
Frequent Items in Streaming Data: An Experimental Evaluation of the

State-of-the-Art

Nishad Manerikar

University of Trento

nd.manerikar@studenti.unitn.it

Themis Palpanas

University of Trento

themis@disi.unitn.eu

Abstract

The problem of detecting frequent items in streaming data isrelevant to many different applications across

many domains. Several algorithms, diverse in nature, have been proposed in the literature for the solution of

the above problem. In this paper, we review these algorithms, and we present the results of the first extensive

comparative experimental study of the most prominent algorithms in the literature. The algorithms were

comprehensively tested using a common test framework on a variety of real and synthetic data. Their

performance with respect to the different parameters (i.e., parameters intrinsic to the algorithms, and data

related parameters) was studied. We report the results, andinsights gained through these experiments.

1 Introduction

Over the past few years, there has been a substantial increase in the volume of data generated and the rate

at which these data are generated by various applications. These two factors render the traditionalstore first

and process laterdata analysis approach obsolete for several applications across many domains. Instead,

a growing number of applications relies on the new paradigm of streaming data processing[18, 2, 19].

Consequently, the area of data stream mining has received considerable attention in the recent years.

An important problem in data stream mining is that of finding frequent items in the stream. This problem

finds applications across several domains [10, 11, 9], such as financial systems, web traffic monitoring,

internet advertising, retail and e-business. Furthermore, it serves as the basis for the solution of other relevant

problems, like identifying frequentitemsets[16] andrecentfrequent items [21]. A common requirement in

these settings is to identify frequent items in real time with a limited amount of memory, usually orders of

1

magnitude less than the size of the problem.

Several novel algorithms have been proposed in the literature to tackle this problem. There are generally

two approaches: counter-based methods, and sketch-based methods. Counter-based algorithms maintain

counters for and monitor a fixed number of elements of the stream. If an item arrives in the stream that is

monitored, the associated counter is incremented, else thealgorithm decides whether to discard the item or

reassign an existing counter to this item. The prominent counter-based algorithms include Sticky Sampling

and Lossy Counting (LC) [16], Frequent (Freq) [14, 12], and Space-Saving (SS) [17].

The other approach is to maintain a sketch of the data stream,using techniques such as hashing, to map

items to a reduced set of counters. Sketch-based techniquesmaintain approximate frequency counts of

all elements in the stream. The prominent sketch-based algorithms include CountSketch1 (CCFC) [4],

GroupTest (CGT) [6], Count Min-Sketch (CM) [5], and hCount (hC) [13].

Although similar in some aspects, each algorithm has its owncharacteristics and peculiarities. As far

as we are aware, there has not been a comprehensive comparative study of all these algorithms. In this

paper, we independently compare all approaches, using a common test framework and a common set of

synthetic and real datasets, the real datasets coming from such diverse domains as retail, web blogs, and

space measurements. It is interesting to note that several of the previous studies have not reported results

on real datasets. This work represents a comprehensive set of experiments that provide statistically robust

indicators of performance under a broad range of operating conditions. Moreover, we make sure that the

results of our experiments are completely reproducible. Therefore, we make publicly available the source

code for all the algorithms used in our experiments, as well as the datasets upon which we tested them [20].

In summary, in this work we make the following contributions.

• We evaluate the performance of the most prominent algorithms proposed in the literature for the prob-

lem of identifying frequent items in data streams. We compare the performance of these algorithms

along several different dimensions, using a common and fairtest framework.

• In our experimental framework, we use the most extensive anddiverse set of synthetic and real datasets

that has been employed in the related literature.

• Our experiments reveal how the parameters of each algorithmshould be tweaked in order to suit the

requirements of a particular application or data characteristics, and they indicate promising directions

for future work in this area.
1We refer to the CountSketch algorithm as CCFC, after the authors’ initials, to avoid confusion with the Count Min-Sketch

algorithm.

2

• Finally, we provide a ‘practitioner’s guide’ for helping inselecting the appropriate algorithm for a

given problem scenario.

The rest of the paper is organized as follows: in Section 2, wedefine the problem formally; in Section 3,

we give brief descriptions of the algorithms we test; in Section 4, we describe factors influencing the test

designs. In Section 5, we present the tests and the results, followed by a discussion of the results in Section 6.

Finally, we conclude in Section 7.

2 Problem Definition

All the algorithms make the simplifying assumption that thedata stream is a set of integers. That is, each

item or transaction2 in the stream is represented by a single integer.

The Frequent Items problem (FI) is defined as follows.

Problem 1 [Frequent Items (FI)]Given a support parameterφ, where0 ≤ φ ≤ 1, find all the items in the

data stream, which have a frequency of at leastφN , whereN is the number of transactions seen so far in

the stream.

Since the algorithms deal with approximate solutions to thefrequent items problem, the problem is some-

times expressed in a modified form that takes into account an error parameter,ǫ. This variation of the

problem, known as theǫ-deficient problem, is posed as follows: given a support parameterφ, and an error

parameterǫ, find all the items in the stream which have a frequency of at leastφN , with a tolerance ofφ− ǫ.

ǫ is usually chosen to be much smaller thanφ; typically ǫ = φ/10 may be used.

The probabilistic algorithms use another input parameter,δ. This parameter represents the probability

that the algorithm mis-classifies an item as frequent, when it is not, or not frequent, when it actually is.

The significance of the above two parameters (i.e.,ǫ andδ) is that they represent the trade-off between

the desired accuracy and the space used by the algorithm. With lower values ofǫ and δ, the algorithms

guarantee a more accurate performance, but at the cost of higher space usage.

We should note that two of the algorithms, that isCCFC andFreq , are designed to address a slightly

different, but related problem. They identify the top-k most frequent items in the data stream. Thus, they

take as input the integerk, instead of the supportφ.

Nevertheless, with a careful, yet straightforward, selection of the parameters, the above variations of the

problem become equivalent. In our experiments, we make surethat all the algorithms solve the exact same

problem, and can therefore be directly compared to each other.

2For the rest of this paper, we use the terms ‘item’ and ‘transaction’ interchangeably.

3

3 The Algorithms

3.1 Short Descriptions of the Algorithms

3.1.1 Freq

The Frequent algorithm keeps count ofk = 1/φ number of items. This is based on the observation that

there can be at the most1/φ items having frequency more thanφN .

Freq keeps count of each incoming item by assigning a unique counter for each item, until all the available

counters are occupied. The algorithm then decrements all counters by 1 until one of the counters becomes

zero. It then uses that counter for the newest item. This stepdeletes all the non-frequent item counters.

When the query is posed, the algorithm simply returns allk items as the frequent items.

3.1.2 LC

The Lossy Counting algorithm maintains a data structureD, which is a set of entries of the form(e, f,∆),

wheree is an element in the stream,f is an integer representing the estimated frequency and∆ is the

maximum possible error inf . LC conceptually divides the incoming stream into buckets of widthw = 1/ǫ

transactions each. If an item arrives that already exists inD, the correspondingf is incremented, else a new

entry is created.D is pruned by deleting some of the entries at the bucket boundaries.

A query is answered by presenting as output the entries inD wheref ≥ (φ − ǫ)N .

3.1.3 CGT

The Combinatorial Group Testing algorithm is based on a combination of group testing and error correcting

codes. Each item is assigned to groups using a family of hash functions. Within each group there is a group

counter which indicates how many items are present in the group; and a set oflog M counters withM being

the largest item in the dataset. The group counter and the counters which correspond to the bits 1 in the

binary representation of the item are updated accordingly.

Frequent items are identified by performing ‘majority tests’, i.e., by identifying items which occur more

than half the time in a group.

3.1.4 CCFC

CCFC uses a data structure called CountSketch, which is an array of t hash tables each containingb buck-

ets. Two sets of hash functions are used: one set (h1, . . . , ht) hashes items to buckets, and the other set

4

(s1, . . . , st) hashes items to the set{+1,−1}. When an item arrives, thet buckets corresponding to that

item are identified using the first set, and updated by adding +1 or -1 using the second set.

The estimated count of itemq is the median ofhi[q] · si[q]. For each item, CCFC uses the CountSketch

data structure to estimate its count and maintain a heap of the top-k items seen so far.

3.1.5 CM

The Count-Min algorithm makes use of a new sketch structure called the Count-Min Sketch. It is a two

dimensional array with widthw and depthd, wherew andd are determined by the parameters (ǫ, δ) supplied

to the algorithm. Additionally,d pairwise independent hash functions are chosen at random, which hash each

item to a column in the sketch.

When an itemi arrives, one counter in each row is incremented; the counteris determined by the hash

function. The estimated frequency for any item is the minimum of the values of its associated counters. For

each new item, its estimated frequency is calculated, and ifit is greater than the required threshold, it is

added to a heap. At the end, all items whose estimated count isstill above the threshold are output.

3.1.6 hC

The hCount algorithm also uses a Count-Min sketch. It maintains a sketch of sizem × h, where the

parametersm andh are determined according to the data characteristics and allowed error. This sketch

can be thought of as a hash-table ofm × h counters. The algorithm uses a set ofh hash functions to map

each item of the dataset toh different counters, one in each column of the table.

The hash functions are of the form:

Hi(k) = (ai · k + bi) mod P) mod m, 1 ≤ i ≤ h

whereai andbi are two random numbers, and P is a large prime number.

Thus each data item has a set ofh associated counters, which are all incremented at the occurrence of

that item. The estimated frequency of an item is simply the minimum of the values of all its associated

counters. Clearly, the frequency of an item can only be overestimated. The error is estimated by using the

data structure for calculating the frequency of a few elements which are not part of the stream. The average

frequency of these as estimated by the algorithm is close to the error3.

3The authors include this error correction scheme and name the enhanced algorithm hCount*. In this paper we refer to hCount*

whenever we mentionhC or hCount.

5

3.1.7 SS

The Space-Saving algorithm uses a data structure called Stream-Summary to monitor the frequent items.

The Stream-Summary data structure consists of a linked listof a fixed number of counters, each correspond-

ing to an item to be monitored. All counters with the same count are associated with a bucket which stores

the count. Buckets are created and destroyed dynamically asnew items come in. They are stored as an

always-sorted doubly linked list. Each counter also storesthe estimated error in the frequency count of the

corresponding item, which is used later to provide guarantees about the accuracy of the frequency estimate

returned by the algorithm.

When a query is posed, the algorithm scans through the buckets and returns the items whose counters are

associated with the buckets that have values greater than the thresholdφN .

4 Experimental Framework

4.1 Parameters and Performance Measures

The performance of the algorithms is affected by three sets of parameters (see Table 1).

• The intrinsic parameters of the algorithms: the toleranceǫ, and error probabilityδ.

• The characteristics of the data stream: the number of items in the stream,N , the maximum value in

the item domain4, M , and the distribution of the item values (e.g., zipf parameter,Z).

• The query parameters: support,φ, or k (for the algorithms that cater to the the top-k items problem).

In practical applications, a reasonably high accuracy is required, and we decided to keep the parameters

ǫ andδ constant throughout the experiments to reflect this requirement. Through a few preliminary tests

values ofǫ = φ/10, andδ = 0.01 were found to be sufficiently restrictive. We have used thesevalues

throughout, unless mentioned otherwise.

Four main indicators of performance were recorded for each experiment, as follows.

Recall : This is the fraction of the actual frequent items that the algorithm identified.

Precision : This is the fraction of the items identified by the algorithmthat are actually frequent.

4For the datasets we used in our experiments,M represents the largest item in the stream, as well as the cardinality of the

domain of the items in the stream. Even if there areM possible distinct items, such that the largest item is greater thanM , we can

assign the labels1 to M to these items, so that the largest item is the same as the number of possible distinct items.

6

Table 1. Parameters that define the memory requirements for t he different algorithms.

Algorithm Parameter(s)

CGT φ, δ,M

CCFC k, δ,M, ǫ

CM δ,M, ǫ

LC ǫ

Freq k

hC δ,M, ǫ

SS ǫ

Memory Used : The total memory used by the algorithm for its internal datastructures.

Update Time : The total time required by the algorithm to process all items in the data stream. This is the

time needed by the algorithmonly for updating its internal data structures. This also gives ameasure

of the relative maximum data rates that the algorithms can handle.

The queries posed to the algorithms are expressed in terms ofthe thresholdφ. For the two algorithms

that are designed specifically for the top-k problem (CCFC andFreq), we usedk = 1/φ, as that is the

maximum number of items that can have a frequency ofφN .

4.2 Memory Considerations

Most papers describe memory bounds for the algorithms (thatis, the amount of memory necessary in

order to achieve a certain level of performance). These bounds are expressed as a function of the algorithm

parameters listed in Table 1, and differ for each algorithm.

In our study, we performed two sets of experiments. In the first set, we allocated memory to each algo-

rithm according to the theoretical bounds described in the corresponding papers. Note that this meant we

had knowledge of the item domain cardinality,M . In the second set of experiments, we allocated the same,

fixed memory budget to all the algorithms (the algorithm had to initialize its data structures using only the

budgeted memory).

4.3 Implementation Details

All algorithms were implemented inC. Our implementation of theCCFC , CM , CGT , LC andFreq

algorithms was based on the Massive Data Analysis Lab code-base [7]. ThehC andSSalgorithms were

7

implemented from scratch, using the same optimizations as the other algorithms. These are best-effort re-

implementations based on the original papers. The code was compiled using thegcc compiler (version

4.1.2). The tests were run on an IBM x3250 server, with Intel Xeon Quad Core X3220 2.4GHz CPU and

4GB of main memory.

In order to calculate the recall and precision for the experiments, we also implemented a simple array to

keep exact counts of all the items in the data stream. We referto this as theExact algorithm.

4.4 Datasets

4.4.1 Synthetic Data

The synthetic datasets were generated according to a Zipfiandistribution. We generated datasets with the

size,N , ranging between 10,000-100,000,000 items, item domain cardinality, M , 65,000-1,000,000, and

Zipf parameter,Z, 0.6-3.5. The parameters used in each run are explicitly mentioned inthe discussion of

each experiment. We should note that (as described in Section 5) we generated several independent datasets

for each particular choice of the data parameters mentionedabove, and repeated each experiment for all

these datasets.

4.4.2 Real Data

In our experiments, we used several real datasets coming from diverse domains. These datasets were as

follows.

Kosarak: It is an anonymized click-stream dataset of a Hungarian online news portal [1]. It consists of

transactions, each of which has several items, expressed asintegers. In our experiments, we consider every

single item in serial order. The dataset has a length of about8,000,000 items.

Retail: It contains retail market basket data from an anonymous Belgian store [3]. As in the previous case,

we consider all the items in dataset in serial order. The sizeof the dataset is 900,000 items.

Q148: This dataset was derived from the KDD Cup 2000 data [15], compliments of Blue Martini. The data

we use are the values of the attribute “Request Processing Time Sum” (attribute number 148) from theclicks

dataset. In order to get our final dataset, we replaced all missing values (question marks) with the value of

0. In this dataset there are approximately 235,000 items.

Nasa: For this dataset, we used the “Field Magnitude (F1)” and “Field Modulus (F2)” attributes from the

Voyager 2 spacecraft Hourly Average Interplanetary Magnetic Field Data [8], compliments of NASA and

8

the Voyager 2 Triaxial Fluxgate Magnetometer principal investigator, Dr. Norman F. Ness. The dataset was

constructed as follows. We used the data for the years1977-2004. We removed the unknown values (values

marked as999), and multiplied all values by1000 to convert them to integers (the original values were real

numbers with precision of3 decimal points). Finally, we concatenated the values of thetwo attributes, so

that in our experiments, we read all the values of attribute “F1”, followed by all the values of the attribute

“F2”. The total size of this dataset is approximately 292,000 items.

5 Experimental Results

In this section, we report the results of our experiments. Each experiment was run20 times (5 times for the

real datasets), and in all graphs we report the mean over all independent runs. In each run, the algorithms

were reinitialized, and used a different seed (when applicable). For example, for those algorithms that

require random numbers for hashing, new sets of numbers weregenerated. In addition, a new dataset (with

the same characteristics) was generated for the synthetic data experiments. Graphs for each experiment are

plotted using the average values over all runs, along with the 95% confidence intervals, shown as errorbars.

(Note that in several cases, the confidence intervals are toonarrow to be clearly visible in the graphs.)

5.1 Synthetic Datasets

In this first set of experiments, we made available the data and query characteristics to the algorithms

so that they could be initialized with the author recommended memory allocation. The objective here is to

compare the memory requirements of the algorithms, and their performance when using the recommended

amount of memory.

5.1.1 Memory Usage

Expt. 1 Synthetic datasets withN = 106, Z = 1.1,M = 106 were generated; with the other parameters

being: φ = 0.001, δ = 0.01, ǫ = φ/10.

A zipf parameter of 1.1 was chosen so that the data are not overly skewed, which would make it very easy

to distinguish frequent items. But at the same time it ensures that there is a sizable group of items which are

above the threshold for a reasonable range of values for the support.

As expected, the memory used by the algorithms varied greatly (see Table 3), withFreq using the least

(136 KB), andCM using the most (2.6 MB). In comparison,Exact used 4.1 MB of memory. We study the

variation in memory usage with change inφ in Section 5.1.4.

9

5.1.2 Item Domain Cardinality

Since the memory usage of most algorithms depends uponM (see Table 1), it is illustrative to look at the

effect of varyingM .

Expt. 2 N = 106, Z = 1.1, φ = 0.001, andM was varied from216 to 220.

The memory usage is shown in Figure 1. As expected,Freq , LC , SSare unaffected. The other algo-

rithms require more memory asM increases, and the increase is logarithmic.

0.5

1.0

1.5

2.0

2.5

2^162^17 2^18 2^19 2^20

M
em

or
y

us
ed

 in
 m

ill
io

n
by

te
s

M: Cardinality of Item Domain

Effect of M on memory requirement

CCFC
CGT
CM

Freq
hC
LC
SS

Figure 1. Effect of Cardinality of the Item Domain on Memory Requirement.

5.1.3 Number of Items

Expt. 3 Z = 1.1,M = 106, φ = 0.001, andN was increased from0.5 to 5×106 in increments of0.5×106.

Ideally, with the algorithms allowed to use the optimum amount of memory, the accuracy achieved should

be very high. We checked the precision and recall of the algorithms, as the number of items in the stream

was increased (see Figure 3).SSandLC achieved the highest accuracy, with 100% recall and precision in

every run.hC andCM achieved almost 100% on both counts.CCFC was slightly down on recall (around

95%), whileCGT was slightly down on precision (93%).Freq had consistently very low precision (around

15%).

5.1.4 Support

The support is the defining parameter when mining for frequent items. An algorithm should be able to

answer queries reliably over a wide range of support values.In this experiment we inspected the performance

10

of the algorithms with change in support.

Expt. 4 N = 106, Z = 1.1,M = 106, and supportφ was varied from 0.001 to 0.01 in increments of 0.001.

The recall and precision achieved by the algorithms are shown in Figure 4. Performance of all algorithms

was consistent over the entire range of the support values.Freq exhibited low precision.

It should be noted that in the experiments in this section, weallowed the algorithms to knowφ beforehand,

so that they are able to allocate memory accordingly. It is illustrative to look at how the algorithms needed to

use increasing amounts of memory to cater to lower supports in order to maintain high recall and precision.

This is shown in Figure 2. Quite clearly, there is an inverse proportionality relationship between the support

and the memory requirements for all algorithms. This is especially pronounced in the case ofCM , CGT ,

CCFC andhC , which are all sketch-based algorithms.

0.5

1.0

1.5

2.0

2.5

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

M
em

or
y

us
ed

 in
 m

ill
io

n
by

te
s

Support

Effect of support on memory requirement

CCFC
CGT
CM

Freq
hC
LC
SS

Figure 2. Effect of Support on Memory Requirement.

5.1.5 Data Distribution

The inherent assumption in mining data for frequent items isthat that data are not uniform, and have features

of interest. This is reflected in the skewness of the data. In this experiment, we tested the algorithms against

data of varying skewness. Streams with a high skew have a few items which occur very frequently; streams

with low skew have a more uniform distribution of items, and it is more difficult for the algorithms to

distinguish the frequent items.

Expt. 5 N = 106, φ = 0.001,M = 106, and the Zipf parameter,Z, was varied between0.6-3.5.

11

Table 2. Maximum possible data rates (MB per second) that can be handled by the algorithms, based on update time

for 108 items.

Algorithm Maximum Data Rate (MB/sec)

CCFC 0.1603

CGT 1.2847

CM 3.8445

Freq 32.9307

hC 3.1186

LC 14.9467

SS 0.0369

The results are shown in Figure 5. As expected, all algorithms performed well for highly skewed dis-

tributions (Z > 1.0). hC , LC andSSexhibited high recall and precision even for the distributions with

Z < 1.0. Recall forCCFC , and precision forCGT dipped noticeably forZ < 1.0.

5.1.6 Time

In this experiment, we measured the time required by the algorithms to update their internal data structures

in response to new items arriving in the stream, and the time required to answer a query, i.e., to identify the

frequent items. Up to 100 million items were fed to the algorithms one after the other without any external

delays. The entire dataset was stored in main memory to ensure that there were no delays reading from disk.

The cumulative time required to handle the entire stream wasmeasured, which we call the update time.

Expt. 6 Z = 1.1, φ = 0.001,M = 106, and theN was varied between104-108.

Figure 9(a) shows the update times for the algorithms as a function of the number of items. As with

memory, the update times vary widely. A good feature of all the algorithms is that the increase in update

time scales linearly with the number of items.Freq has the smallest update times, but remember that its

precision is always low. The best combination of accuracy and update time is offered byLC . The high

accuracy ofSScomes at the cost of increased update time requirements.

Based on the update time, we can calculate a ‘maximum data rate’ that each algorithm can handle. The

calculation is based on the fact that each item in our stream is represented using 4 bytes. Combining this

with the update times obtained, the maximum data rates of thealgorithms are given in Table 2.

12

We also measured the time required to output the frequent items, which we call the query time. For all

algorithms excepthC , the query time was found to be negligible, i.e., queries were answered almost instan-

taneously.hC had a considerably large query time of around 1.3 seconds. The reason for this discrepancy,

is thathC estimates the frequency of each individual item in the stream, and then outputs the ones above the

threshold. It does not use any special data structure for keeping track of only the frequent items, as the other

algorithms do. It seems that a significant speed up in query time could be achieved if something like a heap

of frequent items was maintained (as inCM).

5.2 Synthetic Datasets, Budgeted Memory

As experiments in Section 5.1 show, almost all the algorithms perform well across different distributions

and across several support thresholds. However, the comparison is in a sense unfair, as some algorithms

use significantly more memory than others to achieve the samelevel of accuracy. In this section, we report

experiments, where we allocated an equal, fixed memory budgets to all algorithms.

Due to the vastly differing internal data structures, it wasimpossible to restrict each algorithm to an exact

memory budget number. We set the memory budget as follows. Observing thatFreq , consistently uses

the least amount of memory, we used theFreq memory usage as the baseline. AlthoughFreq was not the

best in terms of precision, this choice ensured that the algorithms were stressed. In each experiment, the

memory used byFreq was set as the fixed budget for the other algorithms. The initialization part of the

other algorithms was tweaked to cater to this requirement. We found that we could initialize all algorithms

with almost equal memory, within a margin of±3%.

We repeated all the experiments described so far, only this time, all algorithms used the same amount of

memory. The rest of the experimental settings were the same as those in Section 5.1.

5.2.1 Number of Items

With memory budgets,CCFC andCGT were the algorithms most severely affected (see Figure 6). There

was a sharp fall in the recall forCCFC . CGT exhibited low recall as well as low precision. The precision

of CM was also slightly lower. We examined the percentage reduction in memory usage for each algorithm

as compared to the non-budgeted case. For the caseN = 5 × 105, these values are given in Table 3. It is

interesting to note that even with these large reductions inmemory, the accuracy ofSS, LC andhC was not

much affected.

13

Table 3. Change in memory usage with memory budgets. Memory i s indicated in bytes.

Algorithm Without Budget Budgeted Difference %

CCFC 1596732 136176 -91.47

CGT 2016228 136580 -93.23

CM 2680432 132296 -95.06

Freq 136024 136024 0

hC 1440104 136096 -90.55

LC 399992 136056 -65.99

SS 213485 135932 -36.33

5.2.2 Support

Again, for every support value, the memory allocated byFreq was used as the budget for the other algo-

rithms. The observations are similar to the previous experiment, withCGT being severely affected in terms

of both recall and precision (see Figure 7). Recall forCCFC and precision forCM were lower. Again,

precision and recall forSS, LC andhC remained more or less unaffected.

5.2.3 Data Distribution

The experiments with varying Zipf parameter,Z, demonstrate that changes in data distribution affect the

performance of the budgeted memory algorithms in a more pronounced manner. The recall and precision

of the algorithms are shown in Figure 8.CCFC andCGT performed noticeably worse than in the non-

budgeted case, although only recall was affected forCCFC . Also the effect of lowerZ values (more

uniform distribution) was even more pronounced. It was surprising to notice thatbothprecision and recall

for CGT for Z < 1.0 were zero. Precision forCM also suffered for lowerZ values.SS, LC andhC once

again performed almost as well as they did in the non-budgeted case. Predictably, for extremely skewed data

(Z > 1.5), all algorithms performed well, despite the lower memory.

5.2.4 Time

With budgeted memory, the internal data structures used by the algorithms are smaller (less counters, smaller

hash tables). Accordingly, the update time can be expected to be lower than was the case with the non-

budgeted memory. The experiment in Section 5.1.6 was repeated using memory budgets and the above

hypothesis proved to be true. For some of the algorithms, thereduction in update time was especially high:

most notably forCCFC (see Figure 9(b)).

14

Table 4. Number of frequent items above the range of supports for the real datasets.

Support

Dataset 0.001 0.002 0.004 0.006 0.008 0.010

Q148 66 37 21 15 10 8

Retail 64 18 7 5 5 5

Kosarak 73 35 16 11 10 6

Nasa 215 147 76 25 19 15

5.3 Real Datasets

In this section we describe the experiments performed with real datasets. The datasets used are described

in Section 4.4. In Table 4, we list for each dataset the numberof items that are above the range of supports

we used in the experiments.

The recall and precision of the algorithms were tested against varying support (0.001 to 0.01 in increments

of 0.001). The testing was performed, as before, without andwith memory budgets. For the budgeted case,

the memory used byFreq was used as the common budget for all algorithms.

5.3.1 Q148

With non-budgeted memory, all algorithms performed well, giving almost 100% recall and precision over

the entire range of support values. When we introduced memory budgets, only the performance ofSS, hC

andLC remained at high levels (see Figure 10).

On the contrary, when using budgeted memory, recall forCCFC andCGT fell, and it decreased further

for higher support values. ForCGT , precision was lower and decreased further with increasingsupport.

CM exhibited similar behavior toCGT , but it was not as pronounced.

5.3.2 Retail

With non-budgeted memory, again all algorithms performed well. The recall forhC was slightly low for

lower values of support, falling to 60% forφ = 0.001.

This behavior was unchanged in the budgeted memory case. With budgeted memory,CCFC also had low

recall for lower support values.CGT was severely affected, with recall and precision both falling to zero

(see Figure 11). Precision forCM was markedly low, too.LC andSSonce again performed consistently

well.

15

5.3.3 Kosarak

Kosarak is the largest real dataset we used, and it also proved to be the toughest, especially for the sketch-

based algorithms. For non-budgeted memory, the results forhC were similar to those obtained with the

Retail dataset: the recall fell away for lower values of support, and this decrease was very pronounced

(recall was less than 40% for all values of support less than 0.008). The other algorithms did well on recall

as well as precision.CGT showed some dips in precision for a few values of support.

For the budgeted memory case,CGT was performing close to zero for both recall and precision. Re-

call for hC followed the same pattern as the non-budgeted case. Precision for CM was low as well (see

Figure 12).

5.3.4 Nasa

Results for this set were similar in nature to the previous experiments.LC andhC performed well without

and with memory budgets. In the budgeted case, all other algorithms had a lower precision, and it was

markedly low for the particular pointφ = 0.006 (see Figure 13).

6 Discussion

Looking at the results of the experiments on synthetic and real datasets, a few general conclusions can be

drawn.

6.1 Performance of the Algorithms

Even thoughCCFC andFreq were initially designed to solve the top-k problem, we included them in

our study for completeness. The experiments indicate thatCCFC could be adapted to the FI problem, since

it performed reasonably well in our tests. On the other hand,Freq performed consistently low in precision.

The sketch-based algorithmsCGT , CM andhC performed reasonably well, but were usually affected in

some way at the extremes of the parameter ranges. The sketch-based algorithms (excepthC) were also the

ones that were most affected when restricted to use memory budgets.

It is also interesting to note that some of the algorithms exhibit a more stable behavior than others. This

is apparent in the experiments with the synthetic datasets,where we repeatedly run each experiment, every

time with a newly generated dataset (but always following the same data distribution). If we focus our

attention on the confidence intervals reported in the results, we can see that the performance ofCGT and

CCFC has large variations among runs of the same experiment. The same, but to a lesser extent is true for

16

Freq andCM . This means that the above algorithms are rather sensitive to small variations in the input

data distribution. The rest of the algorithms do not have significant variations in their performance, withSS

exhibiting the most stable behavior of all.

Finally, it was observed that some algorithms show peculiarbehavior when faced with a particular real

dataset; for example, the uncharacteristically low recallof hC on Kosarak, or low precision ofLC on Nasa.

It would be worth exploring the reasons for this behavior.

6.1.1 Tighter Memory Constraints

It was observed in Section 5.2.1 that memory restrictions did not affect the performance ofLC and hC

much. We decided to stress these three algorithms further and see at how much lower levels of memory they

could deliver good performance. The settings used wereN = 106, Z = 0.8,M = 106, and the memory

budgets were manually allotted. These budgets were varied from 80 KB down to 10 KB.

The results of these experiments were interesting (refer toFigure 14). The performance ofLC degraded

gradually with decreasing memory sizes.SSexhibited high precision and recall for memory sizes greater

than 15 KB, after which its performance deteriorated drastically. hC on the other hand, performed well even

with the low memory allocation of 10 KB, achieving recall of 97% and precision of 75%. This might be

explained by the fact thathC does not need to make decisions about which items to monitor and which ones

to discard (being a sketch-based algorithm), but rather keeps approximate counts of all items.

We further ran the same experiments on the real datasets. Theresults were averaged over all datasets, and

are shown in Figure 15. In this case,SSis the one that exhibits the best overall performance. The variation

in the results ofhC is high, because it performed poorly on one of the datasets (Kosarak). All algorithms

performed poorly at the low memory end (10 KB).

6.2 Memory Bounds

All the algorithms allocate at the beginning the memory needed for their internal dta structures, using

the specified input parameters. Ideally, the memory requirement should be independent of any data related

parameters, because in practical applications these wouldvery often be unknown, or hard to estimate. Using

these parameters means that the algorithm makes assumptions about the data distribution, or the maximum

item value that may appear in the stream.

Finally, a careful observation of the experimental resultswith low memory budgets (Sections 5.2 and

6.1.1) reveals that it might be possible to obtain tighter theoretical memory bounds for several of the al-

gorithms - most notablyhC , LC andSS . The experiments demonstrate that the desirable performance

17

levels can be achieved with sometimes considerably lower memory requirements. This means that there is

certainly room for future work on the theoretical analysis of these algorithms.

6.3 Sketch-based vs. Counter-based

Although our experiments were centered around the FI problem, it should be noted that the sketch-based

algorithms apply to a broader range of problems. Maintaining a sketch implies that the algorithm stores

information about all elements in the stream, and not just the frequent items. Thus, sketches act as general

data stream summaries, and can be used for other types of approximate statistical analysis of the data stream,

apart from being used to find the frequent items.

Thus, if an application was strictly limited to discoveringfrequent items, counter-based techniques (LC

, SS) would be preferable due to their superior performance and ease of implementation. However, if

more information about the data stream (other than just the frequent items) is required, then a sketch-based

algorithm would be a better choice (hC).

6.4 Practical Considerations

We now examine the algorithms with respect to plausibility of use in real life applications. The first

observation is that an efficient implementation also requires some general knowledge of the data character-

istics, since these are sometimes an input to the algorithms(refer to Table 1). The error parameters (δ, ǫ)

can be fixed at sufficiently low values without knowledge of the stream or the support that might be required

in the queries later. Whereverk or φ are required, again a worst case estimate may be used. Knowing M ,

may in some cases be a problem. ForhC , this also hides a pertinent implementation issue: for the hashing

function, a large prime number and pairs of randomly generated integers are required, and for the hashing

to be effective, this prime number and the random numbers need to be of the same order of magnitude as

the largest number in the stream.

Another practical issue in implementing the algorithms concerns the implicit assumption in the algorithms

that the data stream is a sequence of integers. This requirement is imperative for hash-based algorithms. For

streams of other data types, a conversion step would be required. For example, if the data stream consisted

of words, there would have to be a method of converting each word to a unique integer, say by having an

intermediate hashing function.

The algorithms should also be able to handle ad-hoc queries,and dynamically adapt to changing input

parameters. For example, when an algorithm is initialized and starts monitoring the data stream, the user

might be interested in items aboveφ = 0.01. If at a later point the user wants to identify items above

18

φ = 0.005, the algorithm should have the mechanisms to perform a dynamic and smooth transition to the

new requirements.

Other issues to be addressed include how query-answering and updating are to be interleaved. Whenever

a query is being answered, the algorithm should not miss items in the data stream. Simple solutions include

buffering the stream, or having the query process run in parallel.

7 Conclusions

The problem of identifying frequent items in streaming datais becoming increasingly relevant to many

diverse domains and applications. It has also attracted lots of interest in the research community, and several

algorithms have been proposed for its solution.

In this work, we experimentally evaluated the performance of several algorithms that have been proposed

in the literature for mining data streams for frequent items. Over the broad range of our experiments,hC

, LC andSSemerged as the most consistent ones, performing well acrosssynthetic and real datasets, even

with memory restrictions. They offered high precision and recall regardless of changes in support and data

skew. hC andSShad a slight edge overLC when it came to recall and precision, but at the cost of higher

query times (forhC) or higher update times (forSS).

We believe that the results of this study can help the research community focus its efforts on improving

the algorithms for the FI problem, as well as help the practitioners choose the most suitable algorithm for

their case among the several alternatives.

References

[1] Frequent itemset mining dataset repository, university of helsinki. http://fimi.cs.helsinki.fi/data/, 2008.

[2] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving data streams. In

VLDB, pages 81–92, 2003.

[3] T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets. Using association rules for product assortment deci-

sions: A case study. InKnowledge Discovery and Data Mining, pages 254–260, 1999.

[4] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. InICALP ’02:

Proceedings of the 29th International Colloquium on Automata, Languages and Programming, pages

693–703, London, UK, 2002. Springer-Verlag.

19

[5] G. Cormode and S. Muthukrishnan. An improved data streamsummary: the count-min sketch and its

applications.J. Algorithms, 55(1):58–75, 2005.

[6] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: tracking most frequent items dynami-

cally. ACM Trans. Database Syst., 30(1):249–278, 2005.

[7] G. Cormode and S. Muthukrishnan. Massive data analysis lab, rutgers university.

http://www.cs.rutgers.edu/˜muthu/massdal.html, 2008.

[8] Dr. Norman F. Ness. NASA Voyager 2 Hourly Average Interplanetary Magnetic Field Data.

http://nssdcftp.gsfc.nasa.gov/ spacecraftdata/ voyager/ voyager2/ magneticfields/ ip 1hour ascii/,

2001.

[9] C. Estan and G. Varghese. New directions in traffic measurement and accounting. InSIGCOMM,

pages 323–336, 2002.

[10] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Computing iceberg queries

efficiently. InVLDB, pages 299–310, 1998.

[11] P. B. Gibbons and Y. Matias. Synopsis data structures for massive data sets. InDIMACS Series in

Discrete Mathematics and Theoretical Computer Science, 1999.

[12] L. Golab, D. DeHaan, E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro. Identifying frequent items in

sliding windows over on-line packet streams. InIMC ’03: Proceedings of the 3rd ACM SIGCOMM

conference on Internet measurement, pages 173–178, New York, NY, USA, 2003. ACM.

[13] C. Jin, W. Qian, C. Sha, J. X. Yu, and A. Zhou. Dynamicallymaintaining frequent items over a

data stream. InCIKM ’03: Proceedings of the twelfth international conference on Information and

knowledge management, pages 287–294, New York, NY, USA, 2003. ACM Press.

[14] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simplealgorithm for finding frequent elements in

streams and bags.ACM Trans. Database Syst., 28(1):51–55, 2003.

[15] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng.KDD-Cup 2000 organizers’ report: Peeling

the onion.SIGKDD Explorations, 2(2):86–98, 2000. http://www.ecn.purdue.edu/KDDCUP.

[16] G. S. Manku and R. Motwani. Approximate frequency counts over data streams. InVLDB, pages

346–357, 2002.

20

[17] A. Metwally, D. Agrawal, and A. E. Abbadi. An integratedefficient solution for computing frequent

and top-k elements in data streams.ACM Trans. Database Syst., 31(3):1095–1133, 2006.

[18] S. Muthukrishnan. Data streams: algorithms and applications. InSODA, pages 413–413, 2003.

[19] T. Palpanas, M. Vlachos, E. J. Keogh, D. Gunopulos, and W. Truppel. Online amnesic approximation

of streaming time series. InICDE, pages 338–349, 2004.

[20] Source Code, Datasets, and Additional Experimental Results.

http://disi.unitn.eu/˜themis/frequentitems/, 2008.

[21] F. I. Tantono, N. Manerikar, and T. Palpanas. Efficiently discovering recent frequent items in data

streams. InSSDBM, 2008.

21

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
ec

al
l

No. of Items (Millions)

Recall: No. of Items

CCFC
CGT
CM

Freq
hC
LC
SS

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
re

ci
si

on

No. of Items (Millions)

Precision: No. of Items

Figure 3. Effect of Number of Transactions on Recall and Precision (Items: 500,000-1,000,000; Sup-

port:0.001; Zipf: 1.1; Runs: 20)

 0

 20

 40

 60

 80

 100

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

R
ec

al
l

Support

Recall: Effect of Support

CCFC
CGT

CM
Freq

hC
LC
SS

 0

 20

 40

 60

 80

 100

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

P
re

ci
si

on

Support

Precision: Effect of Support

Figure 4. Effect of Support on Recall and Precision (Items: 1,000,000; Zipf: 1.1; Runs: 20)

22

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5

R
ec

al
l

Zipf parameter

Recall: Effect of distribution

CCFC
CGT
CM

Freq
hC
LC
SS

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5

P
re

ci
si

on

Zipf parameter

Precision: Effect of distribution

Figure 5. Effect of data distribution (skew) on Recall and Precision (Items: 1,000,000; Support:0.001; Runs:

20)

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
ec

al
l

No. of Items (Millions)

Recall: No. of Items

CCFC
CGT

CM
Freq

hC
LC
SS

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
re

ci
si

on

No. of Items (Millions)

Precision: No. of Items

Figure 6. Effect of Number of Transactions on Recall and Precision, with Budgeted Memory. (Items:

500,000-1,000,000; Support:0.001; Zipf: 1.1; Runs: 20)

23

 0

 20

 40

 60

 80

 100

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

R
ec

al
l

Support

Recall: Effect of Support

CCFC
CGT
CM

Freq
hC
LC
SS

 0

 20

 40

 60

 80

 100

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

P
re

ci
si

on

Support

Precision: Effect of Support

Figure 7. Effect of Support on Recall and Precision, with Budgeted Memory. (Items: 1,000,000; Zipf: 1.1;

Runs: 20)

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5

R
ec

al
l

Zipf parameter

Recall: Effect of distribution

CCFC
CGT

CM
Freq

hC
LC
SS

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5

P
re

ci
si

on

Zipf parameter

Precision: Effect of distribution

Figure 8. Effect of data distribution (skew) on Recall and Precision,with Budgeted Memory (Items:

1,000,000; Support:0.001; Runs: 20)

24

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 10000 100000 1e+006 1e+007 1e+008

U
pd

at
e

T
im

e

No. of Items

Update time: no memory budget

CCFC
CGT
CM

Freq
hC
LC
SS

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 10000 100000 1e+006 1e+007 1e+008

U
pd

at
e

T
im

e

No. of Items

Update time with budgeted memory

(a) (b)

Figure 9. Update time without memory budgets and with memory budgets (Runs: 3). Note logarithmic

scale on both axes.

 0

 20

 40

 60

 80

 100

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

R
ec

al
l

Support

Q148: Recall: Effect of Support

CCFC
CGT

CM
Freq

hC
LC
SS

 0

 20

 40

 60

 80

 100

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

P
re

ci
si

on

Support

Q148: Precision: Effect of Support

Figure 10. Dataset Q148 - Effect of Support on Recall and Precision, with Budgeted Memory (Runs:5)

25

 0

 20

 40

 60

 80

 100

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

R
ec

al
l

Support

Retail: Recall: Effect of Support

CCFC
CGT
CM

Freq
hC
LC
SS

 0

 20

 40

 60

 80

 100

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

P
re

ci
si

on

Support

Retail: Precision: Effect of Support

Figure 11. Dataset Retail - Effect of Support on Recall and Precision, with Budgeted Memory (Runs:5)

 0

 20

 40

 60

 80

 100

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

R
ec

al
l

Support

Kosarak: Recall: Effect of Support

CCFC
CGT

CM
Freq

hC
LC
SS

 0

 20

 40

 60

 80

 100

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

P
re

ci
si

on

Support

Kosarak: Precision: Effect of Support

Figure 12. Dataset Kosarak - Effect of Support on Recall and Precision,with Budgeted Memory (Runs:5)

 0

 20

 40

 60

 80

 100

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

R
ec

al
l

Support

Nasa: Recall: Effect of Support

CCFC
CGT

CM
Freq

hC
LC
SS

 0

 20

 40

 60

 80

 100

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

P
re

ci
si

on

Support

Nasa: Precision: Effect of Support

Figure 13. Dataset Nasa - Effect of Support on Recall and Precision, with Budgeted Memory (Runs:5)

26

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80

R
ec

al
l

Memory in Kb

Recall: Effect of memory restrictions

hC
LC
SS

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80

P
re

ci
si

on

Memory in Kb

Precision: Effect of memory restrictions

Figure 14. Effect of Memory Restrictions on Recall and Precision. (Items: 1,000,000; Zipf: 0.8; Support:

0.001; Runs: 20)

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80

R
ec

al
l

Memory in Kb

Real datasets - Recall: Effect of memory restrictions

hC
LC
SS

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80

P
re

ci
si

on

Memory in Kb

Real datasets - Precision: Effect of memory restrictions

Figure 15. Real datasets: Effect of Memory Restrictions on Recall and Precision. (Support = 0.001; 5 runs

over each dataset)

27

