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Abstract—We introduce the problem of diverse dimension
decomposition in transactional databases. A dimension is a set
of mutually-exclusive itemsets, and our problem is to find a
decomposition of the itemset space into dimensions, which are
orthogonal to each other, and that provide high coverage of the
input database. The mining framework we propose effectively
represents a dimensionality-reducing transformation from the
space of all items to the space of orthogonal dimensions. Our
approach relies on information-theoretic concepts, and we are
able to formulate the dimension-finding problem with a single
objective function that simultaneously captures constraints on
coverage, exclusivity and orthogonality. We describe an efficient
greedy method for finding diverse dimensions from transactional
databases. The experimental evaluation of the proposed approach
using two real datasets, flickr and del.icio.us, demonstrates
the effectiveness of our solution. Although we are motivated by
the applications in the collaborative tagging domain, we believe
that the mining task we introduce in this paper is general enough
to be useful in other application domains.

I. INTRODUCTION
Collaborative content creation and annotation is one of the

main activities and distinguishing features of the Web 2.0.
The common efforts of many users create huge repositories
of all sort of media, usually annotated by the users them-
selves; for instance photos (flickr), urls (del.icio.us),
blogs (technorati), videos (youtube), songs (last.fm),
scientific papers (bibsonomy and citeulike), and others.
All these platforms provide their users with a repository of
resources, and the capability of assigning tags, i.e., freely
chosen keywords, to these resources.
A repository of tagged resources can be seen as a

transactional database, typical of the frequent-itemset-mining
paradigm: transactions correspond to resources, and items
correspond to tags. In this setting we are interested in studying
the problem of discovering an item-space decomposition,
which we define to be a set of orthogonal dimensions with
high coverage. A dimension in turn is defined to be a set of
itemsets that rarely co-occur in the database.
Example 1: Consider for instance a query on flickr for

photos about art (i.e., annotated with the tag art): the dataset
D of such photos can look like the one in Figure 1. In this
setting dimensions might be, for example, such sets of itemsets
as { {portrait},{landscape}} or {{canon},{nikon},
{sony}}. Indeed, almost all photos in the dataset contain at
most one of the itemsets1 from each of the two dimensions.
1While in this example each dimension is formed by singleton items, in

general a dimension is formed by itemsets of any size.

In this paper, we are interested in discovering dimensions
that represent diverse concepts, such as “type of photo” or
“camera brand”, and whose different values almost partition
the dataset. For instance, each dimension in Figure 1 can be
seen as a different way of partitioning the transactions in
D, and the three dimensions together can be considered as
a diverse decomposition of the space of photos.
In order to achieve our goal, we adopt an information-

theoretic perspective. While there exist several studies apply-
ing joint entropy to the problem of identifying interesting or
informative itemsets [1]–[6], this body of work can not be
applied to the problem of diverse dimension decomposition,
as explained next.
Example 2: Consider the transposed view of the database in

Figure 1, given in Table I. Following the approaches that use
joint entropy, we will get sets (templates) such as {color,
nikon} , having the highest entropy (dark grey lines), or
{landscape,sony} as low-entropy sets (light grey lines).
We notice that high-entropy sets are characterized by more

uniform appearance of their instantiations in the database
(e.g., instances 01, 10 and 11 appear with roughly the same
frequency), while low-entropy sets accumulate support around
the few most-frequent instances (in our example: 00), not
necessarily representing mutually exclusive items forming the
dimension (with instances 001, 010, 100). Thus, using the
existing interestingness measures does not solve our problem.
In this paper, we propose entropy measure expressing both

the orthogonality among dimensions and the interestingness
of dimensions. Moreover, we show that it also captures
constraints both on exclusivity and coverage. Based on this
measure, we formulate diverse dimension decomposition as
the problem of finding an optimal set of k dimensions,
minimizing an objective function that closely resembles the
mutual information measure, except for a parameter α, which
allows the analyst to trade-off between information loss and
orthogonality of the dimensions.
Our contributions are summarized as follows.
• We introduce the novel problem of diverse dimension de-
composition in transactional databases, as an optimization
problem. We characterize our objective function and show
that the selected dimensions explain well the underlying
database.

• We prove a property that allows assessing the level of in-
formativeness for newly-added dimensions, thus allowing
to define criteria for terminating the decomposition.



t1 {fish, art, film, portrait, tattoo, xpro, crossprocessed, nikon, skin, n80}
t2 {sanfrancisco, black&white, building, art, stairway, fireescape, nikon}
t3 {portrait, color, art, me, illustration, blood, adobephotoshop, canon}
t4 {travel, brazil, plant, art, nature, color, strong, nikon, nikond70}
t5 {sunset, art, museum, landscape, minneapolis, canon, powershotg3}
t6 {sculpture, art, 2004, festival, japan, culture, clay, a70, canon}
t7 {portrait, art, painting, color, europe, sony, sonyericssonk750}
t8 {black&white, art, film, photograph, street-photo, contax645}
t9 {art, black&white, skin, hand, bodypainting, nikon, d70}
t10 {red, woman, art, face, color, tear, canon, eos300d}
t11 {art, 3d, unfound, photositook, sony, cybershot}
t12 {beautiful, woman, black&white, portrait, art}
t13 {landscape, nature, sunrise, wallpaper, art}

Fig. 1: An example of transactional dataset, having three diverse dimensions (shown on the right). In this specific example
from Flickr, each transaction corresponds to a picture, and its associated tags. All pictures have in common the tag art.

item t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13
canon 0 0 1 0 1 1 0 0 0 1 0 0 0
nikon 1 1 0 1 0 0 0 0 1 0 0 0 0
sony 0 0 0 0 0 0 1 0 0 0 1 0 0
color 0 0 1 1 0 0 1 0 0 1 0 0 0
black&white 0 1 0 0 0 0 0 1 1 0 0 1 0
landscape 0 0 0 0 1 0 0 0 0 0 0 0 1
portrait 1 0 1 0 0 0 1 0 0 0 0 1 0

TABLE I: A transposed view of the dataset in Figure 1,
showing most frequent items taken from several dimensions.

• We show that our problem is trivially NP-hard, and thus
turn our interest to approximation algorithms. We propose
a greedy algorithm exploiting the well known FP-tree
data structure [7], and clever pruning of the search space,
based on properties we prove in the characterization of
the problem.

• We experiment the proposed approach using two real-
world large datasets in the collaborative tagging domain,
flickr and del.icio.us, demonstrating the effective-
ness and scalability of our solution.

The rest of the paper is structured as follows. In the next
section we discuss related work and in Section III we formally
define the problem of mining diverse dimensions from a
transactional dataset. In Section IV we present our methods,
while in Section V we report experimental assessment. Finally,
we discuss future work and conclude in Section VI.

II. RELATED WORK

We next survey the literature related to our work, divid-
ing it into three independent groups: (a) methods that aim
at extracting diverse content from web data, (b) space-like
representations of itemset databases, and (c) entropy-based
measures for itemset interestingness.

A. Diversity in Information Retrieval
Extracting a set of diverse dimensions, that covers the vari-

ous aspects of the underlying dataset, can be seen as a problem
of automatic facet discovery. Such a facet-discovery process
has many applications in improving user experience, for in-
stance, tag recommendation [8], search and exploration [9],
tag clustering [10]–[12], and more. Although in this paper
we deal with the fundamental problem of diverse dimension
decomposition in general transactional database, we believe
that our proposals can be applied in these problems, and we
are indeed motivated by the collaborative tagging domain, as
witnessed by our experiments in Section V.

Web search is another domain in which finding an answer
set with diversity is important. Several studies have focused
on the problem of search engines query-result diversification
[13]–[16], where the goal is to produce an answer set that
includes results relevant to different aspects (facets) of the
query. In this area, the work mostly related to ours is the
paper by Bonchi et al. [13] where the problem of topical
query decomposition is introduced. Given a query and a
document retrieval system, the goal is to select a small set
of queries representing coherent, conceptually well-separated
topics, and whose union of resulting documents corresponds
approximately to that of the original query. The authors
propose two methods, one based on a special instance of the
weighted set covering problem, and one based on constrained
clustering.
B. Space-like Representation of Itemset Databases
Traditionally, in association rule mining, itemsets are rep-

resented as binary vectors in the space of items: each axis
corresponds to an item, and binary coordinate values indicate
whether each particular item is contained in the itemset. This
representation works well, if we are interested in finding
association rules of the form {bread,milk} ⇒ {butter} ,
which capture itemset-level correlations in data. However,
binary coordinates do not facilitate geometric decompositions
of the item space (which can be interpreted by a human).
As a possible solution, Korn et al. [17] used real-valued

coordinates, where coordinates could be interpreted as quan-
tities of each item employed in the construction of rules. This
framework allowed to perform spectral decomposition of the
item space (similar to SVD [18]), and discovery of Ratio
Rules, i.e., quantitative correlations between itemsets in data.
An example of such rule is {1:bread,2:milk,5:butter},
which says that a typical ratio of bread, milk and butter within
the itemsets is {1:2:5}, so we can predict missing values of
different items given these rules.
Alternatively, one can represent a database in the transposed

space of transactions rather than items (like the one shown
in Table I). This is the main idea behind the “geometrically
inspired itemset mining” framework proposed by Verhein and
Chawla [19]. Their proposal is a framework for frequent
itemset mining, which can accept space transformations, such
as SVD, subject to the constraint that a measurement function
should be able to be computed in the new space. For instance,
in the case of SVD, each new axis represents a linear combi-



nation of transactions, featuring the largest variance in data.
However, such a transformation is not very easily interpretable.
Our work is different in that we propose a principled

method for decomposing the space of items in a set of
orthogonal dimensions that are readily interpretable. Moreover,
our problem formulation is based on information theory, and
is capable of identifying dimensions in transactional databases
in general, regardless whether transactions have real values
associated with items or not.

C. Entropy-Based Measures of Itemset Interestingness

Knobbe and Ho [1], employing Information Theory, define a
measure for itemset interestingness, joint entropy, which is op-
timizing for the uniform co-occurrence among items. In their
terminology, a set is a template (or a collection of attributes
taking binary values), whose instances are itemsets. Entropy
is calculated as a negative sum of logarithm-multiplied oc-
currence probabilities for observed instances. This measure
indicates how likely a randomly-chosen set instance is to
appear in data. The same authors also introduced a notion of
“pattern teams” [2], that can be seen as feature sets. They
theoretically evaluate the effectiveness of different filtering
criteria for feature sets used in machine learning classifiers,
noticing that joint entropy does not satisfy the intuitions we
use for dimensions (i.e. mutual exclusivity, high coverage).
Instead, the authors find that exclusive coverage (i.e. the sum
of coverages minus co-occurrences) is much more suitable as
a measure optimizing for these intuitions.
Continuing the above line of research, Heikinheimo et al.

define two related problems, namely, mining high- and low-
entropy sets [5]. Zhang and Masseglia [6] extended their
method to work on streaming data and proposed to reduce
its output by removing similar sets according to criteria based
on mutual information [20].
Finally, Tatti [3] and Mampaey et al. [4] proposed to use

joint entropy in an MDL optimization framework, aiming at
compressing the database. Maximizing the entropy ensures
that all the pattern subsets are uniformly distributed, while
the limit on pattern frequency (according to the exponential
frequency decrease assumption) facilitates the selection of
frequent patterns.
Although these papers deal with itemset mining using joint

entropy, their goal is different from ours: they aim at extracting
sets of items, which co-occur in the database uniformly
(when optimized for high entropy: same frequency for all
subset combinations) or sparsely (when optimized for low
entropy: only certain subsets are frequent). We discussed the
difference between these approaches and our proposal earlier,
in Example 2.
In contrast to the above methods, we formulate the entropy

of a dimension as the uncertainty of the dimension’s itemsets
for each document, and use it as an indicator of quality for
dimensions. Moreover, our goal is to find sets of itemsets (not
items), which are not only mutually exclusive (within each
dimension), but also independent (across dimensions).

III. PROBLEM STATEMENT
We are given a transactional dataset D, i.e., a multiset of

transactions t ⊆ I, where I is a ground set of items. An
example of a transactional dataset is given in Figure 1. As
usual we call itemset any set of items X ⊆ I, and we denote
by D(X) its supporting set of transactions, i.e., D(X) = {t ∈
D | X ⊆ t}. Moreover we denote by I the space of all possible
itemsets on I.
In this paper we are studying the following problem. We are

given an integer k and the goal is to discover a collection of
k dimensions, that decompose the itemset space I. Moreover,
we want each dimension to almost partition the dataset D; that
is to say, we want (almost) all transactions t ∈ D to contain
one and only one of itemsets from the dimension.
Definition 1 (Dimension): Given an itemset space I, a di-

mension δi ⊂ I is a collection of pairwise disjoint itemsets,
i.e., δi = {X i

0, ..., X
i
m}, such that for all pairs of itemsets

X i
k, X i

l ∈ δi with l %= k it holds X i
k ∩ X i

l = ∅.
As in decomposition methods in linear algebra, we want to

decompose the itemset space in dimensions that can be though
as “orthogonal.” While orthogonality in linear algebra is a
well-understood concept, when talking about the itemset space
the concept of orthogonality is much less clear. Motivated
by our example, we would like to argue that the dimension
camera-brand = {{canon},{nikon},{sony},...} is orthog-
onal to the dimension type-of-photograph = {{portrait},
{landscape},{street-photo},...}. The concept of or-
thogonality can thus be formulated as independence among
the dimensions: the fact that a photograph is tagged by nikon
should not reveal any information about the type of the
photograph. That is, the likelihood of that photograph being
portrait or landscape should remain the same as it is non
conditional on camera-brand.
To formalize the above intuition, we use the concept of

mutual information. Given two random variables, X and Y ,
mutual information measures the information shared between
them. For example, if X and Y are independent, then knowing
X does not give any information about Y and vice versa,
so their mutual information is zero. In order to employ the
definition of mutual information, we need to define precisely
how our dimensions define a probability space, and what is the
entropy of this probability space. We provide those definitions
in the next section.
In addition to finding orthogonal dimensions we also want to

find “useful” dimensions, in the sense of being able to explain
the dataset succinctly. We express this intuition by the concept
of coverage. In the previous example, the dimension camera-
brand has high coverage because most of the photos have one
tag from its collection of itemsets {{canon},{nikon},...}.
We are able to show that the concept of coverage can also be
formulated in an information theoretic manner. More impor-
tantly, we are able to combine both desiderata, high coverage
and orthogonality, in one single objective function, achieving
to simplify our problem formulation as well as the mining
algorithm.



A. Entropy of Dimensions
Our goal is to define the entropyH(δi | D) of the dimension

δi = {X i
0, ..., X

i
m} of the itemset space I, on the dataset D.

We first define the entropy of the dimension δi conditioned on
a single transaction t of the dataset.

H(δi | t) = −
X

Xi∈δi

P (Xi | t) log P (Xi | t)

The probabilities P (X i | t) express the uncertainty that the
itemset X i is present in the transaction t, and are defined later
in the section. Averaging over all transactions of the dataset
D, we now define the entropy of the dimension δi as follows:

H(δi | D) =
X

t∈D

P (t)H(δi | t),

where P (t) is the frequency of each transaction in the dataset.
For instance, if all transactions are distinct, then P (t) = 1/|D|.
The conditional entropy of one dimension given another,

is calculated similar to an ordinary entropy, but counting
only documents assigned to itemsets in a dimension being
conditioned. Entropies for each itemset are then aggregated
with respect to their probabilities, that is:

H(δi | δj ,D) =
1
|δj |

·
X

Xj∈δj

H(δi | Xj ,D)
P

t∈D
P (Xj | t)

, where

H(δi | Xj ,D) =
X

t∈D

P (Xj | t) · H(δi | Xj , t), and

H(δi | Xj , t) = −
X

Xi∈δi

P (Xi | Xj , t) · log P (Xi | Xj , t).

It remains to define the probabilities P (X i | t), which can be
interpreted as the probability of an itemset being relevant for a
transaction. When computing relevancy probabilities, we may
use different set similarity measures, such as cosine similarity
(1), Jaccard coefficient (2) or binary inclusion/exclusion (3):

P (Xi | t) :
|Xi ∩ t|
|Xi| · |t|

(1); |Xi ∩ t|
|Xi ∪ t|

(2);


1, Xi ⊆ t;
0, Xi %⊆ t.

(3);

Also note that after computing the set similarity measures we
need to normalize them in order to arrive to a valid probability
distribution whose values sum up to 1. The following example
describes the meaning of different probability distributions.
Example 3: Let us consider a dimension δi containing five

itemsets:{{canon},{nikon},{olympus},{pentax},{sony}}.
Each transaction t in the dataset may be relevant to one
or several itemsets of the dimension, or not relevant at all.
Figure 2 shows three different transactions with the following
probability distributions: t1 = {pentax,camera,test} is
relevant only to {pentax} , with a probability 1.0; t2 =
{pentax,nikon,test} is relevant to only two cameras,
with probabilities 0.5; t3 = {dslr,cameras,test} may be
relevant to any camera, thus resulting in equal probabilities
and maximal entropy. In this example, entropy reflects the
uncertainty of the dimension being relevant to a transaction.
When only one itemset is relevant we have low entropy, as
in the first case. When none of the itemsets is more relevant,
resulting in the unclear choice, the entropy becomes high.

H = 0.0 H = 1.0 H = 2.3

Fig. 2: Entropy for different probability distributions.

B. Problem Formulation
As we mentioned before, the problem we consider is to

discover k diverse dimensions that explain well the input
dataset. Let us denote by ∆ = {δ1, . . . , δk} such a set of
k dimensions. Our objective function evaluates the goodness
of the dimension set ∆ in terms of entropy and diversity. We
define those next.
Definition 2 (Entropy of dimension set):

Given a set of dimensions ∆ = {δ1, . . . , δk}, its entropy is
defined as the sum of entropies of its dimensions. 2

H(∆) =
X

δi∈∆

H(δi)

Definition 3 (Diversity of dimension set):
Given a set of dimensions ∆ = {δ1, . . . , δk}, its diversity is
calculated as the sum of conditional entropies over all pairs
of its dimensions.

DIV (∆) =
X

δi,δj∈∆

H(δi | δj)

Central to our problem is the concept of mutual information,
which we define here for a pair of dimensions δi and δj .
Definition 4 (Mutual Information):

I(δi; δj) = H(δi) − H(δi | δj) = H(δj) − H(δj | δi).

Mutual information of two dimensions is symmetric and is
computed by taking the difference between an entropy of
the first dimension, H(δi), and its conditional entropy given
another one, H(δi | δj). The latter entropy expresses the
amount of information which one dimension contains about
another, and we want this amount to be low (this happens
when the conditional entropy of dimension δi remains large
after we have identified dimension δj). In order to evaluate
the goodness of the set of dimensions ∆ we are summing
the mutual information among all pairs of dimensions of the
set ∆. We are now ready to formally define our problem.
Problem 1 (Diverse Dimension Decomposition): Given a

dataset D, find a set of k dimensions ∆ that minimize f(∆):

f(∆) =

»

H(∆) −
2α

k − 1
· DIV (∆)

–

(1)

In the above problem definition, we propose using an
optimization function f(∆) derived from mutual information.
Additionally, we introduce a parameter α to control the

effect of entropy and conditional entropy over the optimization
criterion. One can notice that the value of α = 1 corresponds
2Throughout our paper we assume that all entropies are calculated with

respect to the dataset D, omitting it in order to simplify the notation.



to the case when the criterion is based precisely on the pairwise
sum of mutual informations, but we may pick any other
positive real value. This gives us the possibility to optimize
either for information loss (when α is small, e.g., α = 0),
orthogonality (when α is large, e.g., α = 1), or for both (when
α takes an intermediate value).
Furthermore, we are able to show that by minimizing the

objective function (1) we are also ensuring that the resulting
dimensions explain well the underlying dataset. We first define
the notion of coverage of a dimension.
Definition 5 (Coverage of a dimension): Coverage C(δ) of

the dimension δ on the dataset D is the fraction of transactions
t in D, for which t ∩ X %= ∅, for some itemset X ∈ δ.
Definition 6 (Maximal co-occurrence of a dimension): We

define the maximal co-occurrence R(δ) between any number
of itemsets in the dimension δ on the dataset D as the fraction
of transactions t in D which contain more than one X ∈ δ.
The following two lemmas are needed in our exposition that

minimizing f(∆) ensures high coverage.
Lemma 1: If the value of the objective function is less than

a threshold, f(∆) ≤ ψ, then

H(∆) ≤
ψ

1 − α
.

Proof: For all pairs of dimensions δi and δj , we have
that H(δi | δj) ≤ H(δi), what implies that I(δi; δj) ≥ 0.
In case of a pairwise sum, DIV (∆) ≤ H(∆) · (k − 1)/2.
Consequently, if [H(∆) − DIV (∆) · 2α/(k − 1)] ≤ ψ we
have that [H(∆) − α · H(∆)] ≤ ψ, or equivalently,
H(∆) · (1 − α) ≤ ψ, which proves the lemma.

This lemma predicts that for values of α ≥ 1 the entropy
becomes unbounded. In other words, when optimizing solely
for orthogonality the quality (entropy) of dimensions may
become uncontrollable as some of them can be added to
a collection solely because of their high independence to
others. This can happen for dimensions that have negative
contributions to f(∆) because of a high α.
Lemma 2: Let δ be a dimension with m itemsets, and

consider the case that the probabilities P (X i | t) take binary
values. Then for the coverage C(δ) of the dimension δ it
should be

C(δ) ≥ 1 −
H(δ)

|D| log m
.

Proof: Entropy takes its maximum value in the case that
a transaction is not covered by a dimension δ. Thus, we have,
H(δ | t) = log m. Therefore, the maximal number of not
covered transactions would be less than H(δ) divided by the
maximum entropy. Thus, (1−C(δ))|D|≤ H(δ)/ log m, which
proves the lemma.
Lemma 3: If probabilities P (X i | t) are computed using

binary similarities, then maximal co-occurrence R between
any two itemsets in a dimension δi should be less than its
entropy per single transaction: R(δ) ≤ H(δi)

|D| .

Proof: For a dimension δi, let s be the number of co-
occurring itemsets in a transaction t, where 2 ≤ s ≤ |δi|.
Then P (X i | t) = 1

s
; and H(δi|t) = −s 1

s
log 1

s
= log s.

Therefore, the minimal entropy of single co-occurrence would
be equal to log 2. The maximal number of how many times
the two itemsets may co-occur would be H(δi) divided by
min entropy. Therefore R(δ)|D| = H(δi)/ log 2 = H(δi).
We are now stating the theorem that small values of f(∆)

imply high coverage. The theorem is a direct consequence of
Lemmas 1 and 2.
Theorem 1: Let ∆ = {δ1, . . . , δk} be a set of k dimen-

sions and C(∆) be their total coverage, defined as C(∆) =∑
δ∈∆ C(δ). Finally, let m0 be the size of the smallest

dimension of ∆. If f(∆) ≤ ψ then for the total coverage
we have:

C(∆) ≥ k −
ψ

|D| log m0(1 − α)
.

Proof: According to Lemma 2, the sum of dimensions
coverages is greater than:

X

δ∈∆

C(δ) ≥ k −
1
|D|

X

δ∈∆

H(δ)
log m

≥ k −
1
|D|

X

δ∈∆

H(δ)
log m0

Applying our notation and using Lemma 1, we have:

C(∆) ≥ k −
H(∆)

|D| log m0

≥ k −
ψ

|D| log m0(1 − α)

We can use the above theorem to evaluate the quality of
the dimensions, or to limit the number of dimensions in the
result, e.g., by conforming to the specified constraint on the
minimum coverage.
We next evaluate the dependency of f(∆) over the number

of dimensions k. Suppose that we have a set of k dimensions
∆, and want to add another dimension δ.
Theorem 2: Adding a candidate dimension δ will improve

f(∆) as long as its average mutual information (across dimen-
sions∆) is less than a fraction (1− 1

2α ) of its total information.
Proof: The difference in the optimality value can then

be written as follows:

diff = H(δ) −
2α

k
DIV (∆ ∪ δ) +

2α

k − 1
DIV (∆)

diff ≤ H(δ) −
2α

k
[DIV (∆ ∪ δ) − DIV (∆)]

diff ≤ H(δ) −
2α

k

X

δk∈∆

H(δ|δk)

We are interested in cases when this difference will be
negative, what corresponds to improving optimality:

H(δ) −
2α

k

X

δk∈∆

H(δ|δk) ≤ 0

(1 − 2α)H(δ) +
2α

k

X

δk∈∆

I(δ; δk) ≤ 0

1
k

X

δk∈∆

I(δ; δk) ≤ (1 −
1
2α

)H(δ)
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Fig. 3: FP-Tree constructed from the dataset shown in Figure 1. For the sake of simplicity, we omitted frequency counts from
the nodes, cross-references among nodes and the header table, showing only the prefix-tree. To avoid having a too large figure,
the tree is shown after a pruning of itemsets of frequency less than 2. Nodes highlighted in gray represent items from first-order
dimensions, which are blocked and become transparent when considering itemsets for a new dimension (highlighted in blue).

In other words, f(∆) will decrease when dimensions in
∆ contain on average less than β = 1 − 1/2α percent
information about δ. This property allows assessing the level
of informativeness for newly-added dimensions, and defining
criteria for terminating the decomposition. For example, if we
stop adding new dimensions when f(∆) starts to increase, we
ensure that dimensions will not contain more than β percent
of ambiguous information.

IV. ALGORITHM
We observe that Diverse Dimension Decomposition (Prob-

lem 1) is NP-hard, by reduction from the Set Partitioning
problem, where we want to partition a set into non-overlapping
and non-empty parts that cover the entire set. The above
operation corresponds to the partition of items in a dimension.
Though, our problem is more complex than that, since we are
additionally seeking for a partition of the dimensions.
This inherent complexity of the problem makes any brute

force approach unfeasible, even for relatively small instances
of the problem. In the rest of this section, we describe our
solution based on a greedy strategy.

Algorithm Outline. Since it is hard to come up with a
good initial set of k dimensions for optimization, we propose
identifying dimensions one-by-one, as follows. We start by
constructing the first, more prominent dimension, according
to our objective function f(∆). This process begins with
an empty single dimension, and on each iteration we decide
whether to add new, or grow existing itemsets, according to the
strategies discussed below. The construction of each dimension
stops either if it is not possible to improve its optimality or
if all items have been partitioned. Then, we do the same for
the remaining dimensions iteratively, with the only difference
that f(∆) now takes into account all the previously identified
dimensions, optimizing with respect to their orthogonality.
The Data Structure. To store the data for our problem, we
adopt a compressed database representation in the form of
the well known FP-Tree [7] data structure. In Figure 3, we
show an example of such a tree, for the transactional dataset
of Figure 1. This structure allows us to perform efficient
pruning based on the coverage, co-occurrence and non-overlap
(partitioning) requirements, as explained next.

Search Strategies. We now discuss the search strategies that
can be used over the FP-tree data structure, as well as the
pruning techniques that can be applied on top of those.
– Breadth-first strategy (expansion): a) Locate, and re-

move from further consideration, individual nodes for items
that are already in the dimension (according to the non-overlap
criterion; for example, nodes, highlighted in gray in Figure 3);
b) add one of the remaining available singleton items as a new
itemset; we add these items one at a time.
– Depth-first strategy (refinement): a) For an itemset in

the dimension, locate the correspondent paths in the FP-tree;
b) Expand this itemset by adding one item at a time from the
available children nodes of its paths.
However, the problem with the above strategies is that

neither of them can lead to a good solution, when used
independently: the breadth-first strategy may include many
singleton items so that refinement (or expansion) of individual
itemsets in a dimension is no longer possible; the depth-first
strategy may restrict adding new itemsets to the dimension by
expanding existing itemsets with their children items.
– Mixed strategy (expansion + refinement): Apply the

expansion and refinement steps at every iteration. This is the
strategy we use in this paper, and we discuss it in more detail
in the following paragraphs (refer to Algorithm 1).

Pruning Strategies: We have already described the basic
pruning strategy (non-overlap) based on our definition for
dimensions. Our more advanced pruning strategy is based on
the relationship between entropy and such characteristics as
coverage and co-occurrence, as described in Lemmas 2-3. For
each candidate dimension with entropy H , we are interested
in obtaining refined dimensions, which do not exceed this
value. Thus, we compute the corresponding thresholds for the
minimal coverage C and maximal co-occurrenceR (according
to the above lemmata), and use them for pruning the itemsets
which are added or refined.
Algorithm Description:We formulate our optimization prob-
lem in a greedy fashion, relying on a mixed candidate gen-
eration strategy and an iterative refinement of the candidate
set. The complexity of this approach (almost) linearly depends
on the size of the candidate set (as seen in Figure 5), which
we use as a parameter. Another input of our algorithm is the
FP-Tree, optionally containing only the most frequent items.



Algorithm 1: Mining Orthogonal Dimensions
Name : findNewDimension
Input : First-order dimensions ∆ = {δk}, k < i,

Candidate dimensions candidates = {},
FP-Tree, memoryBudget

Output: Optimal dimension δi
out of order i

repeat
forall the dimension δi∈candidates.unprocesseddo
forall the itemset Ii ∈ δi do
forall the items
Ij ∈ children(Ii), Ij /∈ δi, ∆ do
if validItemset(Ii ∪ {Ij} | δi) then

//add one item to the current itemset
δi
temp = {δi | Ii = Ii ∪ {Ij}};
checkOptimality(δi

temp | ∆);
candidates.temp.add(δi

temp);
end

end
end

re
fin
em
en
t

ex
pa
ns
io
n

forall the items Ij ∈ I, Ij /∈ δi, ∆ do
if validItemset({Ij} | δi) then

//add one more item as an itemset
δi
temp = δi ∪ {Ij};
checkOptimality(δi

temp | ∆);
candidates.temp.add(δi

temp);
end

end
end
//mark unprocessed as processed
candidates += candidates.unprocessed;
//newly generated become unprocessed
candidates.unprocessed = candidates.temp;
candidates.temp = {};
//sort so that most optimal values are first
candidates.sort();
//remove candidates exceeding the allocated memory
repeat

candidates.remove(candidates.lastElement);
until candidates.size > memoryBudget;

until candidates.unprocessed.size > 0;
return δi

out = candidates.firstElement;

This initial pruning does not affect the output (as long as the
items forming the dimensions are preserved), but significantly
reduces the complexity of the problem.
Our general approach starts with an empty set of dimen-

sions, and uses Algorithm 1 to find each new dimension,
resulting in the best optimality value when added to the set of
previously selected dimensions; up to the specified number k.
The most essential part of this algorithm is the greedy di-

mension optimization procedure findNewDimension, which
takes as a parameter a set of the first-order dimensions ∆,
and an empty set of candidates, and after a finite number of
iterations (the first loop) it converges to the single most optimal
dimension, which is added to the ∆ as the next one.

Algorithm 2: ItemSet pruning method validItemset.
Entropy for a given dimension will improve only if the new
itemset meets coverage and co-occurrence requirements
computed using Lemmas 2-3 for the dimension’s entropy.
Name : validItemset
Input : Dimension δi, itemset Ii, FP-Tree
Output: true if itemset is valid, false otherwise
//use Lemma 2 to calculate min coverage
covmin = Lemma2(H(δi));
//use Lemma 3 to calculate max co-occurrence
coocmax = Lemma3(H(δi));
return (C(Ii ∪ δi) > covmin & R(Ii, δ

i) ≤ coocmax);

More specifically, Algorithm 1 iteratively refines dimensions
in the candidate set (the empty initial set is refined only by
expansion) and at each iteration performs sorting of candidates
according to their optimality. The list of sorted dimensions is
then being pruned according to the specified memory budget.
By doing this operation, the algorithm ensures that at each
step it would refine and check the optimality of only a short
list of candidates, which is equal to the memory budget or
lower. After all candidates in the list were refined, they are
marked as processed (transferred to the main list), and the
newly generated list of candidates becomes the next list of
unprocessed candidates. The algorithm converges when there
are no candidates left in the list, which were not refined. Then
it outputs the topmost optimal candidate.
More insights on the algorithm can be obtained by exam-

ining Figure 4. In that figure, we depict detailed results of
the refinement procedure for two specific domains, namely,
“pyramid” and “art”, from the flickr dataset. In both cases,
we focus on the identification of the first dimension, and we
depict for each iteration of the Algorithm 1 the size (number
of itemsets) of the currently best dimension (bottom graphs),
as well as the corresponding entropy value (top graphs).
We observe that for the “pyramid” domain the algorithm

quickly increases the size of the dimension by adding more
itemsets (seen as diagonal steps) and refining them (seen as
horizontal steps), resulting in a significant initial improvement
of the entropy of the dimension. Starting at iteration 6, the
number of itemsets remains stable, though, the algorithm adds
new items to them, leading to further improvements in entropy
(which can be observed by the decrease of value on the top-
most graph). In contrast, for the “art” domain the algorithm
starts with a dimension of good quality (low entropy), which
after a single refinement (from iteration 1 to 2) stays on the
top of the list of candidates till iteration 9 (the value of
entropy does not increase during this interval), while other
candidates are being refined. Then, starting from the iteration
10, another candidate refined to a better quality takes its
place and shows even better improvement in entropy. Finally,
iterations converge and the best dimension is being identified.
We note that the final dimensions identified for the “pyra-

mid” and “art” domains (after 17 and 15 iterations, respec-
tively) are also the optimal single dimension decompositions
for these domains.
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Fig. 4: Optimization stats of the 1st dimension for “pyramid”
and “art” (flickr).

V. EXPERIMENTAL EVALUATION
We evaluate our algorithm on two datasets3 containing tag-

annotated resources. The first dataset, extracted from flickr-
a popular photos sharing website, contains 28 million tagsets
(or transactions), obtained by taking annotations for all pic-
tures that contained a specific domain tag, for 34 different
domains. To remove noise, we allowed only unique tagsets
for each user id. The second dataset contains tagsets from
del.icio.us, a social bookmarking website. For this dataset,
we selected annotations for URLs starting with specific do-
main names picked from Yahoo!Directory. Overall, the
del.icio.us dataset contains 1.7 million tagsets over 150
domains. The number of unique tags in each of the datasets
was about half a million.
For both datasets we performed a limited amount of ad-

ditional cleaning by removing the domain term, numeric
and navigational tags, as well as removing some language
variability, based on a custom-built dictionary. No sophisti-
cated preprocessing was applied, so some of the discovered
dimensions in our experimental results still contain repetitions
due to synonyms and misuse of tags.

A. Performance
In the first set of experiments, we report the execution time

(Figure 5) and entropy of the best solution found (Figure 6), as
a function of the maximum number of candidates considered
by our algorithm. We vary the number of items between 8 −
20, over the 150 domains of the del.icio.us dataset. In the
graphs, we report the normalized values, averaged over all the
150 domains, as well as the standard deviation for these values
(for most of the points standard deviation is too small and not
visible). In order to make the results directly comparable to
each other, we first normalize each series using the minimum
(maximum) value of its regression line for the time (entropy)
3The url of the web page containing the code and the datasets is not

available due to the double-blind review process.

graph. Then, we compute the average normalized series, and
its deviation.
In Figure 5, we report the averaged normalized execution

times versus memory budget. We observe, that an increase
in number of items results to an increase in complexity.
Overall, the algorithm scales linearly with respect to the
memory budget. When the number of items becomes large,
the complexity is still determined by the memory budget
(remember, that at each iteration the number of refinements
is proportional to the size of the candidate set).
In Figure 6, we observe that for a small number of items, an

increase in memory brings a considerably larger improvement
in entropy, than for larger numbers of items. In the case
of 8 items, the series drops until the entropy reaches its
minimum for a maximum number of candidates of 32, which
corresponds to the optimal solution. For larger number of
items, the same effect is observed for a higher setting of the
maximum number of candidates.

B. Parameters, Monotonicity, Synthetic Experiments
In order to evaluate various properties of our approach in

a controlled environment, we constructed a synthetic dataset
by generating itemsets for a number of dimensions closely
resembling dimensions found in real datasets. These dimen-
sions contained two to five itemsets of sizes up to three
items, and we required exactly two dimensions to be present
in each dataset. Following the construction of dimensions,
we calculated the frequencies of singleton items by applying
Zipf’s law with a specified parameter z, f(ik) ∼ 1/kz.
This distribution was chosen because it is known to resemble
word frequencies in real-world datasets. Moreover, it allows
to produce frequencies that are close to the uniform (when z
is small), or the exponential (when z is large) distributions.
Evidently, the first case is more challenging for our problem.
In the subsequent step, we added a uniform noise of level

ν to these frequencies, and harmonized them for the items
belonging to each of the dimension’s itemsets (to account for
the observed rule that itemsets in dimensions usually have
equally frequent items; for example, both tags in {eiffel
tower} usually appear together).
Finally, the itemsets were generated by iteratively sampling

the distribution of items with respect to the specified dimen-
sions. In this process, we used Gibbs sampling first to select a
dimension (independently from other dimensions) and then to
select the itemset representing it (allowing for co-occurrence
with a level of 0.25ν). The rest of items, not covered by any
dimension, were distributed with respect to their frequencies.
In these experiments, we restricted the number of items to

n = 16, which is equivalent to our minimum-support filtering
on real datasets. Overall, we were generating 10 thousand
itemsets for each dataset to ensure a smooth distribution
according to our model.
We assessed the quality of the identified dimensions by

comparing them to the dimensions used while generating the
dataset. Our similarity measure was based on the Hamming
distance d between two dimensions (represented as binary
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Fig. 6: Entropy vs memory budget.

vectors) divided by the total number of items: sim(∆;∆ 0) =
1−d(∆;∆ 0)/n. This measure takes values in the range [0; 1],
with higher values indicating stronger similarity: a value of
1 means that the algorithm correctly identified the planted
dimensions. We note that this measure does not account for
the varying significance of items, which is not favoring our
approach, since including low-support items in the dimensions
represents a challenge, even without the additional noise.
The evaluation of quality against noise for different param-

eters z is shown in Figure 7. In gray lines we plot the 0.95
confidence intervals for average values.
We can see that regardless of the noise added, our method

is able to reconstruct almost perfectly the optimal dimensions
for a wide range of distributions. As expected, the similarity
between the identified and the optimal dimensions decreases
on average with growing noise, and is significantly lower for
smaller parameters z (more uniform items distribution).
In Figure 8 we evaluate the monotonicity of f(∆) over the

number of dimensions k, for different values of α parameter.
It is clearly visible that for small values of α optimality gets
higher (worse), while for large values every new dimension
improves optimality (albeit, not the quality of extracted di-
mensions). For our experiments we chose α = 0.5, since
it provides a good balance between orthogonality and inter-
estingness, and allows to rely on Theorem 2 (controlling the
decomposition) for a wide range of data distributions.
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C. Qualitative Results

We now report results on a qualitative evaluation of the pro-
posed approach. We ran our algorithms on a set of different do-
mains from flickr and del.icio.us datasets: “eiffel tower”,
“art”, “hollywood”, “pyramid”, and “spain” for flickr; “ny-
times.com”, “lifehacker.com”, “dpreview.com”, “apple.com”,
“microsoft.com”, and “ixbt.com” for del.icio.us. We use a
3% minimum support threshold on items for all domains. The
results of this experiment are summarized in Table II, where
for each domain we report the top dimensions identified by our
algorithm. We should note, that because of the fixed minimum
support threshold, for some of the domains all available items
are allocated to the first few dimensions, thus resulting in the
varying number of dimensions being identified. In every case,
we limit this number to the 3 top dimensions.
The dimensions reported by our algorithm are successfully

describing the different concepts under each domain. For
example, under the “eiffel tower” domain, we have as first
dimension the Eiffel Tower in Paris and Las Vegas4, as
second dimension holidays in Paris, and as third dimension
architecture, all of which are different concepts related to
“eiffel tower”. Similarly, the “dpreview.com” domain in the
del.icio.us dataset is described by the concepts of photographic
camera reviews, digital [photography], and shopping.

4The city of Las Vegas (NV, USA) hosts a replica of the Eiffel Tower.



δi collection of itemsets for δi (flickr)
domain “jaguar”

1 {automobile}, {zoo}
2 {etype}, {auto}

domain “eiffel tower”
1 {paris france europe tower}, {lasvegas}
2 {night seine}, {holiday travel}
3 {architecture}

domain “pyramid”
1 {egypt giza cairo sphinx}, {louvre paris museum glass},

{mexico maya ruins}, {sanfrancisco transamerica}
2 {france sky}, {travel teotihuacan}
3 {architecture night}, {chichenitza}

domain “hollywood”
1 {losangeles california sign}, {star film actor}
2 {us universalstudios}, {hollywoodboulevard night}
3 {theatre party sunset}, {canon street}

domain “art”
1 {painting drawing}, {graffiti streetart},

{sculpture museum}, {newyork}, {color},
{photo}, {street}

domain “spain”
1 {barcelona catalonia}, {madrid europe},

{andalusia granada}, {seville},
{valencia}, {holiday travel}

2 {architecture}

δi collection of itemsets for δi (del.icio.us)
domain “nytimes.com”

1 {news politics}, {food health}, {science},
{article}, {business}, {technology}

domain “dpreview.com”
1 {photo camera review}, {dslr}
2 {digital}
3 {shopping}

domain “lifehacker.com”
1 {howto lifehacks tips},{software windows tools freeware}
2 {firefox internet}, {linux utilities},

{email extensions}, {mp3 download},
{organization toread}, {photography}

domain “apple.com”
1 {mac osx software},{ipod itunes music},{video quicktime},

{movies trailers},{iphone},{podcast podcasting},{technology}
2 {macosx howto}

domain “microsoft.com”
1 {windows software tools}, {.net programming}
2 {security xp}
3 {utilities}

domain “ixbt.com”
1 {hardware software news computers russian},

{photo photography}
2 {article}
3 {reviews}

TABLE II: Top dimensions for different domains in flickr and del.icio.us.

The results of this experiment demonstrate that our approach
can effectively identify the diverse concepts related to some
domain, in an automatic fashion. Finally, we observe that our
algorithm provides meaningful results, even when operating
on noisy datasets, such as flickr and del.icio.us, which
contain a large number of non-useful tags.

VI. CONCLUSIONS AND FUTURE WORK

Motivated by applications on repositories of annotated re-
sources in the collaborative tagging domain, we introduce the
problem of diverse dimension decomposition in transactional
databases. In particular, we adopt an information-theoretic
perspective on the problem, relying on entropy for defining
a single objective function that simultaneously captures con-
straints on coverage, exclusivity and orthogonality.
We present an approximate greedy method for extracting

diverse dimensions, that exploits the FP-tree representation of
the input transactional dataset and clever pruning techniques.
Our experiments on datasets of tagged resources from flickr
and del.icio.us confirm effectiveness and efficiency of our
proposal. The assessment on synthetic and artificially noisy
data confirms that our method is able to reconstruct the “true”
dimensions, and it withstands noise.
In our future investigations, we plan to study and com-

pare both empirically and theoretically, different probability
measures, which not only control “the look” of identified
dimensions, but can even lead to their different semantics. This
becomes especially relevant in the context of our optimization
problem, where a probability space may well determine the
overall shape of the optimization objective and its conver-
gence. We also plan to have a user study for evaluating the
discovered dimensions in different domains. A possibility is
also that of developing a vertical application exploiting our
method for mining diverse dimensions in order to detect, in
unsupervised and automatic fashion, collection of web sites
with diverse content from del.icio.us.
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