Ranked Join Indices

Panayiotis Tsaparas
University of Toronto
tsap@cs.toronto.edu

Nick Koudas
AT&T Labs-Research
koudas@research.att.com

Abstract

A plethora of data sources contain data entitiesthat could
be ordered according to a variety of attributes associated
with the entities. Such orderings result effectively in a rank-
ing of the entities according to the valuesin the attribute do-
main. Commonly, users correl ate such sourcesfor query pro-
cessing purposes through join operations. In query process-
ing, it is desirable to incorporate user preferences towards
specific attributesor their values. A way to incorporate such
preferences, is by utiliziing scoring functions that combine
user preferences and attribute values and return a numerical
score for each tuplein thejoin result. Then, a target query,
which we refer to as top-k join query, seeks to identify the &
tuplesin thejoin result with the highest scores.

In this paper, we propose a novel technique, which were-
fer to as ranked join index, to efficiently answer top-k join
gueriesfor arbitrary, user specified, preferences and a large
classof scoring functions. Our rank joinindex requires small
space (compared to the entirejoin result) and provides guar-
antees for itsperformance. Moreover, our proposal provides
a graceful tradeoff between its space requirements and wor st
case search performance. We supplement our analytical re-
sults, with a thorough experimental evaluation using a vari-
ety of real and synthetic data sets, demonstratingthat in com-
parison to other viable approaches, our technique offerssig-
nificant performance benefits.

1 Introduction

A plethoraof data sources contain data entitiesthat could
be ordered accordingto avariety of attributesassociated with
the entities. Such orderingsresult effectively in aranking of
the entities according to the values in the attribute domain.
Such values could reflect variousquantitiesof interest for the
entities, such asphysical characteristics, quality, reliability or
credibility to name afew. Asexamples, consider a database

Themistoklis Palpanas
University of Toronto
themis@cs.toronto.edu

YannisKotidis
AT&T Labs-Research
kotidis@research.att.com

Divesh Srivastava
AT&T Labs-Research
divesh@research.att.com

of houses ordered (ranked) by price or number of rooms; the
list of al airportsin the country ranked by average flight de-
lay; partsinasupplier-part database ranked by their avail abil-
ity, or suppliersin the same database ranked by their credibil-
ity or quality of service (derived by recording user experience
with suppliersover time). Werefer to such attributesas rank
attributes. The domain of rank attributesdepends on their se-
mantics. For example, the domain could either consist of cat-
egorica values(e.g., service can be excellent, fair or poor) or
numerica (e.g., an interval of continuousvaluesfrom R¥).

The existence of rank attributes along with data entities
leadsto enhanced functionality and query processing capabil -
ities. Indeed avariety of recent works have addressed severa
aspects of the problem of enhancing query processing taking
into account user preferences towards the values of rank at-
tributes[12, 3, 4]. Of particular importance is query answer-
ing with the goal of optimizing functions that capture user
preferences towards rank attribute values. For examplein a
database of renta houses, data entities (i.e., houses) can be
ranked according to a variety of attributes such as, distance
from a specific location, number of rooms, rental price and
buildingage. Users specify their preferencestowardsspecific
attributes. Commonly, preferences are expressed in the form
of numerical weights, assigned to rank attributesby the user.
Query processors incorporate functionsthat weight attribute
values by user preference deriving scores for individua en-
tities. Specific techniques have been devel oped to carry out
guery processing with the goal of identifying results that op-
timize such functions. A typical instanceisaquery that seeks
toquickly identify k dataentitiesthat yiel d best scoresamong
all entitiesin the database. At an abstract level such queries
can be considered as generalized forms of selection queries.

Of equa importanceisthe ability to support related query
functionality on join queries. Consider Figure 1. It consists
of twotables, part s andsuppl i ers. Tablepart s con-
tainsthreeattributesavailability, nameand supplier id. Simi-
larly tablesuppl i er s consistsof two attributessupplier id
and quality. Assume for purposes of expositionthat al parts
correspond to the same piece of a mechanica device possi-

PARTS SUPPLIERS
availability name supplier id supplier id quality
5 PO5 1 1 10
2 PO5 2 2 3
9 PO5 3 3 8

Figure 1. Tablesand Rank Attributes

bly of different brand. Rank attributes availability and qual-
ity determine the availability (e.g., current quantity in stock
for thispart) and the quality of the supplier (e.g., acquired by
user experience reportson this supplier) respectively, having
as domain a subset of RT as shownin Figure 1. A user in-
terested in purchasing parts from suppliers will have to cor-
relate, through ajoin on supplier id, the two tables. Rank at-
tributes, could providegresat flexibility in query specification
in such cases. For example, a user looking for a part might
bemoreinterested in the avail ability of the part as opposed to
supplier quality. Inasimilar fashion supplier quality might be
of greater importance to another user, than part availability.
It isimperativeto capture user interest or preference towards
rank attributes spanning multiple tables and efficiently sup-
port such queries, involving user preferences and table join
results. User preference towards rank attributesis captured
by allowing users to specify numerical values (weights), for
any rank attribute. The larger the weights the greater the
preference of the user towardsthe rank attributes. Assuming
the existence of scoring functions that combine user prefer-
ences and rank attribute values, returning a numerical score,
our target queries, which we refer to as top-k join queries,
seek to identify the & tuplesin the join result of part s and
suppl i er s with higher scores.

In this paper, we propose a novel technique, which we re-
fer to as ranked join index, to efficiently answer top-k join
queries for arbitrary, user specified, preferences and a large
class of scoring functions, namely monotone linear scoring
functions. Our ranked join index requires small space (com-
pared to the entirejoinresult) and provides guarantees for its
performance. It can exist separately fromthejoined relations
and utilized in avariety of query processing scenarios, since
like traditiona join indices [16] it is compatible with rela-
tional operationslike selection and union.

In particular, we make the following contributions:

e Our ranked joinindex design providesguaranteed wor st
case search performance for top-k join queries for a
large class of scoring functions parameterized by arbi-
trary user preferences.

* We show that for alarge class of scoring functions of
interest, the space required by our ranked join index is
much smaller than that required for materializingtheen-
tirejoinresult. For amaximum value of K (provided at
congtructiontime) denoting an upper bound on thenum-
ber of results requested by top-k join queries, we show
that the worst case space requirements of our index are

small and independent of user preferences. We propose
an algorithm to identify the join result tuples that are
necessary to include and maintain in our ranked joinin-
dex.

e We provide an efficient algorithm to construct the
ranked join index and derive its properties with respect
to worst case search performance for any top-k join
query, k < K involving arbitrary user preferences. We
show that its performance is logarithmic in the size of
the index and the size of the query result.

e We demonstrate that our design provides a graceful
tradeoff between space and worst case search perfor-
mance and we quantify thistradeoff.

¢ We propose and implement alternate solutions for an-
swering top-k join queries based on R-trees.

¢ We experimentaly demonstrate the performance bene-
fits our approach offers when compared to an approach
based on R-trees.

This paper is organized as follows: Section 2 reviewsre-
lated work. Section 3 formally defines the class of scoring
functions and the problem we consider in this paper. In sec-
tion 4 we present an algorithm that identifiesthe tuplesin the
join result that should be further indexed and processed with
our ranked joinindex. Sections5 and 6 present our designfor
the ranked join index, proposing an algorithm to construct it
and analytically derive itsworst case search properties. Sec-
tion 8 presents the results of a thorough experimental eval-
uation using real and synthetic datasets, presenting the per-
formance advantages of our approach when compared with
other applicableapproaches. Finally, section 9 concludesthe
paper and pointsto problems of interest for further study.

2 Redated Work

Agrawa and Wimmers|[1] proposed aframework for pref-
erence based query processing. Variousworksconsidered re-
alizations of a specific instance of this framework, namely
top-k selection queries, that is, quickly identifying k tuples
that optimize scores assigned by monotone linear scoring
functions on avariety of ranked attributes and user specified
preferences[10, 6, 12, 3, 5]. Most of these techniquesfor an-
swering top-k selection queries [10, 12, 6, 3] are not based
on indexing. Instead, they are geared towards optimizing the
number of tuplesexamined in order toidentify theanswer un-
der various cost models of interest. Such optimizationsin-
clude, minimization of tuples read sequentially from thein-
put [12, 10, 6] or minimization of random disk access [3, 4].
Chang et d. [5] propose an indexing technique for answer-
ing top-k selection queries. This technique does not provide
guarantees for its performance and in the worst case, the en-
tiredata set hasto be examined in order to identify the correct
answer to atop-k selection query.

A significant volume of work in multimediadatabases ad-
dresses issues of incorporating user preferences into query

processing [9, 8, 7]. The optimization objectives and the na
ture of solutionsare not directly related to our framework as
these works do not address indexing.

Natsev et a. [14] proposed techniques to answer top-k
gueries over the join of two relations. They assume no pre-
processing and computethejoin of therelationsfrom scratch
for each join condition and user supplied preference values.
The techniques provide no performance guarantees for gen-
eral data distributions and arbitrary user preferences. How-
ever, sincethe entirejoin is computed from scratch, they of-
fer the flexibility of incorporating arbitrary join conditions
between the two relations. A recent study presents an effi-
cient implementation of apipelined operator for ranked joins
[13]. Our work presents the first solution providing perfor-
mance guarantees for top-k join queries over two relations,
when preprocessing to construct aranked joinindex for aspe-
cific join conditionis permitted.

We note that our work is also applicable in the case of a
single relation in the spirit of the works in [10, 12, 5]. In
thiscase, our work extends these approachesin the sense that
it provides the first solution to the top-k selection problem
with monotone linear functions, having guaranteed worst
case search performance for the case of two ranked attributes
and arbitrary preference vectors.

3 Problem Definition

Let R, S betwo rdations, with attributes A4, . . ., A,, and
B ... By, respectively. Without loss of generality, assume
that A, By are rank attributes with domain a subset of R+
and # an arbitrary join condition defined between (sub)sets of
Aa,...,An, Ba,...Bn (RXy S). Foratuplet € R Xy S,
A; (t) (similarly B; (t)), corresponds to the value of attribute
A; of tuplet. Let f : RT x RT — R* beascoring function
that takes asinput the pair of rank attributevalues (sy, sz) =
(A1(2), B1(t)) of tuplet € R Xy S, and produces a score
value f(s1, s2) for thetuplet.

Definition 1 (Monotone Functions) A function f : Rt x
Rt — RT ismonotoneif the following holds: if z; < =z,
and u S y2lthm f(l’hyl) S f(m2ay2)-

Let e = (p1,p2) denote the user defined preferences
towards rank attributes A, B;. We define a linear scor-
ing function f, : RT x Rt — R7T asascoring func-
tion that maps a pair of score values (s, s2) to the value
fe(s1,82) = p1s1 + pa2sa. We assume that user preferences
are positive (belonging to RT); thisis an intuitive assump-
tion as it provides monotone semantics to preference values
(thegreater thevaluethelarger the preferencetowardsthat at-
tributevalue). In such acase, thelinear function £, ismono-
tone aswell. We use £ to denote the class of monotone lin-
ear functions. Note that the pair of user defined preferences
e uniquely determines afunction f € L.

Definition 2 (top-k join query) Givenrelations R, .S, ajoin
condition ¢ and a scoring function f, € L, atop-k query
returns a collection 7y, (¢) € R Xy S of k tuples ordered
by fe(A1(t), Bi(t)), such thatfor all t € R Xg S, t ¢
Ti(e) = fe(AL(t), B1(t)) < fe(A1(t), Bi(t;)), forall¢; €
T.(k),1<i<k.

Thus, atop-k join query returns as aresult & tuplesfrom the
join of two relations with the highest score, for a user spec-
ified scoring function f., among all tuplesin the join result.
We are now ready to formally define the main problem we
address in this paper.

Problem 1 (Ranked Join Index) Given relations R, S, a
join condition ¢, a class of scoring functions £ and an up-
per bound K for the maximum requested result size of any
top-k join query, preprocess R M, S and construct an in-
dex, providing answer s with guaranteed performance on any
top-k join query, £ < K, issued using any scoring function
feL.

Wewill demonstrate that our solution offers search perfor-
mance |logarithmic to the size of the index. We present our
solutions in the following steps. First we show that only a
subset of R X, S isnecessary to be represented in our join
index. This subset is the same for al scoring functionsin
L. Then we present the construction of the join index and
show its properties. All the proofs of lemmas and theorems
are omitted dueto space constraints. They are availableinthe
full version of this paper.

4 PruningtheJoin Result

If therelations R, S to be joined consist of O(n) tuples,
thesizeof thejoinrelation R X, S may beaslargeasO(n?).
We demonstrate that most of the tuples of the join relation,
R X, S, are not necessary for answering top-k join queries.
In particular, we will show that for a fixed value K and for
theentireclassof linear functions £, intheworst case, anum-
ber of tuplesmuch smaller than O (n?) issufficient to provide
the answer to any top-k joinquery, k < K. We present algo-
rithms that successively prune the relation R X, S to pro-
duce the number of required tuples.

We first notethat we do not need to generate the complete
joinresult R Xy S. Let C denotethe subset of R Xy S nec-
essary to generate, in the worst case, in accordance to Prob-
lem 1. We make a simple observation that limits the size of
C substantially. Note that although each tuplet of R could
joinintheworst case with O(n) tuplesof S, for afixed value
of K, weonlyjoint withat most K tuplesin .S, the onesthat
have the highest rank values. Therefore, among the possible
O(n) tuplesinthejointhat are produced for each tuplet € R,
only the K tupleswith the highest rank values are required.
Due to the monotonicity property of functionsin £ these K
tuples will have the highest scores for any f € L. Thisis
formalized by the following lemma.

Lemmal For relations of size O(n) and a value K in ac-
cordance to Problem 1, theworst case size of C' iSO (nK).

Notethat thisworst case sizeisquery independent, i.e., using
the same set of tuples C' of worst case size O(nK') one can
answer any top-kjoin query, £ < K,forany f € £. Ina
preprocessing step, C' can be determined by joining R and .S
and selecting for each tuplet € R the K (worst case) tuples
contributed by ¢ to the join result, that have the highest rank
valuesin .S. Such a preprocessing step can be carried out in
afully declarative way using SQL. We seek ways to reduce
thesize of C further.

Definition 3 Let t and ¢’ denote two tuplesof R X, S. Let
(s1,s2) and (s}, s,) denote the pairs of rank values associ-
ated with each tuple. We say that tuple+’ dominates tuplet,
if s1 < sf,and sy < sb.

The domination property provides a basic means to prune C'
further. Theintuitionisasfollows. Lemma 1 prunesthejoin
result, by restricting the number of the tuples contributed to
thejoin by asingletuple of arelation. The domination prop-
erty of Definition 3 enables pruning by examining the tuples
contributed to the join by multipletuples of arelation. This
intuitionisformalized by the following lemma.

Lemma?2 For avalue of K in accordance to Problem 1, if
sometuplet € C'isdominated by at least K other tuples,
then ¢ can safely be excluded from C' asit cannot be in the
answer set of any top-k join query, £ < K.

A proof for thislemma foll ows from the monotonicity prop-
erties of the scoring functions. It is evident from Lemma 2
that a viable strategy to reduce the size of C isto identify al
tuplesin C' dominated by at least K™ tuples. Weformalizethis
with the following definition.

Definition 4 Given a set C', the dominating set D is the
minimal subset of C' with the following property: for every
tuplet ¢ D withrank values (s, s2), there are at least K
tuplest; € Dy, that dominatetuplet.

We present the agorithm for computing the dominating
set, Dk for any valueof K inFigure2. Every tuplet; inC'is
associated with apair of rank values (si, si). The agorithm
maintainsapriority queue) (supportinginsertions/del etions
in logarithmictime) storing the K largest s’ rank values en-
countered so far. It first sortsthe tuplesin the join result in
non-increasing order with respect to the si, rank values. It
then considers the tuples one at atime in that order. For ev-
ery tuplet;, if its s’ rank vaueislessthan the minimum rank
value present in @ we discard it. Otherwise the tupleisin-
cluded in the dominating set, and the priority queue @ isup-
dated. It can be shown that thisa gorithm correctly computes
the dominating set D, for atop-k join query, for k < K.

Algorithm DominatingSet (shown in Figure 2), requires
timeO(|C|log |C) for sorting and computes the dominating
set Dk inO(|C|log K) time. The number of tuples pruned

DominatingSet(C, K)
Initialize priority queue @ and Dx = 0.
Sort the join result in non-increasing order of the s, rank values.
For the ith tuple ¢; with rank values (si, s3)
if (1Q| < K)
includet; in Dx
insert s} inQ
else
if s < min{Q} discard ¢;
else
includet; in Dx
insert s} inQ
if |Q| > k delete the minimum element of @
Output D

Figure 2. The DominatingSet Algorithm

PARTS SUPPLIER PARTS SUPPLIER

avallabily name supplerid supplierid quality avaiabiity name supplierid supplierid qualty

5 P05 1 1 2 5 PO5 1 1 5

3 P05 2 2 4 3 P05 2 2 3

1 P05 3 3 6 2 P53 3 4
4 1 4 1

@ (o)

Figure 3. Examplesof set Dk for different join results

by agorithm DominatingSet depends on the distribution of
the rank value pairsin thejoin result. In practice we expect
the size of Dk to bemuch smaller than O(n K). Intheworst
case, however, notupleisdominated by K other tuplesand as
aresult algorithm DominatingSet does not achieve any prun-
ing. Consider the following example.

Example 1 Figure 3 presents two pairsof relationswith dif-
ferent rank attribute values. For both pairs of relations, the
size of the join result is the same (equal to 3). For the tu-
plesof each joinresult in Figure 3 we draw a geometric anal-
ogy and represent the tuple by the rank attribute pair (qual-
ity,availability) as a point in two dimensional space. For the
rank attribute value distributionsin Figure 3(a) the set D,
has size 3 (worst case) since no tuple is dominated by any
other tuple. Thus, in this case algorithm DominatingSet will
produce D, having a size equal to the theoretically predicted
worst case. In contragt, in Figure 3(b), algorithm Dominat-
ingSet will produce a set D, withsize 1 (containingthetuple
whose rank attribute pair dominatesthe other two).

In Section 8 we experimentally eval uate the amount of prun-
ing achieved by the algorithm for several data distributions.

The following lemma establishes the rel ationship among

the sets Dy, associated with each top-k join query possible
withk < K.

Lemma3 Consider two top-k join queriesrequesting k1, k-
resultsand k; < ky < K. For the dominating sets Dy, ,
Di,, Dk, thefollowing property holds: Dy, C Di, C Dk.

Lemma 3 shows that it is sufficient to identify and material-
ize only set D, since the answers to any top-k join query,
k < K arecontainedinthisset. Alsothelemmaholdsfor any
scoringfunction f € £. Executing agorithm DominatingSet
on (', using K as provided in Problem 1 identifiesall the tu-
ples necessary to answer any top-k join query with £ < K.
Inthenext section we will consider theissuesthat arise when
oneisinterested to index set D in order to provide answers
totop-kjoin querieswith guaranteed worst case accesstime.

5 Congtructingthe Ranked Join Index

We now present an agorithm to preprocess set Dk and
construct an index structure, called RJI, providinganswersto
top-k join queriesin an efficient way.

Every function f € L is completely defined by a pair
of preference values (p1,p2). The vdue of f on a tuple
t € Dg withrank values (si,sz2) IS pi1s1 + pas2. We
will present our construction by representing members of £
and rank value pairs for eech ¢ € Dy as vectorsin a 2-
dimensiond space. Since every f. € L iscompletely de-
fined by the pair e = (p1, p2) we can think of every func-
tion f to be represented by the vector e = ((0,0)(p1, p2))
on the plane. Similarly, rank value pairs, can be represented
asavector s = ((0,0)(s1,s2)). Inlight of this geometric
representation the value of a function f on atuplet € Dk
with rank values (s1, s2) isthe inner product of the vectors
e, and s. The intuition behind representing members of £ as
vectors, is as follows. Assumethat |le|| = 1, that is, e isa
unit vector. Then, thevalue of f,, ,.)(s1,s2) isthelength
of the projection of vector s on vector e, as shown in Figure
4(a). The assumption that e isa unit vector is solely for sim-
plifyingour presentation; it isnot required for the correctness
of our approach. The result of any top-k join query T (e) is
the same, independent of the magnitude of e. Let u = ae
be some vector in the direction of e with length . Ty (e) is
exactly the same as T} (u) since the lengths of the projected
vectors change only by a scaling factor, and thus, their rela
tiveorder is not affected.

The set of tuples D can be represented as points in
two dimensiona space using the rank values of each tu-
ple as shown in Figure 4(b). Given a unit vector e, we
define the angle a(e) of the vector to be the angle of e
with the axis representing (without loss of generality) the s,
rank values as shown in Figure 4(b). For a set of ¢ tuples
{t1,12, ..., 1, }, we define Ord. ({t1,1s, ..., t¢}) to be the or-
dering of thetuples {t, s, ..., t,} when therank vaue pairs
associated with each tuple are projected on the vector ¢, and

sorted by non-increasing order of their projection lengths.
We use Ord,({t1,1s,...,1,}) to denote the reverse of that
ordering. 7T (e) contains the top £ tuples in the ordering
Ord.({t1,t2,...,1s}). Figure4(b) presents such an ordering.

Let the vector e sweep the plane defined by the domains
of rank atributes (Rt x R*). In particular assume that
the sweep starts from the s;-axis moving towards the s5-
axis (i.e, counter-clockwisg). Thus e ranges from e =
((0,0)(1,0)) toe = {(0,0), (0, 1)). We are interested to ex-
amine how the ordering Ord. (Dk) varies as e sweeps the
plane, thus considering every possible scoring function.

Let usfirst consider two tuples and examine their relative

ordering. Let s' = (s}, sl), and s? = (s?,s2) bethe rank
valuepairsfortwotuplest,, ts € Dk . Sincerank valuepairs
are represented as vectors, let (s's?) = s? — s denote the
vector defined by thedifferenceof s2 and s, and let b denote
the angle of the vector (s's?) with the s;-axis. Figure 4(c)
presents an example. The ordering of ¢; and ¢- as e sweeps
the planeis governed by the following lemma.
Lemma4 Let st = (si,sl) and s? = (s?,52) betwo vec-
tors formed by the rank value pairs corresponding to two tu-
plest;,ta € Dg. Depending on the angle b that vector
(s's?) forms with the s; -axis, as e sweeps the plane one of
the following holds:

(@) ifb € [0, 3], Ord.({t1,12}) isthesamefor all e.

(b) ifb € [-F,0]U[F, 7], let e, bethevector perpendicular
to (s's?). We have:

(i) fe.(s1,8%) = fe.(s1,53),

(ll) O'l“del({tl,tg}) = Orde2({t1,t2}), for all
vectors eq, ex With a(e1),a(es) > af(es), oOr
aler),a(es) < ales),

(lll) O?"del({tl,tQ}) = Orde2({t1,t2}), for all €1, €9,
such that a(e;) < a(ey) < a(ez). Moreover, asa
vector e sweepsthe positive quadrant, tuplest y, ¢5
are adjacent in the ordering Ord.(Dg) immedi-
ately before e crosses vector e, and remain adja-
centinOrd.(Dk) immediately after e crosses e, .

Lemma 4 indicates that as e sweeps the plane, the order-
ing of tuplest; and ¢, changes only when e crosses e ;, which
is defined as the vector perpendicular to (s' s?). If the vector
(s's?) haspositiveslope, thentheordering of thetuplest , ¢,
remainsthe samefor dl e. We call the vector e, the separat-
ing vector of tuplest, and 5, and a (e,) the separating point.
Figure 5 presents an example of thisbehavior. We note that
more than two tuples may share the same separating vector.
For example, if ¢1,12, 13 are three tuples such that their cor-
responding rank value pairs are co-linear, they al share the
same separating vector. We generalize Lemma 4 asfollows.

Lemmab5 If ¢1,ts,...,1, are £ tuples with co-linear rank
value pairs that share the same separating vector e, then
Ordel({tl,t2, ...,tz}) = O?"de2({t1,t2, ...,tz}), for all
a(eyr),a(eq) suchthata(e;) < a(es) < a(esz).

s2) Vi s2 s2
/ order: t3,t1,t2 ya

~

sl sl sl

(@ (b) (c)
Figure 4. Vector representation of scoring functions and rank attribute values

order: t1,t2 order: t1, t2 a(e2) > a(es)

e2 4
order: t2,t1 a(el) < a(es)

es 2
b el b

;@ ®
Figure 5. Thetwo casesof Lemma 4

Lemma 5 demonstrates that each separating vector corre-
spondsto the reversal of two or more adjacent points. Lem-
mas 4 and 5 demonstrate propertiesof therel ative ordering of
the elements of D for all possible members of £. We will
now utilize these propertiesto efficiently index D .

6 Algorithm ConstructRJI

We present algorithm ConstructRJl which preprocesses
D and constructs an index on its eements. We let a vec-
tor e sweep the plane, and we keep track of the composition
of Tk (e). Every time vector e Crosses a separating vector,
Ord.(Dx) changes by swapping two (or moreif they are co-
linear) adjacent tuples as shown by Lemmas 4 and 5. A key
observation is that this swap is of interest for indexing pur-
poses only if it causes the composition of 7'k (e) to change.

ConstructRJI (Dx)
Forall (¢i,t;), ti, t; € Dk

V'« Compute separating vectorse, ; and separating pointsa(es, ;)

Sort V' in non-decreasing order of a(es,;)
Form R consisting of top-K tuplesin D x with respect to f(; o
Setl{=0; R, = R;
For each element (¢;, ¢;) of V'
if t;, t; € Rorti,t] Q R
No changein R’'s composition by e,
ift; € Randt; € R
Materidize a(es,;), R; replacet; with¢; in R
ift; ¢ Randt; € R
Materidize a(es,;), R; replace t; with ¢; in R
When V' is exhausted, materialize R

discardes,,

171

Figure 6. Algorithm ConstructRJI

The algorithm is shown in Figure 6. Assuming that D g

contains tuples of the form (tid;, s¢, si), where tid; atuple
identifier, and s’ , s}, theassociated rank values, thealgorithm
starts by first computing the set V' of all separating vectors.
Thisinvolvesconsidering each pair of tuplesinD g and com-
puting their separating vector and the associated separating
point. Lete,,. (a(es,;)) bethe separating vector (separating
point) for each pair of tuples¢;,t;,1 < ¢,j < |Pk|. Each
pair (tid;,tid;) along with the associated separating point
a(es,;) iscomputed and materialized asset V. Thenset V' is
sorted in non-decreasing order of a(e;,,). If two separating
vectors have the same a(e;, ;) value, we sort them according
to their projectionin the s, -axis.

The agorithm then sweeps the (positive quadrant of the)
plane, going through the separating vectors in V' in sorted
order. The agorithm maintains also aset R that stores (un-
sorted) the K tupleswith highest score according to thefunc-
tion f., wheree isthecurrent position of the sweeping vector.
Weinitialize R tohold thetop-k tupleswith respect totheini-
tial position of vector e, namely e = {((0,0)(1, 0)) (function
f1,0)). Initidizing R is easy, since the set D computed at
the end of algorithm DominatingSetis sorted by s.

Each a(e,,;) in V' (and the corresponding vector e,) is
associated with two tuple identifiers (¢;, ¢;). When e crosses
the vector e, during the sweep it causes the ordering of tu-
plest;,t; to change according to Lemmas 4 and 5. In case
both tupleidentifiersbelong to R, or neither belongsto R, we
can safely discard the vector e, under consideration, since
it does not affect the composition of R. Otherwise, we ma-
teridize a(e, ;) together with the composition of R, and we
update R, to reflect the new tuple identifiers. We aso mate-
rialize the last value of R, after the sweep is completed.

At the end of the algorithm we have accumulated M sep-
arating vectors ey, es, . . ., epr (represented by their separat-
ing points a(e;), 1 < i < M). The collection of vectors
e;, 1 < i < M partitionsthe quadrant into A/ + 1 regions.
Each regioni, 0 < ¢ < M, isdefined by vectorse;, e; 41,
whereeq = ((0,0)(L,0)), and eary1 = ((0,0)(0,1)). Re-
gion i is associated with a set of K points R; C Dg, such
that for any vector e, witha(e;) < a(e) < a(e;41), uniquely
identifying afunction f. € £, Tk (e) isequa to apermuta
tion of R;. This permutation is derived by evaluating f. on
every element of R, and then sorting theresultin nondecreas-
ing order. That is, R; contains (up to a permutation) the an-
swer toany top-k query, k£ < K, for any function defined by a

23 4 23
order: L2134 order: (113,24 R2={tL2} RI={tLt3}
t tle

order: t1,t3t4,12

e 2e " e

[4 O

order: t1,t4,t3,t2 RO={t1,t4}

[33 ot

Ae34) aed) Ae23)

@ (b)
Figure 7. Exampleoper ation of algorithm ConstructRJI

vector inregioni. Weillustratethe operation of thea gorithm
with the following example.

Example2 Consider Figure 7(a). It presents a set D, con-
sisting of four tuplest,,ts,t3,t4. The algorithm starts by
computing the separating vector for each pair of tuples.
For brevity in Figure 7(a) we present the separating vec-
tors only for pairs of tuplest,,t3,t4. The separating vec-
torsesa, €24, €23 are computed for each pair asshowninFig-
ure 7(a). Each pair is stored along with the associated sepa-
rating point and the collection is ordered based on separat-
ing points. Setting K = 2, we construct an index answer-
ing top-1 and top-2 join queries. Consider now a vector e
sweeping the plane. Thefirst two tuplesin Ord; o)(D-) are
R = {t1,t4}. Thefirst vector crossed by e is e34, which cor-
respondsto swappingtuplests and#,4. The swap changesthe
compositionof R. Inparticular, ¢4 isreplaced withts. At this
point, a(esq) is stored along withthe Ry = R = {t1,%4}
and the current composition of R becomes R = {t1,13}.
Then a(ea4) is encountered in the sorted order but the swap
of t5, t4 doesnot affect the composition of R. The next vector
inthe sorted order ise,3. The compositionof R isaffected so
a(eq3) isstored alongwith Ry = R = {t;,t3}, and thecur-
rent composition of R changesto R = {t1,t2} . When the
input is exhausted, the current ordering R2 = R = {t1,t5}
is stored, and the algorithm terminates. Figure 7(b) shows
the final partitioning of the plane.

We organi ze the separating points along with the associ-
ated R;'sin aB-tree, indexed by a(e;), 1 < i < M, storing
in the leaves of the B-tree, the sets R; of tupleidentifiersin
D . We now proceed with the space and performance anal -
ysisof thisstructure.

6.1 Analyzing Algorithm ConstructRJI

Critical to the size of the index isthe size of M, the num-
ber of separating vectorsidentified by thealgorithm. We pro-
vide aworst case bound on M by bounding the number of
times that a tuple identifier can move from position K + 1
to position K in Ord.(Dk). Lemmas 4, 5 guarantee that
whenever a swap happens between elements of Ord.(Dk),
it takes place between two adjacent elementsin Ord. (Dk).
Thus, we only index the separating vectorsthat cause aswap

of theelementsinpositionsK and K+ 1inOrd.(Dk), since
these are the ones that cause the composition of 7" to change.
For every t; € Dk define rank,,(e) to be the position of tu-
plet; intheordering Ord.(Dx). Thefollowing lemma pro-
vides the means for bounding the value of A1.

Lemma6 For every tuplet; € Dk, rank:,(e) can change
from K + 1 to K at most K timesfor every vector e.

We claim the foll owing theorem.

Theorem 1 Given a set of dominating points Dg, we
can congtruct an index for top-k join queries in time
O(|Dk|*log |Pk|) using space O(|DPk | K?) providing an-
swers to top-£ join queriesin time O(log [Pk | + klog k),
kE<K.

Lemma 6 guarantees that each element in D contributes
at most K changesto Tk (e). Thismeans that each tuplein-
troduces at most K separating vectors and consequently in-
troduces K separating points that need to be stored in the
worst case. Therefore, the number M of separating points
isat most O(|Dk|K). After the separating pointsa(e,) are
identified, they are organized aong with the associated sets
R; inaB-treeindexed by a(e;). The leaf level stores point-
erstothesets R;. Thus, thetotal space requirement becomes
O(|Pk|K?). Thereare O(nK) elementsin D intheworst
case, so the number M of separating pointsthat require rep-
resentation in the index is a most O(nK?). Thus, thetotal
space used by thisstructureintheworst caseisO(n K 2). The
worst case time complexity for constructing the ranked join
index is: O(n?K?) time to compute the separating vectors
and separating points; O(n?K?%logn?K?) time to sort the
separating points. Constructing a B-tree can be performed
during the single scan on the sorted separating point col-
lection of algorithm ConstructRJI. Thus, the total construc-
tiontimeisO(n?K? log(n? K%)). We notethat these are the
worst case space and construction time requirements for the
index RJI. In section 8 we will experimentally evaluate the
requirements of RJI for avariety of data distributions.

At query time given the vector e that defines a function
fe € L, we compute a(e), and search the B-tree using a(e)
as akey. This effectively identifies the region that contains
vector e. Then, we retrieve the associated set R; and eval-
uate f, for dl elements of R;, sorting the results to produce
Tk (e). Thus, query timeis O(log(nK?) + K log K) in the
worst case, for any top-k join query, k£ < K.

6.2 Space/Time Tradeoffsin RJI

Our ranked join index design provides avariety of space-
time tradeoffs which can be utilized to better serve the per-
formance/space constraints in various settings.

If the space is a critical resource, one could decrease the
space requirements significantly, at amost no expense on
query time. Notethat sets R; and R; 1 associated with two

€13
R3 =(t1,12} 24
R2 =(123}

1 B n e
o RL={t314} _ g5

°
[
RO ={t4,5}

(]
t5

R1= {11,243}

el2

<t2t1> €13 €23
<tLt2> /T <t2t3> e24
24 /
/ <t3t2> -~
/ / <t3t4>
o /
al e/ <t413> €35
RO = {t3t4,t5} /
// 13
/ <t4,t5>
/ ° _
t4 / t4 ~
/ rd
/ - <t5,t4>
/ e
/, _
5 /) - t5
1/ -
-

@

Figure 8. Space Time Tradeoffs of RJI

neighboring regions differ, in the worst case, by only one tu-
ple. Therefore, theset R; U R;41 contains K + 1 distinct
tuples. If we merge m regions, then the resulting region con-
tainsa most K + m — 1 distinct tuples. Note that thisis
aworst case bound; depending on the distribution, a region
may contain lessthan K + m — 1 distinct tuples. Therefore,
if weinitially have M separating vectors, merging every m
regions reduces the number of separating vectors to M /m.
The space for theindex becomes O (M (K + m)/m), and the
query time O(log(M (K +m)/m) + (K 4+ m) log(K + m).
Since M = O(nK) in the worst case, the requirements
of the index are O(nK (K + m — 1)/m) for space, and
O(log(nK%(K+m—1)/m)+(K+m—1)log(K +m—1))
for query time. AnexampleisshowninFigure8 (K = 2).
We merge every 2 regions of Figure 8(a) showing the result
in Figure 8(b).

Merging m regionsdoes not awaysresultin aregionwith
K +m — 1 tuples. Depending on the distribution of therank
values, it may be the case that as we cross the vectors that
define the m regions, some pointsmovein and out of the top
K positionsmultipletimes. In thiscase, merging m regions,
resultsin aregion with far lessthan K + m — 1 distinct tu-
ples. Instead of merging every m regions, we can merge so
that every region (except possibly the last one) contains ex-
actly K + m — 1 distinct tuples. This allows for more ag-
gressive reduction of space, without affecting the worst case
guery time. We measure the effects of merging adjacent re-
gionson space, in Section 8.

If fast query timeisthe main concern, one can reduce the
query time by storing all separating vectorsthat cause T’k (¢)
to change. Accordingto Lemma 6 atuplecan move from po-
sitionf+1 to£ at most £ times, therefore, each tuple can con-
tributeat most 1 + 2+ ...+ K = K(K + 1)/2 changes
to Tk (e). Thus, storing at most O(n K ?) separating vectors
one could reduce the query timeto O (log n K 3). Effectively
in this case we are storing an ordered sequence of pointsin
each region R; sothereisno need for evaluating f, ontheel-
ements of the region; the ordered sequence (according to f.)
can be returned immediately. Figure 8 presents an example
of thistradeoff as well. We materialize the separating points
causing achange in ordering for tuplesin each region of Fig-

ure 8(a). Theresultisshown in Figure 8(c).
7 A Solution Based on R-trees

In this section we propose a variant of the range search
procedure of an R-treeindex that is specifically designed to
answer top-k join queries. This provides a base-case for per-
formance comparison against our solution. Thebasicidea, is
to employ an R-tree index to prune away a large fraction of
the tuplesthat are bound not to be among thetop £. We refer
to thismodified R-tree as the TopKrtree.

Consider the 2-dimensiona space defined by the 2 rank
values associated with each tuplein D g, returned by the al-
gorithm DominatingSet. We build an R-tree on these points
using traditional R-tree construction algorithms [11, 2]. A
basic observation is that due to the monotonicity property of
the functions f € £, given aMinimum Bounding Rectangle
(MBR) r a any level inthat tree, the minimum and maximum
score values for all tuplesinside » are bounded by the value
any scoringfunctionin £ getsat thelower left and upper right
corners of ». Following this observation we modify the R-
tree search procedure asfollows. At each nodein the R-tree,
instead of searching for overlaps between MBRs, the proce-
dure searches for overlaps between the intervals defined by
thevalues of the scoring functioninthe upper right and lower
|eft cornersof the MBRs. Theal gorithmrecursively searches
the R-tree and maintainsa priority queue collecting k results.

Consider an R-tree with three MBRs, namely r4, r5, and
rz, and atop-k join query with e = (p1, p2). Thissituation
is depicted in Figure 9(a). The largest score that a point in
an MBR can possibly achieve is the score given by the pro-
jection of the upper right corner of the MBR on vector e.
We will refer to this projection as the maximum-projection
for the MBR, and the MBR that has the largest maximum-
projection among al the MBRs of the same R-tree node as
the master MBR. Similarly, the lowest score is given by the
projection of the lower left corner (minimum-projection) of
the MBR. A simplified version of the algorithm, named Top-
KrtreeAnswer, is presented in Figure 10. For brevity, we will
assume that each MBR contains at least K tuples. There-
fore, we can present the algorithm guiding the search using

e=(nuR)

"t

@ (b)

Figure 9. A graphical representation for the Top-
KrtreeAnswer algorithm

Input: A number & and a preferencevector e = (p1,p2).
Output: The answer-set S to the top-k query.

1 procedure TopKrtreeAnswer ()

2 let S = ¢ beapriority queuewith spacefor exactly k values;
3 ProcessRtreeNode(root of rtree, .S);

4 return(S);

5 procedure ProcessRtreeNode(node N, S)
6 if (N isaleaf)

7 for (al tuplest in this node)

8 insert¢in S,

9 else

10 let r range over al the MBRsin N;

1 let rmaz = arg max,{maximum projection of MBR r
on preference vector e};

12 let riow = {minimum projection of MBR rmqz

on preferencevector e};

13 for (each subtreerooted at each MBR ¢ of N)

14 if (maximum projection of MBR ¢ > riow)

15 ProcessRtreeNode(c, S);

16 return(S);

Figure 10. The TopKrtreeAnswer algorithm

only the master MBR at each R-tree level. Accounting for
the case wheremultipleMBR’sarerequired! isimmediate by
maintaining a list of candidate MBRs ordered by their max-
imum projections at each level. This resembles the type of
search performed while answering nearest-neighbor queries
using R-trees [15]. In the agorithm presented in Figure 10
the MBR with the largest maximum-projectionis awaysthe
candidate to search and expand further for obtaining the an-
swer to the top-k query. Thisisrectangle ry in Figure 9(a),
since its maximum-projection 7 is the largest among the
threeMBRs. Inthiscase, wecan safely pruneaway al MBRs
with maximum-proj ection less than the minimum-projection
of the master MBR. In our example we will not examine
the tuplesin r3, since al these tuples have scores less than
the minimum score of al the tuplesin r;. However, the a-
gorithm will examine all MBRs with maximum-projection

1This could happen if the search using only the master MBR does not
yield k resultsin the leaf R-tree level for atop-k join query.

greater than the minimum-projection of themaster MBR. The
range of projections of such MBRs overlap, and the answer
to the top-k query may be a collection of tuplescoming from
all thoseMBRs. Therefore, in order to get the correct answer
we must examine all the MBRs whose projections on vector
e overlap with the projection of the master MBR.

Note that there are many cases in which the TopKrtree
accesses more MBRs than really necessary. Consider Fig-
ure9(b), showing atop-2 query withe = (p1, p2). Evidently,
the answer to thisquery istheset of tuples {¢+, ¢+ }, both con-
tained in 7. Observe that even though r; has the largest
maximum-projection (that is r?) none of itstuples (e.g., ¢3)
are contained inthetop-2 answer. Thus, al the computations
involving r; are uselessin this case.

8 Experimental Evaluation

We implemented our proposal and conducted a series of
experiments to eval uate the efficiency of our techniques. We
also implemented the TopKrtree to compare against RJI. We
gtart this section by describing the datasets we used in our
evaluation. Then, we experimentally examine the properties
of thealgorithmsproposed herein and assess the efficiency of
our solutionsin avariety of settings.

8.1 Description of Experiments

We implemented the a gorithms described herein in C++
under SunOS v5.8, and run the experiments on a SUN Blade
1000 server with two UltraSPARC-111 processors.

In order to test the proposed a gorithmswe used both syn-
thetic and real datasets. The synthetic ones are generated by
sampling uniform, Gaussian, and Zipfian distributions. The
sizeof thejoinresult for all the synthetic datasets was 10,000-
1,000,000 tuples. The datasets are generated as follows.
Uniform: Rank valuesfor each rank attributein the uniform
dataset (denoted unif) liein the range [0,100].

Gaussian: Rank values for each rank attribute in the Gaus-
sian dataset (denoted gauss) are generated with mean value
400 and standard deviation 5. (In our experiments we varied
the standard deviation, but the results were similar, and we
omit them for brevity.)

Zipfian: Rank values for each rank attribute in the zipfian
data set are produced using ageneralized zipfian distribution.
The generdized zipfian distributionis defined as f, « 1/7?,
where f,. istheoccurrence frequency of the r-thvalue (sorted
on decreasing frequency of occurrence), and 6 is a parame-
ter controllingthe skew of the distribution. We produced two
datasets, onewith skew parameter 0.1 (Zipf0.1), and theother
one with skew 2 (Zipf2).

Real: Our data sets are generated by parsing HT'M L and
X M L pages from the web, and constructing two data sets
recording various statistics for each page (such asthein and
out degreeinterms of number of linksto/fromapage, thesize

420 T T T T T T T

415 - *

410 -

405

400 -

395 |-

relation 2 rank values

390 |-

385 -

380 L L L L I L 1 1
380 385 390 395 400 405 410 415 420 425
relation 1 rank values

Figure 12. Rank value distribution for the join result
and dominating points for the gauss dataset

of each page, etc). Our first data set, which we refer to as
real_web is the outcome of the join of two data sets named
real_web indegree and real_web outdegree recording the in
and out degree for a collection of web pages (the join takes
place on the page id). This data set consists of 370,000 tu-
ples. Our second data set, real xml, isthe outcome of thejoin
of two data sets named real_xml size and real _xml outdegree
recording the size and outdegree of acollection of XML doc-
uments coll ected from the web uniformly at random (thejoin
takes place on document id). This set consists of 160,000 tu-
ples. The statistical propertiesof the collectionswe joined to
produce the two real datasets are reported in Table 1.

8.2 Evaluating the RJI Construction Algorithm

Inthefirst set of experimentsweeval uate the effectiveness
of the pruning strategies presented in Section 4. WWe measure
the number of elementsin set D dafter the execution of the
algorithm (1abel ed Dom) and the number of separating points
represented in Rl (labeled Sep). Figure 11 depictsthe sizes
of the Dom and Sep sets as afunction of K, for the uniform
(Figure11(a)) and Gaussian (Figure 11(b)) datasets. We aso
show the same graphsfor the zipfian (Figure 11(c)) and real
(Figure 11(d)) datasets.

We report the size of each set as a percentage of the size
of thejoin result. Observe that the number of pointsthat our
algorithm has to consider, namely the number of dominat-
ing points, is significantly smaller than the size of the entire
joininal cases. In our experiments this number isless than
6% of the join size. Figure 12 gives a visua representation
of the join result (depicted in light color) and the Dom set
(shown in dark color) for the gauss dataset. (For this exam-
plethejoinresult has 50,000 tuples, and K=100.) Therefore,
this pruning step is extremely effective in reducing the size
of the problem. Moreover, the number of separating points
RJI storesisin most cases only a fraction of the number of
dominating points. Consequently, the size of the RIJI index
remains small compared to the join result. The graphsindi-
cate that the sizes of the Dom and Sep sets grow gracefully

10

&

OtBload
mtSep
@tDom

time (sec)

3 a8 R88 38
time (sec)

L e I)

o w3 &

50000 100000 500000 1000000 10 50

size of join result top-K.

(a) varyingthejoin result size (b) varying K

Figure 14. Breakdown of the time to construct the RJI
index for the unif dataset

with parameter K.

In our second set of experiments we explore the perfor-
mance of the algorithm when the size of the join result in-
creases. The size of the datasets we use range from 50,000 to
1,000,000 tuples. Figures13(a)(b) report thesize of Domand
Sep, for the uniform dataset, as a function of the size of the
joinresult. The corresponding numbersfor the Zipf2 dataset
are reported in Figures 13(c)(d). One can observe that the
sizes of the above setsremain relatively stable asthejoinre-
sult size increases (for the same value of K and data distri-
bution). It is evident that the pruning applied by algorithm
DominatingSet is effective. Keeping the size of the dominat-
ing set small as the join result increases, decouplesthetime
required to buildthe Rl index from the size of thejoinresult.

Figure 14 provides a breskdown of thetotal timerequired
to buildan RJI index intothree components, namely, thetime
to compute the Dom set (tDom), the time to compute the
Sep set (tSep), and finally the time to popul ate the B-treein-
dex (tBLoad). (We only provide the graphs for the uniform
dataset. Therest of the datasets exhibit similar behavior and
the corresponding graphs are omitted for brevity.)

According to Figure 14(a) asthejoin result size increases,
more time is required to compute the set of dominating
points, while the time spent on the other two componentsin-
creases minimally. Thisis because, although the number of
dominating points remains relatively stable with increasing
join result size, the algorithm still has to make a complete
pass over the join result to identify the dominating points.
This explains the proportional increase in construction time
with respect to thejoin result size. The effect of varying the
parameter K in the construction time of our index is illus-
trated in Figure 14(b). As K increasestheindex construction
time isdominated by thetime required to identify separating
points. This includes the time to compute all the separating
vectors (and points), sort them, and determine which of those
to store in the B-tree index. As K increases, more dominat-
ing points affect the composition of set R (in Figure 6) and
more separating points are introduced, increasing the corre-
sponding time component.

dataset min max mean median | std.dev. skew
real _web indegree 1 | 100288 6.17 1 152.70 | 520.47
real_web outdegree | 1 826 7.02 3 14.92 10.48
real _xml size 10 | 500608 | 4641.09 | 1071 | 20814.03 | 12.49
real xml outdegree | 1 5520 13.18 4 46.62 29.89

Table 1. The statistical propertiesof the real web and real xml datasets

percent of join re

A

4 2
P S R S S 0 S I S S
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
topK top-K

(3 unif (b) gauss

Dom zipf0.1 +—
Dom zipf2 ~+
ep zipf0.1

2

percent of join re

percent of
°
2

olggm®
0 50 100 150 200 250 300 350 400 450 500
opk

S -
0
0 50 100 150 200 250 300 350 400 450 500
top-K.

(c) 2pf0.1 and zipf2 (d) real .web and real xml

Figure 11. Theeffect of K on the size of Dom and Sep. The size of the join result for the synthetic data is 50,000 tuples.

IS

N
w

BRI
B TopKrtree

time (msec)

TR
W TopKtree

time (msec)
CaN® s OO N®©

o -
oG o= oo

10 25 50

top-K

75 100 10 25 50

top-K

75 100

(a) Dataset unif (b) Dataset real web

Figure 15. Time to answer top-k queries, varying K

8.3 Answering top-k Queries

In the following paragraphs we examine the timerequired
by the RJI index to answer top-k join queries, and we com-
pare it against the time required by TopKrtree. All timesare
averages of all queriesin our workload. We aso analyze the
space requirements of RJI in comparison with that required
by the solution using R-trees. Both indices are disk resident.
For these experiments, we reduce the space requirements of
our index by merging regions as described in Section 6.2, so
that each region contains exactly 2K tuples.

The graphsin Figures 15(a)(b) compare the performance
of the two indices as K increases for datasets unif and
real_web. Each point in the graphs represents the average
response time of 500 top-K queries distributed uniformly at
random over the space of all possible queries. The experi-
ments show that RJI consistently outperforms TopKrtree in
these data sets, answering queries up to 17 times faster. The
trends in performance gains are similar as K increases be-
yondtherange of values shown. Thisperformance advantage
is pronounced as the size of the datasets indexed increases
(the graphs presenting response time for top-k queries with
increasing dominating set size are omitted due to space lim-
itations). The large difference comes from the fact that Top-

1

Krtree accesses a considerable amount of tuples that prove
to be useless. These results, experimentally confirm our an-
alytical expectations. Our RJI design provides worst case
performance guarantees in contrast with R-trees that in the
worst case have to touch every tuple (linear in the size of the
indexed data set). Similar behavior is aso exhibited by the
other synthetic and real datasets.

Figure 16, comparesthetota size (space occupied by both
index nodes and data nodes), in terms of bytes, required by
the RJI and the R-tree as a function of K. (In these experi-
ments the size of the join result for the synthetic datasets is
50,000 tuples.) In al cases thetotd size required by the RJI
index issignificantly smaller than that required by the R-tree
index. Recall that the R-treeis storing the entire set of domi-
nating points, which in many casesis a superset of the set of
pointsheeded to answer thetop-kjoin queries. Inaddition, R-
trees reguire more space due to the overhead they impose by
representing MBRs as two dimensional rectangles. In con-
trast, theRJI index only storesthe pointsthat are useful inan-
swering the top-k join queries. Furthermore, by merging ad-
jacent regionswe are ableto reduce the storage requirements
considerably since adjacent regions have a large number of
pointsin common.

The experiments show that RJI consistently requires less
space for indexing and at the same timeis capabl e of answer-
ing top-k join queries much faster than the R-tree solution.
For the synthetic datasets, RJI can answer queries up to 17
times faster, while occupying 10%-50% of the R-tree space
(Figures 16(a)(b)). In the case of the real _web and real xml
datasets the overall trends are similar. The storage require-
ments of our index are 3-10 times less than the R-tree ap-
proach (Figures 16(c)(d)), and at the same time RJl answers
gueries up to 15 times faster. For al the above datasets, the
space and time trends remain consistent as K increases be-
yond the range shown in the figures.

4500 14000

m top- Sep 10p-500 unif +—
4000 [om (0p-100 unif —+-- - Sep top-100 unif ~+--

Dom top-50 unif 8- 12000 [

‘Sep t0p-50 unif
3500

10000 -
3000 |,

2500 8000 |-

2000 [

number of elements

6000 [
1500 -

number of elements

4000 [

1000 -

so0l 2000

T ey ; ;
2.0e+05 4.0e+05 6.0e+05 8.0e+05 1.0e+06
size of join result

20e+05 40e+05 60e405 8.0e+05 10e+06
size of join result

(a) size of Dom

(b) size of Sep

Sep (op-500 zipf2 +—
Sep top-100 zipf2 ~+--
Sep top-50 zipf2 -8+

m op:
om 10p-100 zipf2 —+--
Dom 6p-50 2ipf2 ©

number of elements

20e+05 400405 60e405 8.0e+05 10e+06 20e+05 400405 60e405 8.0e+05 10e+06
size of join result size of join result

(d) size of Sep

(c) size of Dom

Figure 13. The Dom and Sep sizesasa function of thejoin result sizefor data sets unif and Zipf

N

®

aRJ
m TopKrtree

space (KB x 100)
o o o
b

=

BRI
m TopKitree|

space (KB x 100)

o
N

o

50
topK

100 50

top-K

(a) Dataset unif (b) Dataset Zip 2

08
07 4

_.06
8

<05
x arJ
m TopKrtree

QR
 TopKrtree

2 04

8 03
&
02
01
o

10 50 100

topK

(c) Dataset real _web

100 10 50

topK

(d) Dataset real xml

Figure 16. Overall space (index and data) required to answer top-k queries, varying K

9 Conclusions

We have considered a nove type of join index support-
ing efficiently queries ranking (based on user specified pref-
erences) thejoin of two relations. Our index structure, called
RJI, answersfast top-k querieson thejoin of two relationsfor
alarge family of functions used to compute the score of tu-
plesin thejoin result. We showed that only a fraction of the
join result requires representation in our index and proposed
efficient algorithmsto construct an RJI providing worst case
guarantees on its performance. We have presented an exten-
sive experimenta evaluation that proves the validity of our
approach, and shows that RJI considerably outperforms al-
ternative solutions.

Thiswork rai ses variousquestionsfor further exploration.
First, it would beworthwhileto study extensionsof our index
scheme to more than a pair of relations. Thiswould involve
generaizing RJl indimensionsmorethantwo. Inadditionin-
cremental maintenance of our index isimportant and the cen-
ter of our current work isin thisdirection.

Acknowledgements

Wewouldliketothank Davood Rafiel and Laurent Mignet
for providing us with the real_web and real xml datasets re-
spectively. Wewould also liketo thank Faith Fich for hel pful
discussions.

References

[1] R. Agrawal and E. Wimmers. A Framework For Expressing
and Combining Preferences. Proceedingsof ACM SSGMOD,

pages 297-306, June 2000.
[2] N.Beckmann,H.-P. Kriegel, R. Schneider, and B. Seeger. The

R* - tree: An Efficient and Robust Access Method for Points

12

and Rectangles. Proceedingsof ACM SSGMOD, pages 220—

231, June 1990.

N. Bruno, L. Gravano, and A. Marian. Evaluating Top-k

Queries Over Web Accessible Databases. Proceedings of

ICDE, Apr. 2002.

K. Chang and S.-W. Huang. Minimal Probing: Supporting Ex-

pensive Predicates for Top-k Queries. Proceedings of ACM

S GMOD, June 2002.

Y. chi Chang, L. Bergman, V. Castelli, C. Li, M. L. Lo, and

J. Smith. The Onion Technique: Indexing for Linear Opti-

mization Queries. Proceedingsof ACM SSIGMOD, pages391—

402, June 2000.

D. Donjerkovic and R. Ramakrishnan. Probabilistic Optimiza-

tion of Top-N Queries. Proceedingsof VLDB, Aug. 1999.

R. Fagin. Combining Fuzzy Information from Multiple Sys-

tems. PODS, pages 216226, June 1996.

R. Fagin. Fuzzy Queries In Multimedia Database Systems.

PODS, pages 1-10, June 1998.

R. Fagin and E. Wimmers. Incorporating User Preferencesin

Multimedia Queries. ICDT, pages 247-261, Jan. 1997.

L. Gravano and S. Chaudhuri. Evaluating Top-k Selection

Queries. Proceedingsof VLDB, Aug. 1999.

[11] A. Guttman. R-trees: A Dynamic Index Structure for Spatial
Searching. Proceedingsof ACM SSIGMOD, pages47-57, June
1984.

[12] V. Hristidis, N. Koudas, and Y. Papakonstantinou. Efficient

Execution of Multiparametric Ranked Queries. Proceedings

of SGMOD, June 2001.

I. F. llyas, W. G. Aref, and A. K. ElImagarmid. Joining Ranked

Inputs in Practice. pages 950-961, Hong Kong, China, Aug.

2003.

[14] A. Natsev, Y.-C. Chang, J. Smith, C.-S. Li, and J. S. Vitter.

Supporting Incremental Join Queries on Ranked Inputs. Pro-

ceedingsof VLDB, Aug. 2001.

N. Roussopoulos, S. Kelly, and F. Vincent. Nearest Neighbor

Queries. Proceedings of ACM SSIGMOD, pages 71-79, May

1995.

P Vaduriez. Join Indexes. ACM TODS, Volume 12, No 2,

pages 218-246, June 1987.

(3]

(4]

(5]

6]

(7]

(8]

(9]
[10]

[13]

[19]

[16]

