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Abstract—We consider the Top-k Approximate Subtree Match-
ing (TASM) problem: finding the k best matches of a small
query tree, e.g., a DBLP article with 15 nodes, in a large
document tree, e.g., DBLP with 26M nodes, using the canonical
tree edit distance as a similarity measure between subtrees.
Evaluating the tree edit distance for large XML trees is difficult:
the best known algorithms have cubic runtime and quadratic
space complexity, and, thus, do not scale. Our solution is TASM-
postorder, a memory-efficient and scalable TASM algorithm. We
prove an upper-bound for the maximum subtree size for which
the tree edit distance needs to be evaluated. The upper bound
depends on the query and is independent of the document size
and structure. A core problem is to efficiently prune subtrees that
are above this size threshold. We develop an algorithm based on
the prefix ring buffer that allows us to prune all subtrees above
the threshold in a single postorder scan of the document. The size
of the prefix ring buffer is linear in the threshold. As a result,
the space complexity of TASM-postorder depends only on k and
the query size, and the runtime of TASM-postorder is linear in
the size of the document. Our experimental evaluation on large
synthetic and real XML documents confirms our analytic results.

I. INTRODUCTION

Repositories of XML documents have become popular and

widespread. Along with this development has come the need

for efficient techniques to approximately match XML trees

based on their similarity according to a given distance metric.

Approximate matching is used for integrating heterogeneous

repositories [1], [2], [3], [4], cleaning such integrated data [5],

as well as for answering similarity queries [6], [7]. In this

paper we consider the Top-k Approximate Subtree Matching

problem (TASM), i.e., the problem of ranking the k best

approximate matches of a small query tree in a large document

tree. More precisely, given two ordered labeled trees, a query

Q of size m and a document T of size n, we want to produce

a ranking (Ti1 , Ti2 , . . . , Tik
) of k subtrees of T (consisting

of nodes of T with their descendants) that are closest to Q
with respect to a given metric. We use the canonical tree edit

distance to determine the ranking [8], [9].

The naive solution to TASM computes the distance between

the query Q and every subtree in the document T , thus requir-

ing n distance computations. Using the well-established tree

edit distance as a metric, the naive solution to TASM requires

O(m2n2) time and O(mn) space. An O(n) improvement in

time leverages the dynamic programing formulation of tree

edit distance algorithms: compute the distance between Q

and T , and rank all subtrees of T by visiting the resulting

memoization table. Still, for large documents, e.g., DBLP (n =

26M nodes, 476MB), the O(mn) space and O(m2n) runtime

complexity are prohibitive.

We develop and evaluate an efficient algorithm for TASM

based on a prefix ring buffer that performs a single scan

of the large document. The size of the prefix ring buffer is

independent of the document size. Our contributions are:

• We prove an upper-bound τ on the size of the subtrees

that must be considered for solving TASM. This threshold

is independent of document size and structure.

• We introduce the prefix ring buffer to prune subtrees

larger than τ in O(τ) space, during a single postorder

scan of the document.

• We develop TASM-postorder, an efficient and scalable

algorithm for solving TASM. The space complexity is in-

dependent of the document size and the time complexity

is linear in the document size.

The rest of this paper is organized as follows. Section II

gives the problem definition and Section III discusses related

work. Section IV revisits the tree edit distance and explores

its properties. Section V introduces the prefix ring buffer

and discusses our pruning strategy, which is the basis of

our solution for TASM, given in Section VI and thoroughly

evaluated in Section VII. We conclude and discuss directions

for future work in Section VIII.

II. PROBLEM DEFINITION

Definition 1: (TOP-k APPROXIMATE SUBTREE MATCH-

ING PROBLEM). Let Q (query) and T (document) be ordered

labeled trees, n be the number of nodes of T , Ti be the

subtree of T that is rooted at node ti and includes all its

descendants, d(., .) be a distance function between ordered

labeled trees, and k ≤ n be an integer. A sequence of subtrees,

R = (Ti1 , Ti2 , . . . , Tik
), is a top-k ranking of the subtrees of

the document T with respect to the query Q iff

1) the ranking contains the k subtrees that are closest to

the query: ∀Tj /∈ R : d(Q, Tik
) ≤ d(Q, Tj), and

2) the subtrees in the ranking are sorted by their distance

to the query: ∀1 ≤ j < k : d(Q, Tij
) ≤ d(Q, Tij+1

).
The top-k approximate subtree matching (TASM) problem

is the problem of computing a top-k ranking of the subtrees

of a document T with respect to a query Q.



III. RELATED WORK

Answering top-k queries is an active research field [10].

Specific to XML, many authors have studied the ranking of

answers to twig queries [11], [12], [13], which are XPath

expressions with branches specifying predicates on nodes (e.g.,

restrictions on their tag names or content) and structural rela-

tionships between nodes (e.g., ancestor-descendant). Answers

(resp., approximate answers) to a twig query are subtrees of the

document that satisfy (resp., partially satisfy) the conditions in

the query. Answers are ranked according to the restrictions in

the query that they violate. Approximate answers are found

by explicitly relaxing the restrictions in the query through a

set of predefined rules. Relevant subtrees that are similar to

the query but do not fit any rule will not be returned by these

methods. The main differences among the methods above are

in the relaxation rules and the scoring functions they use. In

contrast, we do not restrict the set of possible answers by

predefined rules. All subtrees of the document are potentially

considered as an answer. Further, we do not define a new

scoring function for the structural similarity, instead we use

the established tree edit distance [8], [9], [14].

The goal of XML keyword search [7], [15], [16] is to find

the top-k subtrees of a document (or collection) given a set

of keywords. Answers are subtrees that contain at least one

such keyword. Because two keywords may appear in different

branches of the XML tree (and thus be far from each other

in terms of structure), candidate answers are ranked based

on a content score (indicating how well a subtree covers the

keywords) and a structural score (indicating how concise a

subtree is). These are combined into a single ranking. Kaushik

et al. [17] study TA-style [18] algorithms to combine the

content and structural rankings. TASM differs from keyword

search: instead of keywords, queries are entire trees; instead

of using text similarity, subtrees are ranked based on the well-

understood tree edit distance.

XFinder [6] ranks the top-k approximate matches of a small

query tree in a large document tree. Both the query and the

document are transformed to strings using Prüfer sequences,

and the tree edit distance is approximated by the longest

subsequence distance between the resulting strings. The edit

model used to compute distances in XFinder does not handle

renaming operations. Also, in [6] no runtime analysis is given

and the experiments reported use documents of up to 5MB.

In contrast, we provide and validate tight analytical bounds,

solve the problem with the unrestricted tree edit distance and

efficiently apply our solution to documents of 1.6GB.

We use the tree edit distance [8] to compute the similarity

between the query and the subtrees of the document. For

ordered trees like XML this problem is solvable in polynomial

time with elegant dynamic programming formulations. Zhang

and Shasha [9] present an O(n2 log2 n) time and O(n2) space
algorithm for trees with n nodes and height O(log n). Their
worst case complexity is O(n4). Demaine et al. [14] use a

different tree decomposition strategy to improved the time

complexity to O(n3) in the worst case. This is not a concern

in practice since XML documents tend to be shallow and

wide [19]. This is also true for the real documents in our tests:

the DBLP bibliography (26M nodes, 476MB, height 6), and

the protein dataset PSD7003 (37M nodes, 683MB, height 7).

Thus we use the classical solution of Zhang and Shasha [9].

Guha et al. [1] match pairs of XML trees from hetero-

geneous repositories whose tree edit distance falls within a

threshold. They give upper and lower bounds for the tree

edit distance that can be computed in O(n2) time as a

pruning strategy to avoid comparing all pairs of trees from the

repositories. Yang et al. [20] and Augsten et al. [21] provide

lower bounds for the tree edit distance that can be computed in

O(n log n) time. In contrast, we compute an upper bound on

the size of the candidate subtrees that may be in the answer

(i.e., among the top-k). This is done once for each query,

independently of the document.

Approximate substructure matching has also been studied

in the context of graphs [22], [23]. TALE [23] is a tool that

supports approximate matching of graph queries against large

graph databases. TALE is based on a novel indexing method

that scales linearly to the number of nodes of the graph

database. Unlike our work, TALE uses heuristic techniques

and does not guarantee that the final answer will include the

best matches or that all possible matches will be considered.

We define the postorder queue to abstract from the un-

derlying XML storage model. The postorder queue uses the

postorder position and the subtree size of a node to uniquely

define the XML structure. The interval encoding [24], which

stores XML in relations, is based on similar ideas.

IV. PRELIMINARIES AND BACKGROUND

The tree edit distance has emerged as the standard measure

to capture the similarity between ordered labeled trees. Given

a cost model, it sums up the cost of the least costly sequence

of edit operations that transforms one tree into the other.

A. Trees

A tree T is a directed, acyclic, connected, non-empty graph

with nodes V (T ) and edges E(T ), where each node has at

most one incoming edge. A node, ti ∈ V (T ), is an (identifier,

label) pair. The identifier, id(ti), is unique within the tree. The

label, λ(ti) ∈ Σ, is a symbol of a finite alphabet Σ. The empty

node ǫ does not appear in a tree. Vǫ(T ) = V (T )∪{ǫ} denotes

the set of all nodes of T extended with the empty node ǫ. By
|T | = |V (T )| we denote the size of T . An edge is an ordered

pair (tp, tc), where tp, tc ∈ V (T ) are nodes, and tp is the

parent of tc. Nodes with the same parent are siblings.

The nodes of a tree are strictly and totally ordered. Node

tc is the i-th child of tp iff tp is the parent of tc and i =
|{tx ∈ V (T ) : (tp, tx) ∈ E(T ), tx ≤ tc}|. Any child node tc
precedes its parent node tp in the node order, written tc < tp.
The tree traversal that visits all nodes in ascending order is

the postorder traversal.

The number of tp’s children is its fanout ftp
. The node

with no parent is the root node, root(T ), and a node without

children is a leaf. An ancestor of ti is a node ta in the path



from the root node to ti, ta 6= ti. With anc(td) we denote the

set of all ancestors of a node td. Node td is a descendant of

ti iff ti ∈ anc(td). A node ti is to the left of a node tj iff

ti < tj and ti is not a descendant of tj .

Ti is the subtree rooted in node ti of T iff V (Ti) = {tx |
tx = ti or tx is a descendant of ti in T } and E(Ti) ⊆ E(T )
is the projection of E(T ) w.r.t. V (Ti), thus retaining the

original node ordering. By lml(Ti) we denote the leftmost leaf
of Ti, i.e., the smallest descendant of node ti. A subforest

of a tree T is a graph with nodes V ′ ⊆ V (T ) and edges

E′ = {(ti, tj) | (ti, tj) ∈ E(T ), ti ∈ V ′, tj ∈ V ′}.

B. Postorder Queues

A postorder queue is a sequence of (label , size) pairs of

the tree nodes in postorder, where label is the node label and

size is the size of the subtree rooted in the respective node.

A postorder queue uniquely defines an ordered labeled tree.

The only operation allowed on a postorder queue is dequeue,

which removes and returns the first element of the sequence.

Definition 2 (Postorder Queue): Given a tree T with n =
|T | nodes, the postorder queue, post(T ), of T is a sequence

of pairs ((l1, s1), (l2, s2), . . . , (ln, sn)), where li = λ(ti), si =
|Ti|, with ti being the i-th node of T in postorder. The dequeue

operation on a postorder queue p = (p1, p2, . . . , pn) is defined
as dequeue(p) = ((p2, p3, . . . , pn), p1).

C. Edit Operations and Edit Mapping

An edit operation transforms a tree Q into a tree T . We use

the standard edit operations on trees [8], [9]: delete a node

and connect its children to its parent maintaining the sibling

order; insert a new node between an existing node, tp, and
a subsequence of consecutive children of tp; and rename the

label of a node. We define the edit operations in terms of edit

mappings [8], [9].

Definition 3: (Edit Mapping and Node Alignment). Let Q
and T be ordered labeled trees. M ⊆ Vǫ(Q) × Vǫ(T ) is an

edit mapping between Q and T iff

1) every node is mapped:

a) ∀qi(qi ∈ V (Q) ⇔ ∃tj((qi, tj) ∈ M))
b) ∀ti(ti ∈ V (T ) ⇔ ∃qj((qj , ti) ∈ M))
c) (ǫ, ǫ) 6∈ M

2) all pairs of non-empty nodes (qi, tj), (qk, tl) ∈ M
satisfy the following conditions:

a) qi = qk ⇔ tj = tl (one-to-one condition)
b) qi is an ancestor of qk ⇔ tj is an ancestor of tl

(ancestor condition)

c) qi is to the left of qk ⇔ tj is to the left of tl (order
condition)

A pair (qi, tj) ∈ M is a node alignment.

Non-empty nodes that are mapped to other non-empty nodes

are either renamed or not modified when Q is transformed into

T . Nodes of Q that are mapped to the empty node are deleted

from Q, and nodes of T that are mapped to the empty node

are inserted into T .

D. Tree Edit Distance

In order to determine the distance between trees a cost

model must be defined. We assign a cost to each node

alignment of an edit mapping. This cost is proportional to

the costs of the nodes.

Definition 4 (Cost of Node Alignment): Let Q and T be

ordered labeled trees, let cst(x) ≥ 1 be a cost assigned to a

node x, qi ∈ Vǫ(Q), tj ∈ Vǫ(T ). The cost of a node alignment,

γ(qi, tj), is defined as:

γ(qi, tj) =







































cst(qi) if qi 6= ǫ ∧ tj = ǫ (delete)

cst(tj) if qi = ǫ ∧ tj 6= ǫ (insert)

(cst(qi) + cst(tj))/2 (rename)

if qi 6= ǫ ∧ tj 6= ǫ ∧ λ(qi) 6= λ(tj)

0 (no change)

if qi 6= ǫ ∧ tj 6= ǫ ∧ λ(qi) = λ(tj)

Definition 5 (Cost of Edit Mapping): Let Q and T be two

ordered labeled trees, M ⊆ Vǫ(Q) × Vǫ(T ) be an edit

mapping between Q and T , and γ(qi, tj) be the cost of a

node alignment. The cost of the edit mapping M is defined as

the sum of the costs of all node alignments in the mapping:

γ∗(M) =
∑

(qi,tj)∈M

γ(qi, tj)

The tree edit distance between two trees Q and T is the

cost of the least costly edit mapping [9].

Definition 6 (Tree Edit Distance): Let Q and T be two

ordered labeled trees. The tree edit distance, δ(Q, T ), between
Q and T is the cost of the least costly edit mapping, M ⊆
Vǫ(Q) × Vǫ(T ), between the two trees, i.e.,

δ(Q, T ) = min{γ∗(M) |

M ⊆ Vǫ(Q) × Vǫ(T ) is an edit mapping}.

In the unit cost model all nodes have cost 1, and the unit

cost tree edit distance [9] is the minimum number of edit

operations that transform one tree into the other. Other cost

models can be used to tune the tree edit distance to specific

application needs, for example, the fanout weighted tree edit

distance [21] makes edit operations that change the structure

(insertions and deletions of non-leaf nodes) more expensive;

in XML, the node cost can depend on the element type.

E. Computing the Tree Edit Distance

The fastest algorithms for the tree edit distance use dynamic

programming. In this section we discuss the classic algorithm

by Zhang and Shasha [9], which recursively decomposes the

input trees into smaller units and computes the tree distance

bottom-up. The decompositions do not always result in trees,

but may also produce forests; in fact, the decomposition rules

of Zhang and Shasha [9] assume forests. A forest is recursively

decomposed by deleting the root node of the rightmost tree in

the forest, deleting the rightmost tree of the forest, or keeping

only the rightmost tree of the forest. Figure 1 illustrates the

decomposition of the example document H in Figure 2.



(a) delete rightmost root node
(b) delete rightmost tree
(c) keep only rightmost tree

pfx(H7, h7)

h7

h3

h1 h2

h6

h4 h5

pfx(H6, h6)

h6

h4 h5

pfx(H7, h6)

h3

h1 h2

h6

h4 h5

pfx(H6, h5)

h4 h5

pfx(H5, h5)

h5

pfx(H7, h5)

h3

h1 h2 h4 h5

pfx(H6, h4)

h4

pfx(H7, h4)

h3

h1 h2 h4

pfx(H7, h3)

h3

h1 h2

pfx(H2, h2)

h2

pfx(H7, h2)

h1 h2

pfx(H7, h1)

h1
(a) (a) (a, b) (a, b)

(a)
(a, b)(a, b)

(c)
(c) (c)

(a) (a, b)

(b)

(c)

Fig. 1. Decomposing Example Document H into Prefixes.

G
g3,a

g1,b g2,c

H
h7,x

h3,a

h1,b h2,d

h6,a

h4,b h5,c

Fig. 2. Example Query G and Document H .

The decomposition of a tree results in the set of all its

subtrees and all the prefixes of these subtrees. A prefix is a

subforest that consists of the first i nodes of a tree in postorder.
Definition 7 (Prefix): Let T be an ordered labeled tree, and

ti be the i-th node of T in postorder. The prefix pfx(T, ti) of

T , 1 ≤ i ≤ |T |, is a forest with nodes V ′ = {t1, t2, . . . , ti}
and edges E′ = {(tk, tl) | (tk, tl) ∈ E(T ), tk ∈ V ′, tl ∈ V ′}.
A tree with n nodes has n prefixes. The first line in Figure 1

shows all prefixes of the example document H .

The tree edit distance algorithm computes the distance

between all pairs of subtree prefixes of two trees. Some

subtrees can be expressed as a prefix of a larger subtree, for

example H3 = pfx(H7, h3) in Figure 1. All prefixes of the

smaller subtree (e.g., H3) are also prefixes of the larger subtree

(e.g., H7) and should not be considered twice in the tree edit

distance computation. The relevant subtrees are those subtrees

that cannot be expressed as prefixes of other subtrees. All

prefixes of relevant subtrees must be computed.

Definition 8 (Relevant Subtree): Let T be an ordered la-

beled tree and let ti ∈ V (T ). Subtree Ti is relevant iff it is not

a prefix of any other subtree: Ti is relevant ⇔ ti ∈ V (T ) ∧
∀tk, tl(tk ∈ V (T ), tk 6= ti, tl ∈ V (Tk) ⇒ Ti 6= pfx(Tk, tl)).
Example 1: Consider the example trees in Figure 2. The

relevant subtrees of G are G2 and G3, the relevant subtrees

of H are H2, H5, H6, and H7.

Figure 3 shows the tree distance matrix td for the trees

in Figure 2. The matrix stores the distances between prefixes

that are proper subtrees (rather than forests), and is computed

iteratively using dynamic programming. The distance between

G (= G3) and H (= H7) is td[G3][H7] = 4.

G1

H1

0

H2

1

H3

2

H4

0

H5

1

H6

2

H7

6

G2 1 1 3 1 0 2 6

G3 2 3 1 2 2 0 4

Fig. 3. Example of Tree Distance Matrix td.

F. TASM Dynamic

The dynamic programming algorithm for the tree edit

distance fills the tree distance matrix td, and the last row of td

stores the distances between the query and all subtrees of the

document. This yields a simple solution to TASM: compute the

tree edit distance between the query and the document, sort

the last row of matrix td, and add the k closest subtrees to the

ranking. We refer to this algorithm as TASM-dynamic.

Example 2: We compute TASM-dynamic (k = 2) for the

query and the document in Figure 2. The matrix td that results

from the tree edit distance computation is shown in Figure 3.

The two smallest distances in the last row are 0 (column 6)
and 1 (column 3), thus the top-2 ranking is R = (H6, H3).

TASM-dynamic constitutes the state-of-the-art for solving

TASM. TASM-dynamic is a fairly efficient approach since it

adds a minimal overhead to the already very efficient tree

edit distance algorithm. The dynamic programming tree edit

distance algorithm uses the result for subtrees to compute

larger trees, thus no subtree distance is computed twice.

Also, TASM-dynamic improves on the naive solution to TASM

(Section I) by a factor of O(n) in terms of time. However,

for each pair of relevant subtrees, Qi and Tj , a matrix of size

O(|Qi|×|Tj|) must be computed in this algorithm. As a result,

TASM-dynamic requires both the query and the document

to be memory resident, leading to a space overhead that is

prohibitive even for moderately large documents.

V. PREFIX RING BUFFER

As will be discussed in Section VI, there is an effective

bound on the size of the largest subtrees of a document that

can be in the top-k best matches w.r.t. to a query. The key

challenge in achieving an efficient solution to TASM is being

able to prune large subtrees efficiently and perform the expen-

sive tree edit distance computation on small subtrees only (for

which computing the distance to the query is unavoidable). In

this section we develop an essential piece of our solution to

TASM, which is the prefix ring buffer together with a memory-

efficient algorithm for pruning large subtrees. We also prove

the correctness of our strategy.

The pruning algorithm uses a prefix ring buffer to produce

the set of all subtrees that are within a given size threshold

τ , but are not contained in a different subtree also within the

threshold. This set of subtrees is called the candidate set.

Definition 9 (Candidate Set): Given a tree T and an integer

threshold τ > 0. The candidate set of T for threshold τ is



defined as cand(T, τ) = {Ti | ti ∈ V (T ), |Ti| ≤ τ, ∀ta ∈
anc(ti) : |Ta| > τ}. Each element of the candidate set is a

candidate subtree.

Example 3: The candidate set of the example document

D in Figure 4a for threshold τ = 6 is cand(D, 6) =
{D5, D7, D12, D17, D21}.

d22,

D

dblp

d5,article

d2,auth

d1,John

d4,title

d3,X1

d18,proceedings

d7,conf

d6,VLDB

d12,article

d9,auth

d8,Peter

d11,title

d10,X3

d17,article

d14,auth

d13,Mike

d16,title

d15,X4

d21,book

d20,title

d19,X2

(a) Example Document D

post(D) = ((John, 1), (auth, 2), (X1, 1), (title, 2), (article, 5),
(VLDB, 1), (conf, 2), (Peter, 1), (auth, 2), (X3, 1),
(title, 2), (article, 5), (Mike, 1), (auth, 2), (X4, 1),
(title, 2), (article, 5), (proceedings, 13), (X2, 1),
(title, 2), (book, 3), (dblp, 22))

(b) Postorder Queue of D

Fig. 4. Example Document and Corresponding Postorder Queue.

We stress that the candidate set is not the set of all subtrees

smaller than threshold τ , but a subset. If a subtree is contained
in a different subtree that is also smaller than τ , then it is not

in the candidate set. In the dynamic programming approach

the distances for all subtrees of a candidate subtree Ti are

computed as a side-effect of computing the distance for the

candidate subtree Ti. Thus subtrees of a candidate subtree need

no separate computation.

A. Memory Buffer

We now discuss how to compute the candidate set given

a size threshold τ for documents represented as a postorder

queues. Nodes that are dequeued from the postorder queue

are appended to a memory buffer (see Figure 5) where the

candidate subtrees are materialized. Once a candidate subtree

is found, it is removed from the buffer, and its tree edit distance

to the query is computed.

Postorder Queue:
d5 d6 d7 d8 d9 d10 d11

article,5 VLDB,1 conf,2 Peter,1 auth,2 X3,1 title,2 · · ·

Memory Buffer:
d1 d2 d3 d4

John,1 auth,2 X1,1 title,2

append

Fig. 5. Incoming Nodes are Appended to the Memory Buffer.

The nodes in the memory buffer form a prefix of the docu-

ment (see Definition 7) consisting of one or more subtrees. All

nodes of a subtree are stored at consecutive positions in the

buffer: the leftmost leaf of the subtree is stored in the leftmost

position, the root in the rightmost position. Each node that

is appended to the buffer increases the prefix. New non-leaf

nodes are ancestors of nodes that are already in the buffer.

They either grow a subtree in the buffer or connect multiple

subtrees already in the buffer into a new, larger, subtree.

Example 4: The buffer in Figure 5 stores the prefix

pfx(D, d4) which consists of the subtrees D2 and D4. When

node d5 is appended, the buffer stores pfx(D, d5) which

consists of a single subtree, D5. The subtree D5 is stored

at positions 1 to 5 in the buffer: position 1 stores the leftmost

leaf (d1), position 5 the root (d5).

The challenge is to keep the memory buffer as small as

possible, i.e., to remove nodes from the buffer when they are

no longer required. We distinguish the nodes in the postorder

queue as candidate and non-candidate nodes: candidate nodes

belong to candidate subtrees and must be buffered; non-

candidate nodes are root nodes of subtrees that are too large

for the candidate set. Non-candidate nodes are easily detected

since the subtree size is stored with each node in the postorder

queue. Candidate nodes must be buffered until all nodes of the

candidate subtree are in the buffer. It is not obvious whether a

subtree in the buffer is a candidate subtree, even if it is smaller

than the threshold, because other nodes appended later may

increase the subtree without exceeding τ .

B. Simple Pruning

A simple pruning approach is to append all incoming nodes

to the buffer until a non-candidate node tc is found. At this

point, all subtrees rooted among tc’s children that are smaller

than τ are candidate subtrees. They are returned and removed

from the buffer. This approach must wait for the parent of a

subtree root before the subtree can be returned. In the worst

case, this requires to look O(n) nodes ahead and thus a buffer

of size O(n) is required. Unfortunately, the worst case is a

frequent scenario in data-centric XML with shallow and wide

trees. For example, τ = 50 is a reasonable threshold when

matching articles in DBLP. However, over 99% of the 1.2M

subtrees of the root node of DBLP are smaller than τ ; with
the simple pruning approach, all of them will be buffered until

the root node is processed.

Example 5: Consider the example document in Figure 4.

We use the simple approach to prune subtrees with threshold

τ = 6. The incoming nodes are appended to the buffer

until a non-candidate arrives. The first non-candidate is d18

(represented by (proceedings, 13)), and all nodes appended up to
this point (d1 to d17) are still in the buffer. The subtrees rooted

in d18’s children (d7, d12, and d17) are in the candidate set.

They are returned and removed from the buffer. The subtrees

rooted in d5 and d21 are returned and removed from the buffer

when the root node arrives.

C. Ring Buffer Pruning

The simple pruning is not feasible for large documents. We

now discuss the ring buffer pruning which buffers candidate

trees only as long as necessary and uses a look-ahead of only

O(τ) nodes. This is significant since the space complexity no

longer depends on the document size.



The size of the ring buffer is b = τ + 1. Two pointers are

used: the start pointer s points to the first position in the ring

buffer, the end pointer e to the position after the last element.

The ring buffer is empty iff s = e, and the ring buffer is full

iff s = (e + 1) % b (% is the modulo operator). The number

of elements in the ring buffer is (e − s + b) % b ≤ b − 1.
Two operations are defined on the ring buffer: (a) remove the

leftmost subtree, (b) append node tj . Removing the leftmost

subtree Ti means incrementing s by |Ti|. Appending node tj
means storing node tj at position e and incrementing e.
Example 6: The ring buffer (ǫ, d1, d2, d3, d4, d5, d6), s = 1,

e = 0, is full. Removing the leftmost subtree, D5, with 5

nodes, gives s = 6 and e = 0. Appending node d7 results in

(d7, d1, d2, d3, d4, d5, d6), s = 6, e = 1.
As the buffer is updated, it is possible that at a given

point in time consecutive nodes in the buffer form a subtree

that does not exist in the document. For example, nodes

(d13, d14, . . . , d18) form a subtree with root node d18 that is

different from D18. We say a subtree in the buffer is valid if it

exists in the document. In Section V-E we introduce the prefix

array to find the leftmost valid subtree in constant time.

The ring buffer pruning of a postorder queue of a document

T and an empty ring buffer of size τ + 1 is as follows:

1) Dequeue nodes from the postorder queue and append

them to a ring buffer until the ring buffer is full or the

postorder queue is empty.

2) If the leftmost node of the ring buffer is a non-leaf, then

remove it from the buffer, otherwise add the leftmost

valid subtree to the candidate set and remove it from

the buffer.

3) Go to 1) if the postorder queue is not empty; go to 2) if

the postorder queue is empty but the ring buffer is not;

otherwise terminate.

A non-leaf ti appears at the leftmost buffer position if all

its descendents are removed but ti is not, for example, after

removing the subtrees D7, D12, and D17, the non-leaf d18 of

document D is the leftmost node in the buffer.

Example 7: We illustrate the ring buffer pruning on the

example tree in Figure 4. The ring buffer is initialized with

s = e = 1. In Step 1 nodes d1 to d6 are appended to the ring

buffer (s = 1, e = 0, see Figure 6). The ring buffer is full and

we move to Step 2. The leftmost valid subtree, D5, is returned

and removed from the buffer (s = 6, e = 0). The postorder

queue is not empty and we return to Step 1, where the ring

buffer is filled for the next execution of Step 2. Figure 6 shows

the ring buffer each time before Step 2 is executed. The shaded

cells represent the subtree that is returned in Step 2. Note that

in the fourth iteration D17 is returned, not the subtree rooted

in d18, since the subtree rooted in d18 is not valid. Nodes d18

and d22 are non-candidates and they are not returned. After

removing d22 the buffer is empty and the algorithm terminates.

D. Correctness

The ring buffer pruning classifies subtree Ti as candidate or

non-candidate based on the nodes already buffered. Lemma 1

proves that this can be done by checking only the τ − |Ti|
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Fig. 6. Ring Buffer Pruning Example

nodes that are appended after ti and are ancestors of ti: if all
of these nodes are non-candidates, then Ti is a candidate tree.

The intuition is that a parent of ti that is appended later is an

ancestor of both the nodes of ti and the τ − |Ti| nodes that

follow ti; thus the new subtree must be larger than τ .
Example 8: Consider example document D of Figure 4a,

τ = 6. Bi is the set of τ − |Di| nodes that are appended after

di. The subtree D2 is not in the candidate set since B2 =
{d3, d4, d5, d6} contains d5, which is an ancestor of d2 and a

candidate node. D21 is a candidate subtree: |D21| ≤ τ , B21 =
{d22}, d22 is an ancestor of d21 and |D22| > τ . (|B21| <
τ − |D21| since B21 contains the root node d22 which is the

last node that is appended.)

Lemma 1: Let T be a tree, cand(T, τ) the candidate set

of T for threshold τ , ti the i-th node of T in postorder, and

Bi = {tj | tj ∈ V (T ), i < j ≤ i− |Ti|+ τ} the set of at most

τ − |Ti| nodes following ti in postorder. For all 1 ≤ i ≤ |T |

Ti ∈ cand(T, τ) ⇔

|Ti| ≤ τ ∧ ∀tx(tx ∈ Bi ∩ anc(ti) ⇒ |Tx| > τ)
(1)

Proof: If |Ti| > τ , then the left side of (1) is false since

Ti is not a candidate tree, and the right side is false due to

condition |Ti| ≤ τ , thus (1) holds. If |Ti| ≤ τ we show

(tx ∈ Bi ∩ anc(ti) ⇒ |Tx| > τ) ⇔

(tx ∈ anc(ti) ⇒ |Tx| > τ),
(2)

which makes (1) equivalent to the definition of the candidate

set (cf. Definition 9). Case i + τ − |Ti| ≥ |T |: Bi contains

all nodes after ti in postorder, thus Bi ∩ anc(ti) = anc(ti)
and (2) holds. Case i + τ − |Ti| < |T |: (2) holds for all tx ∈
Bi ∩ anc(ti). If tx ∈ anc(ti) \Bi, then tx /∈ Bi ∩ anc(ti) and

the left side of (2) is true. Since any tx ∈ anc(ti) \ Bi is an

ancestor of all nodes of both Ti and Bi, |Tx| > |Ti|+|Bi| = τ ,
and (2) holds.



As illustrated in Figure 6 the ring buffer pruning removes

either candidate subtrees or non-candidate nodes from the

buffer. After each remove operation the leftmost node in the

buffer is checked. If the leftmost node is a leaf, then it starts

a candidate subtree, otherwise it is non-candidate node.

Lemma 2: Let T be an ordered labeled tree, cand(T, τ) be
the candidate set of T for threshold τ , ts be the next node

of T in postorder after a non-candidate node or after the root

node of a candidate subtree, or ts = t1, and lml(ti) be the

leftmost leaf descendant of the root ti of subtree Ti.

ts is a leaf ⇒
∃Ti : Ti ∈ cand(T, τ), ts = lml(ti)

ts is a non-leaf ⇒
ts ∈ {tx | tx ∈ V (T ), |Tx| > τ}

(3)

Proof: Let NC be the non-candidate nodes of T .

(a) ts = t1: t1 is a leaf, thus t1 /∈ NC and there is a ti ∈
cand(T, τ) such that t1 ∈ V (Ti). There is no node tk < t1,
thus t1 = lml(ti).
(b) ts follows the root node of a candidate subtree Tj: ts is

either the parent tk of the root node of Tj or a leaf descendant

tl of tk. tk ∈ NC by Definition 9. Since tl is a leaf, tl /∈ NC
and there must be a Ti ∈ cand(T, τ) such that tl ∈ V (Ti).
We prove tl = lml(Ti) by contradiction: Assume Ti has a

leaf tx to the left of tl. As V (Tj) ∩ V (Ti) = ∅, tx is to

the left of tj , and ta ∈ V (Ti), the least common ancestor

of tl and tx, is an ancestor of tk. This is not possible since

|Tk| > τ ⇒ |Ta| > τ ⇒ |Ti| > τ .
(c) ts follows a non-candidate node, tx ∈ NC: ts is either

the parent tk of tx or a leaf node tl. tk ∈ NC by Definition 9,

and there is a Ti ∈ cand(T, τ) such that tl = lml(Ti) (same

rationale as above).

Theorem 1 (Correctness of Ring Buffer Pruning): Given a

document T and a threshold τ , the ring buffer pruning adds a

subtree Ti of T to the candidate set iff Ti ∈ cand(T, τ).
Proof: We show that (1) each node of T is processed,

i.e., either skipped or output as part of a subtree, and (2)

the pruning in Step 2 is correct, i.e., non-candidate nodes are

skipped and candidate subtrees are returned.

(1) All nodes of T are appended to the ring buffer: Steps 1

and 2 are repeated until the postorder queue is empty. In

each cycle nodes are dequeued from the postorder queue and

appended to the ring buffer. All nodes of the ring buffer are

processed: The nodes are systematically removed from the ring

buffer from left to right in Step 2, and Step 2 is repeated until

both the postorder queue and the ring buffer are empty.

(2) Let ts be the smallest node of the ring buffer. If ts is

the leftmost leaf of a candidate subtree, then the leftmost valid

subtree, Ti, is a candidate subtree: Since the buffer is either

full or contains the root node of T when Step 2 is executed,

all nodes Bi = {tj|tj ∈ V (T ), i < j ≤ i−|Ti|+ τ} are in the

buffer. If a node tk ∈ Bi is an ancestor of ti, then |Tk| > τ :
If ts is the smallest leaf of Tk, then Tk is the leftmost valid

subtree which contradicts the assumption; if the smallest leaf

of Tk is smaller than ts, then Tk is not a candidate subtree

since it contains ts which is the leftmost leaf of a candidate

subtree; since tk is an ancestor of ts, the smallest leaf of Tk

can not be larger than ts. With Lemma 1 it follows that Ti is a

candidate subtree. As Ti is a candidate subtree, with Lemma 2

the pruning in Step 2 is correct.

E. Prefix Array

The ring buffer pruning removes the leftmost valid subtree

from the ring buffer. A subtree is stored as a sequence of nodes

that starts with the leftmost leaf and ends with the root node.

A node is a (label , size) pair, and in the worst case we need

to scan the entire buffer to find the root node of the leftmost

valid subtree. To avoid the repeated scanning of the buffer we

enhance the ring buffer with a prefix array which encodes tree

prefixes (see Definition 7). This allows us to find the leftmost

valid subtree in constant time.

Definition 10 (Prefix Array): Let pfx(T, tp) be a prefix of

T , and ti ∈ V (T ), 1 ≤ i ≤ p, be the i-th node of T in

postorder. The prefix array for pfx(T, tp) is an integer array

(a1, a2, . . . , ap) where ai is the smallest descendant of ti if

ti is a non-leaf node, otherwise the largest ancestor of ti in

pfx(T, tp) for which ti is the smallest descendant:

ai =

{

max{x|x ∈ pfx(T, tp), lml(x) = ti} if ti is a leaf

lml(ti) otherwise

A new node tp+1 is appended to the prefix array

(a1, a2, . . . , ap) by appending the integer ap+1 = lml(tp+1)
and updating the ancestor pointer of its smallest descendant,

a(ap+1) = ap+1. A node ti is a leaf iff ai ≥ i. The largest

valid subtree in the prefix with a given leftmost leaf ti is

(ai, ai+1, . . . , a(ai)) and can be found in constant time.

Example 9: Figure 7 shows the prefix arrays of different

prefixes of the example tree D and illustrates the structure of

the prefix arrays with arrows. The prefix array for pfx(D, d4)
is (2, 1, 4, 3). We append d5 and get (5, 1, 4, 3, 1) (the smallest

descendant of d5 is d1, thus a5 = 1 is appended and a1 is

updated to 5). Appending d6 gives (5, 1, 4, 3, 1, 6). The largest
valid subtree in the prefix pfx(D, d6) with the leftmost leaf

d1 is (5, 1, 4, 3, 1) (i = 1, ai = 5).

pfx(D, d4) : pfx(D, d5) : pfx(D, d6) :

auth2

John1

title4

X13

article5

auth2

John1

title4

X13

article5

auth2

John1

title4

X13 VLDB6

Prefix Array: Prefix Array: Prefix Array:

(2, 1, 4, 3) (5, 1, 4, 3, 1) (5, 1, 4, 3, 1, 6)

Fig. 7. The Prefix Arrays of Three Prefixes.

The pruning removes nodes from the left of the prefix ring

buffer such that the prefix ring buffer stores only part of the

prefix. The pointer from a leaf to the largest valid subtree in

the prefix always points to the right and is not affected. This

pointer changes only when new nodes are appended.



Theorem 2: The prefix ring buffer pruning for a document

with n nodes and with threshold τ runs in O(n) time and

O(τ) space.

Proof: Runtime: Each of the n nodes is processed exactly

once in Step 1 and in Step 2, then the algorithm terminates.

Dequeuing a node from the postorder queue and appending it

to the prefix ring buffer in Step 1 is done in constant time.

Removing a node (either as non-candidate or as part of a

subtree) in Step 2 is done in constant time. Space: The size of

the prefix ring buffer is O(τ). No other data structure is used.

F. Algorithm

Algorithm 1 (prb-pruning) implements the ring buffer

pruning and computes the candidate set cand(T, τ) given the

size threshold τ and the postorder queue, pq, of document

T . The prefix ring buffer is realized with two ring buffers of

size b = τ + 1: lbl stores the node labels and pfx encodes

the structure as a prefix array. The ring buffers are used

synchronously and share the same start and end pointers (s,e).
Counter c counts the nodes that have been appended to the

prefix ring buffer.

After each call of prb-next (Algorithm 2) a candidate

subtree is ready at the start position of the prefix ring buffer.

It is added to the candidate set and removed from the buffer

(Lines 6 and 7). prb-subtree(pfx, lbl, a, b) returns the subtree

formed by nodes a to b in the prefix ring buffer. Algorithm 2

is called until the ring buffers are empty.

Algorithm 1: prb-pruning(pq, τ)

Input: postorder queue pq of a document T , threshold τ
Output: candidate set cand(T, τ )
begin1

pfx, lbl: ring buffers of size b = τ + 1;2

C ← ∅;3

(pfx, lbl, s, e, c, pq)← prb-next(pfx, lbl, 1, 1, 0, pq, τ );4

while s 6= e do5

C ← C ∪ {prb-subtree(pfx, lbl, s, pfx[s])};6

s← (pfx[s] + 1)% b;7

(pfx, lbl, s, e, c, pq)← prb-next(pfx, lbl, s, e, c, pq, τ );8

end9

return C;10

end11

Algorithm 2 loops until both the postorder queue and the

prefix ring buffer are empty. If there are still nodes in the

postorder queue (Line 3), they are dequeued and appended to

the prefix ring buffer, and the ancestor pointer in the prefix

array is updated (Line 9). If the prefix ring buffer is full

or the postorder queue is empty (Line 13), then nodes are

removed from the prefix ring buffer. If the leftmost node is a

leaf (Line 14, c+1−(e−s+b) %b is the postorder identifier of
the leftmost node), a candidate subtree is returned, otherwise

a non-candidate is skipped.

Example 10: Figure 8 illustrates the prefix ring buffer for

the example document D in Figure 4. The relative positions

in the ring buffer are shown at the top. The small numbers

Algorithm 2: prb-next(pfx, lbl, s, e, c, pq, τ)

Input: ring buffers pfx and lbl with start/end pointers s and e,
counter c of nodes appended so far, (partially consumed)
postorder queue pq of a document T , threshold τ

Output: next subtree Ti ∈ cand(T, τ )
begin1

b← τ + 1 // ring buffer size2

while pq 6= ∅ or s 6= e do3

if pq 6= ∅ then4

(pq, (λ, size))← dequeue(pq);5

lbl[e]← λ;6

pfx[e]← (++c) − size ;7

if size ≤ τ then8

pfx[pfx[e]% b]← c;9

end10

e← (e + 1)% b;11

end12

if s = (e + 1)% b or pq = ∅ then13

if pfx[s] ≥ c + 1− (e− s + b)% b then14

return (pfx, lbl, s, e, c, pq);15

else16

s← (s + 1)% b;17

end18

end19

end20

return (pfx, lbl, s, e, c, pq);21

end22

are the postorder identifiers of the nodes. The ring buffers are

filled from left to right, and overwritten values are shown in

the next row.
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Fig. 8. Implementation of the Prefix Ring Buffer.

VI. TASM POSTORDER

We now present a solution for TASM whose space com-

plexity is independent of the document size and, thus, scales

well to XML documents that do not fit into memory. Unlike

TASM-dynamic (Section IV-F), which requires the whole doc-

ument in memory, our solution uses the prefix ring buffer and

keeps only candidate subtrees in memory at any point in time.

We start the section by showing an effective threshold τ for

the size of the largest candidate subtree in the document. Then

we present TASM-postorder and prove its correctness.

A. Upper Bound on Candidate Subtree Size

Recall that solving TASM consists of finding a ranking

of the subtrees of the document according to their tree edit

distance to a query. We distinguish intermediate and final

rankings. An intermediate ranking, R′ = (Ti′
1
, Ti′

2
, . . . , Ti′

k
),

is the top-k ranking of a subset of at least k subtrees of a



document T with respect to a query Q, the final ranking,

R = (Ti1 , Ti2 , . . . , Tik
), is the top-k ranking of all subtrees of

document T with respect to the query.

We show that any intermediate ranking provides an upper

bound for the maximum subtree size that must be considered

(Lemma 4). The tightness of such a bound improves with the

quality of the ranking, i.e., with the distance between the query

and the lowest ranked subtree. We initialize the intermediate

ranking with the first k subtrees of the document in postorder.

Lemma 5 provides bounds for the size of these subtrees and

their distance to the query. The ranking of the first k subtrees

provides the upper bound τ = |Q|(cQ + 1) + kcT for the

maximum subtree size that must be considered (Theorem 3),

where cQ and cT denote the maximum costs of any node in

Q and T (cf. Section IV-D). Note that this upper bound τ is

independent of size and structure of the document

Lemma 3: Let Q and T be ordered labeled trees, then |T | ≤
δ(Q, T ) + |Q|.

Proof: We show |T |−|Q| ≤ δ(Q, T ). True for |T | ≤ |Q|
since δ(Q, T ) ≥ 0. Case |T | > |Q|: At least |T | − |Q| inserts
are required to transform Q into T . The cost of inserting a

new node, tx, into T is γ(ǫ, tx) = cst(tx) ≥ 1.

Lemma 4 (Upper Bound): Let R′ = (Ti′
1
, Ti′

2
, . . . , Ti′

k
) be

any intermediate ranking of at least k subtrees of a document

T with respect to a query Q, and let R be the final top-k
ranking of all subtrees of T , then ∀Tij

(Tij
∈ R ⇒ |Tij

| ≤
δ(Q, Ti′

k
) + |Q|).

Proof: |Tij
| ≤ δ(Q, Tij

) + |Q| follows from Lemma 3.

We show ∀Tij
(|Tij

| ∈ R ⇒ δ(Q, Tij
) ≤ δ(Q, t′ik

)) by con-

tradiction: Assume a subtree Tij
∈ R, δ(Q, Tij

) > δ(Q, Ti′
k
).

Then by Definition 1 also Ti′
k
∈ R; if Ti′

k
∈ R, then also

all other Ti′
l
∈ R′ are in R, i.e., R′ ⊆ R. Tij

/∈ R′ (since

δ(Q, Tij
) > δ(Q, Ti′

k
)) but Tij

∈ R, thus R′ ∪ {Tij
} ⊆ R.

This contradicts |R| = k.

Lemma 5 (First Ranking): Let Q and T be ordered labeled

trees, k ≤ |T |, cQ and cT be the maximum costs of a node in

Q and T , respectively, ti be the i-th node of T in postorder,

then for all Ti, 1 ≤ i ≤ k, the following holds: |Ti| ≤ k ∧
δ(Q, Ti) ≤ |Q|cQ + kcT .

Proof: Let qi be the i-th node of Q in postorder,

and lml(Ti) the leftmost leaf of Ti. The nodes of a subtree

have consecutive postorder numbers. The smallest node is the

leftmost leaf, the largest node is the root. Since the leftmost

leaf of Ti, 1 ≤ i ≤ k, is larger or equal 1 and the root is at

most k, the subtree size is bound by k. The distance between

the query and the document is maximum if the edit mapping is

empty, i.e., all nodes of Q are deleted and all nodes of Ti are

inserted: δ(Q, Ti) ≤
∑

qi∈V (Q) γ(qi, ǫ)+
∑

ti∈V (Ti)
γ(ǫ, ti) ≤

|Q|cQ + kcT since γ(qi, ǫ) ≤ cQ, γ(ǫ, ti) ≤ cT , and |Ti| ≤ k.

The three lemmas above are the elements for our main result

in this section:

Theorem 3 (Maximum Subtree Size): Let query Q and

document T be ordered labeled trees, cQ and cT be

the maximum costs of a node in Q and T , respectively,

R = (Ti1 , Ti2 , . . . , Tik
) be the final top-k ranking of all

subtrees of T with respect to Q, then the size of all subtrees

in R is bound by τ = |Q|(cQ + 1) + kcT :

∀Tij
(Tij

∈ R ⇒ |Tij
| ≤ |Q|(cQ + 1) + kcT ) (4)

Proof: |T | < k: (4) holds since |Tij
| ≤ |T | < k ≤

|Q|(cQ + 1) + kcT . |T | ≥ k: According Lemma 5 there

is an intermediate ranking R′ = (Ti′
1
, Ti′

2
, . . . , Ti′

k
) with

δ(Q, Ti′
k
) ≤ |Q|cQ + kcT , thus δ(Q, Tij

) ≤ |Q|cQ + kcT

(Lemma 4) and |Tij
| ≤ |Q|cQ + kcT + |Q| (Lemma 3) for all

subtrees Tij
∈ R.

Algorithm 3: TASM-postorder(Q, pq, k)

Input: query Q, postorder queue pq of a document T , result
size k

Output: top-k ranking of subtrees of T w.r.t. Q
begin1

R : empty max-heap // top-k ranking for T2

τ ← |Q|(cQ + 1) + kcT ; τ ′ ← τ ;3

pfx, lbl: ring buffers of size b = τ + 1;4

(pfx, lbl, s, e, c, pq)← prb-next(pfx, lbl, 1, 1, 0, pq, τ );5

while s 6= e do6

r ← pfx[s] // candidate subtree root7

while r ≥ pfx[pfx[s]% b] do8

Ti ← prb-subtree(pfx, lbl, pfx[r % b], r % b);9

if |R| = k then τ ′ = min(τ, max(R) + |Q|);10

if |R| < k ∨ |Ti| < τ ′ then11

R′ = TASM-dynamic(Q,Ti, k);12

R← merge-heap(R, R′);13

while |R| > k do pop-heap(R);14

r ← r − |Ti|;15

else16

r ← r − 1;17

end18

end19

s← (pfx[s] + 1)% b;20

(pfx, lbl, s, e, c, pq)← prb-next(pfx, lbl, s, e, c, pq, τ );21

end22

return R;23

end24

B. Algorithm

TASM-postorder (Algorithm 3) uses the upper bound τ (see

Theorem 3) to limit the size of the subtrees that must be

considered, and the set of candidate subtrees, cand(T, τ), is
computed using the prefix ring buffer proposed in Section V.

When a candidate subtree Ti ∈ cand(T, τ) is available in

the prefix ring buffer (Lines 5 and 21), it is processed and

removed (Line 20). If an intermediate ranking is available (i.e.,

|R| = k) the upper bound τ ′ provided by the intermediate

ranking (see Lemma 4) may be tighter than τ . Only subtrees

of Ti that are smaller than τ ′ must be considered. The subtrees

of Ti (including Ti itself) are traversed in reverse postorder,

i.e., in descending order of the postorder numbers of their

root nodes. If a subtree of Ti is below the size threshold

τ ′, then TASM-dynamic is called for this subtree and the

resulting ranking R′ is merged with the overall ranking R. All



subtrees of the processed subtree are skipped (Line 15), and

the remaining subtrees of Ti are traversed in reverse postorder.

The ranking, R, is implemented as a max-heap that stores

(key , value) pairs: max(R) returns the maximum key of the

heap in constant time; pop-heap(R) deletes the element with

the maximum key in logarithmic time; and merge-heap(R, R′)
merges two heaps in O(min(R, R′)) time.

Theorem 4 (Correctness): Given a query Q, a document T ,

and k ≤ |T |, TASM-postorder (Algorithm 3) computes the top-

k ranking R of all subtrees of T with respect to Q.

Proof: If no intermediate ranking is available, all subtrees

within size τ = |Q|(cQ + 1) + kcT are considered. The

correctness of τ follows from Theorem 3. Subtrees of size

τ ′ = min(τ, max(R) + |Q|) and larger are pruned only if an

intermediate ranking with k subtrees is available. Then the

correctness of τ ′ follows from Lemma 4.

Theorem 5 (Complexity): Let Q and T be ordered labeled

trees, m = |Q|, n = |T |, k ≤ |T |, cQ and cT be the maximum

costs of a node in Q and T , respectively. Algorithm 3 uses

O(m2n) time and O(m2cQ + mkcT ) space.

Proof: The space complexity of Algorithm 3 is domi-

nated by the call of TASM-dynamic(Q, Ti, k) in Line 12, which
requires O(m|Ti|) space. Since |Ti| ≤ τ = m(cQ + 1)+ kcT ,

the overall space complexity is O(m2cQ+mkcT ). The runtime

of TASM-dynamic(Q, Ti, k) is O(m2|Ti|). τ is the size of the

maximum subtree that must be computed. There can be at

most n/τ subtrees of size τ in the document and the runtime

complexity is O(n
τ
m2τ) = O(m2n).

The space complexity is independent of the document size.

cQ and cT are typically small constants, for example, cQ =
cT = 1 for the unit cost tree edit distance, and the document is

often much larger than the query. For example, a typical query

for an article in DBLP has 15 nodes, while the document has

26M nodes. If we look for the top 20 articles that match the

query using the unit cost edit distance, TASM-postorder only

needs to consider subtrees up to a size of τ = 2|Q| + k =
50 nodes, compared to 26M in TASM-dynamic. Note that for

TASM-postorder a subtree with 50 nodes is the worst case,

whereas TASM-dynamic always computes the distance between

the query and the whole document with 26M nodes.

VII. EXPERIMENTAL VALIDATION

In this section we experimentally evaluate our solution.

We study the scalability of TASM-postorder using realistic

synthetic XML datasets of varying sizes and the effectiveness

of the prefix ring buffer pruning on large real world datasets.

All algorithms were implemented as single-thread applications

in Java 1.6 and run on a dual-core AMD64 server. A standard

XML parser was used to implement the postorder queues (i.e.,

parse and load documents and queries). In all algorithms we

use a dictionary to assign unique integer identifiers to node

labels (element/attribute tags as well as text content). The

integer identifiers provide compression and faster node-to-

node comparisons, resulting in overall better scalability.

A. Scalability

We study the scalability of TASM-postorder using synthetic

data from the standard XMark benchmark [25], whose docu-

ments combine complex structures and realistic text. There is

a linear relation between the size of the XMark documents (in

MB) and the number of nodes in the respective XML trees; the

height does not vary with the size and is 13 for all documents.

We used documents ranging from 112MB and 3.4M nodes to

1792MB and 55M nodes. The queries are randomly chosen

subtrees from one of the XMark documents with sizes varying

from 4 to 64 nodes. For each query size we have four trees. We

compare TASM-postorder against the state-of-the-art solution,

TASM-dynamic (Section IV-F) implemented using the tree edit

distance algorithm by Zhang and Shasha [9].

Execution Time: Figure 9a shows the execution time as

a function of the document size for different query sizes |Q|
and fixed k = 5. Similarly, Figure 9b shows the execution time

versus query size (from 4 to 64 nodes) for different document

sizes |T | and fixed k = 5. The graphs show averages over

20 runs. The data points missing in the graphs correspond

to settings in which TASM-dynamic runs out of main mem-

ory (4GB). As predicted by our analysis (Section VI), the

runtime of TASM-postorder is linear in the document size.

TASM-postorder scales very well with both the document and

the query size, and can handle very large documents or queries.

In contrast, TASM-dynamic runs out of memory for trees larger

than 500MB, except for very small queries. Besides scaling

to much larger problems, TASM-postorder is also around four

times faster than TASM-dynamic.

Figure 9c shows the impact of parameter k on the ex-

ecution time of TASM-postorder (|Q| = 16). As expected,

TASM-dynamic is insensitive to k since it always must compute

all subtrees. TASM-postorder, on the other hand, prunes large

subtrees, and the size of the pruned subtrees depends on k.
As the graph shows (observe the log-scale on the x-axis),

TASM-postorder scales extremely well with k: an increase of

4 orders of magnitude in k results only in doubling the low

runtime.

Main Memory Usage: Figure 10 compares the main

memory usage of TASM-postorder and TASM-dynamic for

different document sizes. The graph shows the average mem-

ory used by the Java virtual machine over 20 runs for each

query and document size. (The memory used by the virtual

machine depends on several factors and is not constant across

runs.) We omit the plots for other query sizes since they

follow the same trend as the ones shown in Figure 10: the

memory requirements are independent of the document size

for TASM-postorder and linearly dependent on the document

size for TASM-dynamic. In both cases the experiment agrees

with our analysis. The missing points in the plot correspond

to settings for which TASM-dynamic runs out of memory

(4GB). The difference in memory usage is remarkable: while

for TASM-postorder only small subtrees need to be loaded to

main memory, TASM-dynamic requires data structures in main

memory that are much larger than the document itself.
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B. Pruning of Search Space

In this section we evaluate the effectiveness of the prefix

ring buffer pruning leveraged by TASM-postorder. Recall that

the tree edit distance algorithm decomposes the input trees

into relevant subtrees, and for each pair of relevant subtrees,

Qi and Tj , a matrix of size |Qi| × |Tj| must be filled (see

Section IV-F). The size and number of the relevant subtrees

are the main factors for the computational complexity of the

tree edit distance. TASM-dynamic incurs the maximum cost as

it computes the distance between the query and every subtree

in the document. In contrast, TASM-postorder prunes subtrees

that are larger than a threshold.

Figure 11a shows the number of relevant subtrees (y-axis)
of a specific size (x-axis) that TASM-dynamic must compute

to find the top-1 ranking of the subtrees of the PSD70031

dataset (37M nodes, 683MB) for a query with |Q| = 4 nodes.

Figure 11b shows the equivalent plot for TASM-postorder. The

differences are significant: while TASM-dynamic computes the

distance to all relevant subtrees, including the entire PSD

document tree with 37M nodes, the largest subtree that is

considered by TASM-postorder has only 18 nodes. Figure 11c

shows a similar comparison for DBLP2 (26M nodes, 476MB)

using a histogram. In the histogram, 1e1 shows the number of

subtrees of sizes 0-9, 5e1 shows the sizes 10-49, 1e2 the sizes

50-99, etc. TASM-postorder computes much fewer and smaller

trees: the bins for the subtree sizes 50 and larger are empty.

1http://www.cs.washington.edu/research/xmldatasets
2http://dblp.uni-trier.de/xml

The subtrees computed by TASM-postorder are not always

a subset of the subtrees computed by TASM-dynamic. If

TASM-postorder prunes a large subtree, it may need to compute

small subtrees of the pruned subtree that TASM-dynamic

does not need to consider. Note, however, that every sub-

tree that is computed by TASM-postorder is either com-

puted by TASM-dynamic or contained in one that is. Thus

TASM-dynamic is always more expensive. We define the cumu-

lative subtree size which adds the sizes of the relevant subtrees

up to a specific size x that are computed by a TASM algorithm:

css(x, T ) =
∑x

i=1 ifi, 1 ≤ x ≤ |T |, where fi is the number

of subtrees of size i that are computed for document T . The

difference of the cumulative subtree sizes of TASM-dynamic

and TASM-postorder measures the extra computational effort

for TASM-dynamic. In Figure 12 we show the cumulative

subtree size difference, cssdyn(x, T )− csspos(x, T ), over the
subtree size x for answering a top-1 query on the docu-

ments DBLP and PSD. For small subtrees the curves are

negative, which means that TASM-postorder computes more

small trees than TASM-dynamic. Nevertheless, TASM-dynamic

ends up performing a considerably larger computation task

than TASM-postorder. TASM-dynamic processes around 27M

(129M) nodes more than TASM-postorder for the DBLP (PSD)

document (660K resp. 89M excluding the processing of the

entire document by TASM-dynamic in its final step).

VIII. CONCLUSION

This paper discussed TASM: the problem of finding the

top-k matches for a query Q in a document T w.r.t. the

established tree edit distance metric [9]. This problem has

applications in the integration and cleaning of heterogeneous

XML repositories, as well as in answering similarity queries.

We discussed the state-of-the-art solution that leverages the

best dynamic programming algorithms for the tree edit dis-

tance and characterized its limitation in terms of memory

requirements: namely, the need to compute and memorize the

distance between the query and every subtree in the document.

We proved an upper-bound on the size of the largest subtree

of the document that needs to be evaluated. This size depends

on the query and the parameter k alone. We gave an effective

pruning strategy that uses a prefix ring buffer and keeps only

the necessary subtrees from the document in memory. As a
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result, we arrived at an algorithm that solves TASM in a single

pass over the document and whose memory requirements are

independent of the document itself. We verified our analysis

experimentally and showed that our solution scales extremely

well w.r.t. document size, query size, and the parameter k.
Our solution to TASM is portable. It relies on the postorder

queue data structure which can be implemented by any XML

processing or storage system that allows an efficient postorder

traversal of trees. This is certainly the case for XML parsed

from text files, for XML streams, and for XML stores based

on variants of the interval encoding [24], which is prevalent

among persistent XML stores.

This work opens up the possibility of applying the estab-

lished and well understood tree edit distance in practical XML

systems. Also, it may lead to solving related problems to

TASM. One natural candidate is the problem of approximate

keyword search (cf. Section III), in which one is interested

in small subtrees that match a set of keywords, which can be

accommodated in the formulation of the tree edit distance.
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