, as well as thénadityg of the
domain of the items in the stream. Even if there &fepossible distinct items, such that the largest item is grahan)M, we can
assign the labels to M to these items, so that the largest item is the same as theemwhpossible distinct items.



Table 1. Parameters that define the memory requirements for t he different algorithms.

Algorithm  Parameter(s)

CGT ¢,0,M
CCFC k,0,M,e
CM 4, M,e

LC e
Freq &

hC 6, M,e

SS ¢

Memory Used : The total memory used by the algorithm for its internal dstactures.

Update Time : The total time required by the algorithm to process all g@gmthe data stream. This is the
time needed by the algorithonly for updating its internal data structures. This also givaseasure

of the relative maximum data rates that the algorithms cawllea

The queries posed to the algorithms are expressed in teriine dfresholdp. For the two algorithms
that are designed specifically for the tbgproblem CCFC andFreq ), we usedk = 1/¢, as that is the

maximum number of items that can have a frequency /6t
4.2 Memory Considerations

Most papers describe memory bounds for the algorithms {ghdhe amount of memory necessary in
order to achieve a certain level of performance). These dwane expressed as a function of the algorithm
parameters listed in Table 1, and differ for each algorithm.

In our study, we performed two sets of experiments. In thé $ies we allocated memory to each algo-
rithm according to the theoretical bounds described in thheesponding papers. Note that this meant we
had knowledge of the item domain cardinalily,. In the second set of experiments, we allocated the same,
fixed memory budget to all the algorithms (the algorithm hadhitialize its data structures using only the

budgeted memory).
4.3 Implementation Details

All algorithms were implemented i@. Our implementation of th€CFC , CM , CGT , LC andFreq

algorithms was based on the Massive Data Analysis Lab cade-f¥]. ThehC andSSalgorithms were



implemented from scratch, using the same optimizationb@sther algorithms. These are best-effort re-
implementations based on the original papers. The code ampited using thegcc compiler (version
4.1.2). The tests were run on an IBM x3250 server, with IntebX Quad Core X3220 2.4GHz CPU and
4GB of main memory.

In order to calculate the recall and precision for the experits, we also implemented a simple array to

keep exact counts of all the items in the data stream. We teetbis as théexact algorithm.
4.4 Datasets

4.4.1 Synthetic Data

The synthetic datasets were generated according to a Zigis&ibution. We generated datasets with the
size, N, ranging between 10,000-100,000,000 items, item domaitireity, M, 65,000-1,000,000, and
Zipf parameter,Z, 0.6-3.5. The parameters used in each run are explicitly mentionegleiiscussion of
each experiment. We should note that (as described in &egtiwe generated several independent datasets
for each particular choice of the data parameters mentiabesge, and repeated each experiment for all

these datasets.

4.4.2 Real Data

In our experiments, we used several real datasets coming dreerse domains. These datasets were as

follows.

Kosarak: It is an anonymized click-stream dataset of a Hungariamentiews portal [1]. It consists of
transactions, each of which has several items, expressategers. In our experiments, we consider every

single item in serial order. The dataset has a length of 000,000 items.

Retail: It contains retail market basket data from an anonymousi&ekgtore [3]. As in the previous case,

we consider all the items in dataset in serial order. Thedfizee dataset is 900,000 items.

Q148: This dataset was derived from the KDD Cup 2000 data [15], dongmts of Blue Martini. The data
we use are the values of the attribute “Request Processing $Sum” (attribute number 148) from thkcks
dataset. In order to get our final dataset, we replaced aflingjs/alues (question marks) with the value of

0. In this dataset there are approximately 235,000 items.

Nasa: For this dataset, we used the “Field Magnitude (F1)” andltFModulus (F2)” attributes from the
Voyager 2 spacecraft Hourly Average Interplanetary Magrieield Data [8], compliments of NASA and
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the Voyager 2 Triaxial Fluxgate Magnetometer principakstigator, Dr. Norman F. Ness. The dataset was
constructed as follows. We used the data for the y&2irs-2004. We removed the unknown values (values
marked a999), and multiplied all values by000 to convert them to integers (the original values were real
numbers with precision df decimal points). Finally, we concatenated the values otweattributes, so
that in our experiments, we read all the values of attribi&”;* followed by all the values of the attribute

“F2". The total size of this dataset is approximately 298,@&ms.
5 Experimental Results

In this section, we report the results of our experimentshiEexperiment was ru20 times 6 times for the
real datasets), and in all graphs we report the mean overddpiendent runs. In each run, the algorithms
were reinitialized, and used a different seed (when appigja For example, for those algorithms that
require random numbers for hashing, new sets of numbersgesierated. In addition, a new dataset (with
the same characteristics) was generated for the synthacedtperiments. Graphs for each experiment are
plotted using the average values over all runs, along wetet?o confidence intervals, shown as errorbars.

(Note that in several cases, the confidence intervals ansaimow to be clearly visible in the graphs.)
5.1 Synthetic Datasets

In this first set of experiments, we made available the dathcaery characteristics to the algorithms
so that they could be initialized with the author recommehaiemory allocation. The objective here is to
compare the memory requirements of the algorithms, and preeformance when using the recommended

amount of memory.

5.1.1 Memory Usage

Expt. 1 Synthetic datasets witN = 105, Z = 1.1, M = 10° were generated; with the other parameters
being: ¢ = 0.001,5 = 0.01,¢ = ¢/10.

A zipf parameter of 1.1 was chosen so that the data are ndy@kawed, which would make it very easy
to distinguish frequent items. But at the same time it ersstivat there is a sizable group of items which are
above the threshold for a reasonable range of values foufmost.

As expected, the memory used by the algorithms varied grésdke Table 3), witlrreq using the least
(136 KB), andCM using the most (2.6 MB). In comparisoBxact used 4.1 MB of memory. We study the

variation in memory usage with changednn Section 5.1.4.
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5.1.2 Item Domain Cardinality

Since the memory usage of most algorithms depends Bpdsee Table 1), it is illustrative to look at the

effect of varyingM.
Expt.2 N =10% 7 = 1.1,¢ = 0.001, and M was varied fron2'6 to 220,

The memory usage is shown in Figure 1. As expeckedq , LC , SSare unaffected. The other algo-

rithms require more memory dd increases, and the increase is logarithmic.

Effect of M on memory requirement

25 CCEG -+
- CGT b

Memory used in million bytes

2n1@en7  2M8 2719 2720
M: Cardinality of Item Domain

Figure 1. Effect of Cardinality of the Item Domain on Memory Requirement.

5.1.3 Number of Items

Expt.3 Z =1.1,M = 10%, ¢ = 0.001, and N was increased frorf.5 to 5 x 10% in increments 0.5 x 10°.

Ideally, with the algorithms allowed to use the optimum amtaf memory, the accuracy achieved should
be very high. We checked the precision and recall of the #lgos, as the number of items in the stream
was increased (see Figure §SandLC achieved the highest accuracy, with 100% recall and pmecisi
every run.hC andCM achieved almost 100% on both coun®CFC was slightly down on recall (around
95%), whileCGT was slightly down on precision (93%}req had consistently very low precision (around
15%).

5.1.4 Support

The support is the defining parameter when mining for fregitems. An algorithm should be able to

answer queries reliably over a wide range of support valuebis experiment we inspected the performance
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of the algorithms with change in support.
Expt. 4 N =10%,Z = 1.1, M = 105, and support) was varied from 0.001 to 0.01 in increments of 0.001.

The recall and precision achieved by the algorithms are shiowigure 4. Performance of all algorithms
was consistent over the entire range of the support vakres; exhibited low precision.

It should be noted that in the experiments in this sectioraegved the algorithms to knogbeforehand,
so that they are able to allocate memory accordingly. Itistitative to look at how the algorithms needed to
use increasing amounts of memory to cater to lower suppodsdier to maintain high recall and precision.
This is shown in Figure 2. Quite clearly, there is an invensgprtionality relationship between the support
and the memory requirements for all algorithms. This is eiglg pronounced in the case 6M , CGT ,
CCFC andhC , which are all sketch-based algorithms.

Effect of support on memory requirement

Memory used in million bytes

Support

Figure 2. Effect of Support on Memory Requirement.

5.1.5 Data Distribution

The inherent assumption in mining data for frequent itentisasthat data are not uniform, and have features
of interest. This is reflected in the skewness of the datahignexperiment, we tested the algorithms against
data of varying skewness. Streams with a high skew have aégsiwhich occur very frequently; streams
with low skew have a more uniform distribution of items, amdsi more difficult for the algorithms to

distinguish the frequent items.

Expt.5 N = 10%, ¢ = 0.001, M = 10, and the Zipf parameteg, was varied betweef.6-3.5.

11



Table 2. Maximum possible data rates (MB per second) that can be handled by the algorithms, based on update time

for 10% items.

Algorithm  Maximum Data Rate (MB/sec)

CCFC 0.1603
CGT 1.2847
CM 3.8445
Freq 32.9307
hC 3.1186
LC 14.9467
SS 0.0369

The results are shown in Figure 5. As expected, all algostiperformed well for highly skewed dis-
tributions ¢Z > 1.0). hC, LC andSSexhibited high recall and precision even for the distring with
7 < 1.0. Recall forCCFC , and precision fo€CGT dipped noticeably fofZ < 1.0.

5.1.6 Time

In this experiment, we measured the time required by therithgos to update their internal data structures
in response to new items arriving in the stream, and the tegaired to answer a query, i.e., to identify the
frequent items. Up to 100 million items were fed to the altjonis one after the other without any external
delays. The entire dataset was stored in main memory toetisatrthere were no delays reading from disk.

The cumulative time required to handle the entire streammeasured, which we call the update time.
Expt.6 Z =1.1,¢ = 0.001, M = 10, and theN was varied betweeh0*-108.

Figure 9(a) shows the update times for the algorithms as etibmof the number of items. As with
memory, the update times vary widely. A good feature of al éltgorithms is that the increase in update
time scales linearly with the number of itemBreq has the smallest update times, but remember that its
precision is always low. The best combination of accuraay @pdate time is offered blyC . The high
accuracy ofSScomes at the cost of increased update time requirements.

Based on the update time, we can calculate a ‘maximum dadathat each algorithm can handle. The
calculation is based on the fact that each item in our strearagresented using 4 bytes. Combining this

with the update times obtained, the maximum data rates dltjwrithms are given in Table 2.
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We also measured the time required to output the frequemsijtevhich we call the query time. For all
algorithms excephC , the query time was found to be negligible, i.e., queriesvagrswered almost instan-
taneously.hC had a considerably large query time of around 1.3 seconds.rddson for this discrepancy,
is thathC estimates the frequency of each individual item in the stresnd then outputs the ones above the
threshold. It does not use any special data structure fquikgerack of only the frequent items, as the other
algorithms do. It seems that a significant speed up in querg tiould be achieved if something like a heap

of frequent items was maintained (asGM ).
5.2 Synthetic Datasets, Budgeted Memory

As experiments in Section 5.1 show, almost all the algoritip@rform well across different distributions
and across several support thresholds. However, the csuopds in a sense unfair, as some algorithms
use significantly more memory than others to achieve the $awekof accuracy. In this section, we report
experiments, where we allocated an equal, fixed memory tsidgall algorithms.

Due to the vastly differing internal data structures, it wapossible to restrict each algorithm to an exact
memory budget number. We set the memory budget as followse®ing thatFreq , consistently uses
the least amount of memory, we used freq memory usage as the baseline. Althoukyeq was not the
best in terms of precision, this choice ensured that therithmgas were stressed. In each experiment, the
memory used byreq was set as the fixed budget for the other algorithms. Thealiziition part of the
other algorithms was tweaked to cater to this requiremem folind that we could initialize all algorithms
with almost equal memory, within a margin #8%.

We repeated all the experiments described so far, onlyithis, &ll algorithms used the same amount of

memory. The rest of the experimental settings were the sarti®ae in Section 5.1.

5.2.1 Number of Items

With memory budgetsCCFC andCGT were the algorithms most severely affected (see Figure I6¢rer
was a sharp fall in the recall f@ CFC . CGT exhibited low recall as well as low precision. The precision
of CM was also slightly lower. We examined the percentage restu@ti memory usage for each algorithm
as compared to the non-budgeted case. For the¥ase5 x 10°, these values are given in Table 3. It is
interesting to note that even with these large reductiomsamory, the accuracy &S, LC andhC was not

much affected.
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Table 3. Change in memory usage with memory budgets. Memory i s indicated in bytes.

Algorithm  Without Budget Budgeted Difference %

CCFC 1596732 136176 -91.47

CGT 2016228 136580 -93.23

CM 2680432 132296 -95.06
Freq 136024 136024 0

hC 1440104 136096 -90.55

LC 399992 136056 -65.99

SS 213485 135932 -36.33

5.2.2 Support

Again, for every support value, the memory allocatedHoyq was used as the budget for the other algo-
rithms. The observations are similar to the previous erpent, withCGT being severely affected in terms
of both recall and precision (see Figure 7). Recall@@FC and precision folCM were lower. Again,

precision and recall fo8S, LC andhC remained more or less unaffected.

5.2.3 Data Distribution

The experiments with varying Zipf parametéf, demonstrate that changes in data distribution affect the
performance of the budgeted memory algorithms in a morequmoced manner. The recall and precision
of the algorithms are shown in Figure &CFC and CGT performed noticeably worse than in the non-
budgeted case, although only recall was affectedd@FC . Also the effect of lowerZ values (more
uniform distribution) was even more pronounced. It was 8sirm to notice thaboth precision and recall

for CGT for Z < 1.0 were zero. Precision faZM also suffered for lowe# values.SS, LC andhC once
again performed almost as well as they did in the non-budgedise. Predictably, for extremely skewed data

(Z > 1.5), all algorithms performed well, despite the lower memory.

5.24 Time

With budgeted memory, the internal data structures useldeoglgorithms are smaller (less counters, smaller
hash tables). Accordingly, the update time can be expectéa iower than was the case with the non-

budgeted memory. The experiment in Section 5.1.6 was regpasting memory budgets and the above
hypothesis proved to be true. For some of the algorithmgieithection in update time was especially high:

most notably folCCFC (see Figure 9(b)).
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Table 4. Number of frequent items above the range of supports for the real datasets.

Support
Dataset 0.001 0.002 0.004 0.006 0.008 0.010
Q148 66 37 21 15 10 8
Retail 64 18 7 5 5 5
Kosarak 73 35 16 11 10 6
Nasa 215 147 76 25 19 15

5.3 Real Datasets

In this section we describe the experiments performed w#hdatasets. The datasets used are described
in Section 4.4. In Table 4, we list for each dataset the nurobi#ems that are above the range of supports
we used in the experiments.

The recall and precision of the algorithms were tested agaarying support (0.001 to 0.01 in increments
of 0.001). The testing was performed, as before, withoutvaitid memory budgets. For the budgeted case,

the memory used blfreq was used as the common budget for all algorithms.

53.1 Q148

With non-budgeted memory, all algorithms performed welljrgy almost 100% recall and precision over
the entire range of support values. When we introduced mginatgets, only the performance 88, hC
andLC remained at high levels (see Figure 10).

On the contrary, when using budgeted memory, recalCl6FC andCGT fell, and it decreased further
for higher support values. F&GT , precision was lower and decreased further with increasupport.

CM exhibited similar behavior t&€GT , but it was not as pronounced.

5.3.2 Retall

With non-budgeted memory, again all algorithms performedl.wl he recall forhC was slightly low for
lower values of support, falling to 60% fgr= 0.001.

This behavior was unchanged in the budgeted memory cask bidgeted memorg;CFC also had low
recall for lower support valuesCGT was severely affected, with recall and precision bothrigltio zero
(see Figure 11). Precision f@M was markedly low, tooLC andSSonce again performed consistently

well.
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5.3.3 Kosarak

Kosarak is the largest real dataset we used, and it also ¢htovige the toughest, especially for the sketch-
based algorithms. For non-budgeted memory, the resulteGowere similar to those obtained with the
Retail dataset: the recall fell away for lower values of suppand this decrease was very pronounced
(recall was less than 40% for all values of support less tha@8). The other algorithms did well on recall
as well as precisionCGT showed some dips in precision for a few values of support.

For the budgeted memory caseGT was performing close to zero for both recall and precisioe- R
call for hC followed the same pattern as the non-budgeted case. PreésiCM was low as well (see
Figure 12).

5.3.4 Nasa

Results for this set were similar in nature to the previoyseements.LC andhC performed well without
and with memory budgets. In the budgeted case, all otheridigss had a lower precision, and it was

markedly low for the particular poirt = 0.006 (see Figure 13).

6 Discussion

Looking at the results of the experiments on synthetic aabdatasets, a few general conclusions can be

drawn.

6.1 Performance of the Algorithms

Even thoughCCFC andFreq were initially designed to solve the tdpproblem, we included them in
our study for completeness. The experiments indicateGR&C could be adapted to the FI problem, since
it performed reasonably well in our tests. On the other h&nely performed consistently low in precision.

The sketch-based algorithl@ST , CM andhC performed reasonably well, but were usually affected in
some way at the extremes of the parameter ranges. The diateld-algorithms (excepC ) were also the
ones that were most affected when restricted to use memadgels!

It is also interesting to note that some of the algorithmshakh more stable behavior than others. This
is apparent in the experiments with the synthetic datasétsre we repeatedly run each experiment, every
time with a newly generated dataset (but always following shme data distribution). If we focus our
attention on the confidence intervals reported in the resule can see that the performanceC&T and

CCFC has large variations among runs of the same experiment. arhe,dut to a lesser extent is true for
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Freq andCM . This means that the above algorithms are rather sensitigentill variations in the input
data distribution. The rest of the algorithms do not havaiiant variations in their performance, wi86
exhibiting the most stable behavior of all.

Finally, it was observed that some algorithms show pecbi@ravior when faced with a particular real
dataset; for example, the uncharacteristically low reafaiC on Kosarak, or low precision @fC on Nasa.

It would be worth exploring the reasons for this behavior.

6.1.1 Tighter Memory Constraints

It was observed in Section 5.2.1 that memory restrictiomsrdit affect the performance @iC andhC
much. We decided to stress these three algorithms furtliesemat how much lower levels of memory they
could deliver good performance. The settings used weére 10°, Z = 0.8, M = 10°, and the memory
budgets were manually allotted. These budgets were vaned 80 KB down to 10 KB.

The results of these experiments were interesting (refErgore 14). The performance bfC degraded
gradually with decreasing memory size&sSexhibited high precision and recall for memory sizes greate
than 15 KB, after which its performance deteriorated deaflfi. hC on the other hand, performed well even
with the low memory allocation of 10 KB, achieving recall 6% and precision of 75%. This might be
explained by the fact th&iC does not need to make decisions about which items to momitbwaich ones
to discard (being a sketch-based algorithm), but rathgekapproximate counts of all items.

We further ran the same experiments on the real datasetsesiks were averaged over all datasets, and
are shown in Figure 15. In this caseSis the one that exhibits the best overall performance. Thati@n
in the results ohC is high, because it performed poorly on one of the dataseisgiék). All algorithms

performed poorly at the low memory end (10 KB).
6.2 Memory Bounds

All the algorithms allocate at the beginning the memory eekefbr their internal dta structures, using
the specified input parameters. Ideally, the memory remeérg should be independent of any data related
parameters, because in practical applications these wenytbften be unknown, or hard to estimate. Using
these parameters means that the algorithm makes assusationt the data distribution, or the maximum
item value that may appear in the stream.

Finally, a careful observation of the experimental resulith low memory budgets (Sections 5.2 and
6.1.1) reveals that it might be possible to obtain tighteotietical memory bounds for several of the al-

gorithms - most notabynC , LC andSS. The experiments demonstrate that the desirable perfaenan
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levels can be achieved with sometimes considerably lowenong requirements. This means that there is

certainly room for future work on the theoretical analydishese algorithms.
6.3 Sketch-based vs. Counter-based

Although our experiments were centered around the FI pnolteshould be noted that the sketch-based
algorithms apply to a broader range of problems. Maintgirdansketch implies that the algorithm stores
information about all elements in the stream, and not justfitbquent items. Thus, sketches act as general
data stream summaries, and can be used for other types okappte statistical analysis of the data stream,
apart from being used to find the frequent items.

Thus, if an application was strictly limited to discoverifrgquent items, counter-based techniques (

, SS) would be preferable due to their superior performance asd @f implementation. However, if
more information about the data stream (other than justrdguent items) is required, then a sketch-based

algorithm would be a better choickQ ).
6.4 Practical Considerations

We now examine the algorithms with respect to plausibilityuse in real life applications. The first
observation is that an efficient implementation also rexpusome general knowledge of the data character-
istics, since these are sometimes an input to the algorithefisr to Table 1). The error parametedse]
can be fixed at sufficiently low values without knowledge @& gream or the support that might be required
in the queries later. Wherevéror ¢ are required, again a worst case estimate may be used. Kgdwjn
may in some cases be a problem. R@r, this also hides a pertinent implementation issue: for tshing
function, a large prime number and pairs of randomly geedrattegers are required, and for the hashing
to be effective, this prime number and the random numberd teebe of the same order of magnitude as
the largest number in the stream.

Another practical issue in implementing the algorithmsaans the implicit assumption in the algorithms
that the data stream is a sequence of integers. This regeritasimperative for hash-based algorithms. For
streams of other data types, a conversion step would bereeluror example, if the data stream consisted
of words, there would have to be a method of converting eaaid wooa unique integer, say by having an
intermediate hashing function.

The algorithms should also be able to handle ad-hoc queesdynamically adapt to changing input
parameters. For example, when an algorithm is initialized starts monitoring the data stream, the user

might be interested in items aboye= 0.01. If at a later point the user wants to identify items above
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¢ = 0.005, the algorithm should have the mechanisms to perform a dignand smooth transition to the
new requirements.

Other issues to be addressed include how query-answerthgpatating are to be interleaved. Whenever
a query is being answered, the algorithm should not misssiiarthe data stream. Simple solutions include

buffering the stream, or having the query process run inllghra

7 Conclusions

The problem of identifying frequent items in streaming dathecoming increasingly relevant to many
diverse domains and applications. It has also attractedfdhterest in the research community, and several
algorithms have been proposed for its solution.

In this work, we experimentally evaluated the performarfcgegeral algorithms that have been proposed
in the literature for mining data streams for frequent itef@wer the broad range of our experimerit§

, LC andSSemerged as the most consistent ones, performing well asyogisetic and real datasets, even
with memory restrictions. They offered high precision aedall regardless of changes in support and data
skew. hC andSShad a slight edge overC when it came to recall and precision, but at the cost of higher
query times (fohC ) or higher update times (f@S).

We believe that the results of this study can help the reeearmmunity focus its efforts on improving
the algorithms for the FI problem, as well as help the priactirs choose the most suitable algorithm for

their case among the several alternatives.
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