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Abstract We introduce linguistic rough set (LRS) by

integrating linguistic quantifiers in the rough set frame-

work. The proposed LRS is inspired by the ways in which

humans process imprecise information. It operates directly

with the linguistic summaries and caters to imprecision

implicit in the real world with partial knowledge. The

measures of LRS are developed and its properties are

investigated in detail. An approach is proposed for

approximation of fuzzy concepts with the proposed LRS.

This approach is applied in a real world case-study on the

credit scoring analysis problem.

Keywords Linguistic rough set � Linguistic quantifier �
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List of symbols

U Universe of objects

xi Object or alternative

C Set of attributes/criteria

f Function

V Domain of values

IS Information system

IND Indiscernibility relation

U=B Partition of U with respect to attribute set B

xi½ � Equivalence class generated with IND

B Dð Þ Lower approximation of set D with respect to

attribute set B

B Dð Þ Upper approximation of D with respect to

attribute set B

eR xi; xj

� �

Fuzzy similarity relation between xi and xj

lCj
xið Þ Fuzzy membership of xi in Cj

l ~R Yð Þ Cj

� �

Lower approximation of membership of fuzzy

concept Cj in fuzzy concept Y

l ~R Yð Þ Cj

� �

Upper approximation of membership of Cj in

Y

F Uð Þ Power set of all fuzzy subsets defined on U

suppV Support of a fuzzy set V

cardV Cardinality of a fuzzy set V

S Linguistic label set

D W ;Vð Þ Degree of inclusion of fuzzy concept V in W

k Degree of certainty of approximations

Ck Yð Þ Lower approximation of Y in terms of a set C

of fuzzy concepts

Ck Yð Þ Upper approximation of Y in terms of set C of

fuzzy concepts

TC Yð Þ Quality of approximation of fuzzy concept Y

j Crispness coefficient

ak Yð Þ Accuracy of approximation of Y with degree

of certainty k

1 Introduction

Imprecision, incompleteness and vagueness are inherently

associated with the real world. Notwithstanding, we con-

clude and take decisions on the basis of all the information

at our disposal and our beliefs and perceptions. This further

highlights the need to effectively process the uncertain,
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vague and imprecise information. Fuzzy set and rough set

[15, 41] theories have been proposed to deal with the

imprecision in the information. While, the fuzzy set

describes vagueness in terms of membership function

(MF), the rough set theory helps to approximate an

imprecise concept in terms of crisp available knowledge as

lower and upper approximations. The conventional rough

set may only be used when we have a crisp information

system, and often, it is very difficult to represent the real

world imprecision in terms of crisp numbers. Various

hybridizations of these two theories of uncertainty have

appeared like fuzzy rough sets [16, 18, 32] and rough fuzzy

sets [16, 32]. More recently, the conventional rough set

theory is extended to the fuzzy environment in [33, 34] in

an attempt to improve its performance. Nevertheless, the

fact remains that fuzzy set and rough set theories and their

hybridizations still operate on numbers (MF).

The perception, subjectivity, attitudes, priorities and

incomplete knowledge (of agent) add to the interpreta-

tion issues with MF in FRS [29, 30]. While the objective

of FRS is to represent imprecision, in many situations it

also amounts to quantification of imprecision in terms of

membership degrees leading to distortion of original

imprecision. In our view the imprecision may be well

represented by the same semantics as it is thought or

perceived by a human brain. We often resort to granulate

the objects, events or situations on basis of one or the

other characteristics depending upon the criterion in

focus in order to simplify the process of absorbing or

analyzing the objects or situations; for example, all small

cars, costly cars, efficient cars. Similarly we categorize

decision making situations as high risk, high gain; low

risk, low gain; high input cost, high risk and high

profitability propositions. Granular computing [12, 35] is

developed based on granulation of knowledge for com-

plex problem solving. Rough set is extended to multi

granulation rough set in [36], in which a target concept

is approximated by multiple granulations. It is further

studied in [37, 38].

The ‘‘computing with words’’ (CW) methodology has

been proposed in [31], in which the objects of computation

are words and propositions drawn from a natural language,

e.g., small, large, heavy, likely, etc. In a similar vein, the

notion of linguistic (fuzzy) quantifier [11, 14] is proposed

to indicate imprecision through words, without resorting to

numeric membership grades. For example: ‘‘most kind men

live long’’. The linguistic quantifier in this representation is

‘‘most’’. Similarly, other quantifiers in the same class could

be many, very, several, high, low etc. The natural repre-

sentations of an imprecise situation are often characterized

with such linguistic quantifiers that concern the represen-

tation of collections with unclear boundaries by means of a

variable whose values are fuzzy sets. A linguistic quantifier

can also be regarded as a form of information summari-

zation or granulation.

The granulation of information is inspired by human

thought process. The human brain has a remarkable capa-

bility to think, assess, summarize, and memorize an

imprecise situation in terms of these linguistic quantifiers.

Often, such imprecise assessments of key attributes form

the foundation of decisions. For example, in a selection

interview, the experts vaguely assess a candidate against

multiple attributes and then place each attribute of the

candidate in a broad bracket (a linguistic quantifier). The

final decision of selection is a vague aggregation of these

quantifiers, assigned to a candidate against various attri-

butes. In the similar vein, the rough set theory is also based

on granulation of information, in which an incompletely

known concept is approximated in terms of information

granules. This process is very much similar to human’s

mind way of simplification of knowledge.

Both rough set and CW theories are concerned with

granulation of information. Despite these commonalities,

the research in these two fields is still disconnected. To

some extent, this can be explained by differences in the

concrete problem settings considered. Given important

commonalities but also differences in terms of methodolo-

gies, one can argue that CW can complement the rough set

theory and their cross-fertilization could result in interesting

uncertainty representation structures. CW is a knowledge

representation tool to deal with vagueness implicit in human

natural language representations. The rough set theory, on

the other hand, is concerned with granulation of available

information. What may be specifically interesting about the

combination of CW with the rough set theory are the

extended approximation capabilities of the combined

framework to directly operate with natural representations

without any measurements and any computations.

This paper is a concrete realization of exactly this idea

that is inspired by the remarkable human cognition and

decision process that is able to perform a wide variety of

physical and mental tasks without exact measurements, but

on the basis of vague assessments and granulation of

information. Here, we integrate linguistic quantifiers in the

rough set framework to develop linguistic rough set (LRS).

LRS approximates an imprecise concept, directly in terms

of linguistic quantifiers. The linguistic quantifiers in LRS

are akin to imprecise granules of information.

Linguistic rough set, like the conventional rough set, can

be also used to discover hidden knowledge in the form of

logical decision rules using the available information in

terms of the information granules. The proposed LRS is

designed to yield robust and generalized approximations

that reasonably hold true for a larger population. This

potentially makes LRS a prospective choice for application

in decision making under uncertainty.

Int. J. Mach. Learn. & Cyber.

123



The key contributions of the paper can be summarized

as follows:

• Combining CW with the rough set theory to retain the

underlying imprecision in the approximations.

• Introduction of linguistic approximation space.

• Investigation of properties of linguistic approximation

space.

• Introduction of linguistic rough set.

• Application of linguistic rough set in a decision making

application.

The rest of the paper is organized as follows. Section 2

discusses an overview of the related topics. In Sect. 3, we

give the motivations for developing linguistic rough

set (LRS). Here, we also present the concept of linguistic

approximation space. In Sect. 4, we develop linguistic

rough set and investigate its measures and properties. Sec-

tion 5 is concerned with an approach to apply LRS in multi

criteria decision making, involving linguistic assessments

by experts. The proposed approach is also applied in a real

world case-study in the area of oil mining investment.

Finally, Sect. 6 gives the conclusions of the study.

2 Preliminaries

The fuzzy set and rough set theories are extensions of

classical set theory to deal with vagueness, and imprecision

and insufficient knowledge respectively. Though the two

theories are different and complimentary to each other,

they are yet related in the sense that both the theories

address the problem of information granulation. The fuzzy

sets are centered upon fuzzy information granulation,

whereas the rough set theory is focused on crisp informa-

tion granulation [17]. A review of the basic concepts of the

rough set and fuzzy rough set theories is given here to build

the background for the linguistic rough set.

2.1 Rough sets

The rough set method classifies objects of discourse into

equivalence classes containing indistinguishable objects

with respect to some attributes. The equivalence classes or

the knowledge granules form the basic elements to

approximate the object sets. The attribute set can be con-

sidered as knowledge that helps partition the universe into

the basic concepts. Indiscernibility is central to rough set

and the methodology to achieve this is quite close to human

brain’s thought process. Once the indiscernibility in con-

dition concepts (available information) is determined, the

resulting equivalence classes are used to approximate the

decision concepts (concepts to be approximated). The

rough set is studied from the perspective of dependency

space and closure system in [40]. The basic concepts of the

rough set theory are now discussed.

An approximation space [15] can be defined as a system

ðU;CÞ; where U ¼ x1; x2; . . .; xmf g and C is the set of

attributes (features, criteria). The family of attributes is also

known as knowledge in the universe. Each attribute c 2 C

defines an information function fc : U ! Vc, where Vc is

the set of values that attribute c may take, and is called the

domain of attribute c. The value that attribute c takes for xi

is denoted as fc(xi). An approximation space is also termed

as information system (IS).

IS ¼ U;Cð Þ: ð1Þ

The approximation space forms the framework in which

an imprecise concept is approximated in terms of equiva-

lence classes. For every set of attributes B � C, an indis-

cernibility relation INDðBÞ [15] is an equivalence relation

such that two objects, xi and xj; are indiscernible by the set

of attributes B, if fbðxiÞ ¼ fbðxjÞ for every b � B.

IND Bð Þ ¼ xi; xj

� �

2 U � Uj8b 2 B; fb xið Þ ¼ fb xj

� �� �

: ð2Þ

INDðBÞ generates a partition of U which is denoted as

U=INDðBÞ or simply U=B.

U=B ¼ � U=IND bf gð Þj8b 2 Bf g ¼ xi½ �B: xi 2 U
� �

ð3Þ

where, xi½ �B denotes the equivalence class of INDðBÞ and is

called elementary set in B because it represents the smallest

discernible groups of objects. The approximation of objects

using the rough set theory is always in terms of these

equivalence classes. � operation is specified as

C � B ¼ X \Y jX 2 C; Y 2 B;X \ Y 6¼ ;f g:
A rough set approximation [15] of an arbitrary non-

empty subset D of U is characterized by two unions of

elementary sets hBðDÞ;BðDÞi referred to as B-lower and B-

upper approximations of D over IS (U, B), which are given as

B Dð Þ ¼ xi 2 Uj xi½ �B� D
� �

B Dð Þ ¼ xi 2 Uj xi½ �B\D 6¼ 0
� �

8

<

:

ð4Þ

where, B Dð Þ and B Dð Þ respectively denote the lower and

upper approximations of an imprecise concept Y.

2.2 Fuzzy rough sets

In fuzzy rough set (FRS), an equivalence relation is

replaced by a fuzzy similarity relation as a key criterion to

granulate the knowledge. Hence, the fuzzy equivalence

classes are central to FRS in the same way as crisp

equivalence classes are central to rough set [11]. A fuzzy

binary relation eR on U is called a fuzzy similarity relation

if the properties of reflexivity eR x; xð Þ ¼ 1
� �

, symmetry

eR x; yð Þ ¼ eR y; xð Þ
� �

; and T-transitivity
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eR x; zð Þ� eR x; yð Þ ^T
eR y; zð Þ

� �

hold good. The fuzzy simi-

larity relation leads to a generation of the family of normal

fuzzy sets produced by the fuzzy partitioning of the uni-

verse of discourse. These fuzzy sets can be viewed as fuzzy

equivalence classes, ½x�
eR

, and play the same role as the

equivalence classes play in the case of rough set.

Similar to an approximation space in the rough set

theory, we could conceive fuzzy approximation space [17]

over U, corresponding to a similarity relation eR as pair (U,

eR). A fuzzy equivalence relation eR replaces a crisp

equivalence relation in a fuzzy approximation space. In

contrast to rough set, where the approximations are in the

terms of crisp equivalence classes, the soft fuzzy granules

arising from fuzzy equivalence relation are used to

approximate a fuzzy concept in FRS. Formally, the concept

of FRS can be defined as follows.

Let eR be a fuzzy binary relation on U; Cj be a fuzzy

equivalence class, and Y be the concept to be approxi-

mated. A fuzzy rough set is a pair of fuzzy sets on U such

that for every x 2 U [16]

l ~RY Cj

� �

¼ inf
i

max 1	 lCj
xið Þ; lY xið Þ

n o

; 8j ð5Þ

l ~RY
Cj

� �

¼ sup
i

min lCj
xið Þ; lY xið Þ

n o

; 8j ð6Þ

where, lCj
xið Þ denotes the membership of xi in Cj, lY xið Þ

denotes the membership of xi in Y, l ~RY Cj

� �

denotes the

degree of certain membership of Cj in Y, l ~RY
Cj

� �

denotes

the degree of possible membership of Cj in Y, and

l ~RY Cj

� �

; l ~RY
Cj

� �

� �

is a fuzzy rough set defined with

fuzzy equivalence relation ~R.

The definition of fuzzy rough set was modified lately in

[18] so that the same degenerates to conventional rough set

when all equivalence classes are crisp.

l ~RY Cj

� �

¼ sup
F2 U=B

min lCj
xið Þ; inf

xi2 U
max 1	 lCj

xið Þ; lY xið Þ
n o

� �

ð7Þ

l ~RY
Cj

� �

¼ sup
F2U=B

min lCj
xið Þ; sup

xi2U

min lCj
xið Þ; lY xið Þ

n o

� �

:

ð8Þ

If F Uð Þ denotes the set of all fuzzy subsets from U.

Then for V;W 2 F Uð Þ the following relations are true:

lV [W xið Þ ¼ max lV xið Þ; lW xið Þf g ð9Þ
lV \W xið Þ ¼ min lV xið Þ; lW xið Þf g ð10Þ
V � W iff lV xið Þ
 lW xið Þ; 8xi 2 U ð11Þ
supp V ¼ xi 2 U; lV xið Þ[ 0f g ð12Þ

card V ¼
X

i

lV xið Þ ð13Þ

Consider the fuzzy partitioning of a universe of dis-

course U by the attributes in B, defined as U/B. The posi-

tive region in classical rough set is defined as the union of

lower approximations [18]. Applying the extension prin-

ciple, the membership of an object xi 2 U belonging to the

fuzzy positive region can be defined as

lPOS ~RY
xið Þ ¼ sup

xi2U=B

l ~RYðxiÞ: ð14Þ

The fuzzy rough dependency function may be defined as

[18] using definition of fuzzy positive region as follows:

c ~RY ¼
lPOS ~RY

xið Þ
�

�

�

�

�

�

Uj j ¼
P

xi2U lPOS ~RY
xið Þ

Uj j ð15Þ

It can be observed that FRS and the related concepts are

based on the membership function. In the following sec-

tions, we develop the linguistic rough set.

3 Linguistic approximation space

Here, we give the motivations for the linguistic rough set,

followed by the formulation of linguistic approximation

space.

3.1 Motivation

In many decision making situations, often it is difficult for

DMs to assess an alternative quantitatively in terms of a

crisp number or even assign a fuzzy membership value. At

best, the facts are represented by natural language [1–14].

For example: I wish to buy a car which should be low cost,

high mileage and medium green in color. In order to pro-

cess such information, the conventional fuzzy theory

advocates constructing fuzzy sets to represent each of the

quantifiers like ‘‘low’’, ‘‘very high’’, and ‘‘medium green’’,

and then determine the membership degree in terms of a

fuzzy number to indicate the quality of the information.

However, in many decision making situations, a decision

maker (DM) has only partial knowledge about this mem-

bership degree. In other words, she is having a broad range

in mind for a quantifier, say ‘‘medium green’’. Casting this

imprecision through MF sometimes distort the original

intended imprecision expressed in the statements.

The linguistic quantifiers such as ‘‘medium green’’ also

play the role of fuzzy constraints. From this perspective,

the linguistic quantifiers may be regarded as a form of

fuzzy information granules that aid in representation of

imprecision through information summarization. The close

relationship between linguistic quantifiers and fuzzy
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information granulation is discussed in [12]. The infor-

mation granulation provides the strong fulcrum on which

the concept of linguistic quantifier rests. At the same time,

information granulation forms an integral part of human

cognition, thought process, information processing and

decision making. The fuzziness of granules is characteristic

of ways in which humans granulate and manipulate infor-

mation [1, 12]. Granulation is also universally observed in

nature and the real world around us. Any matter can be

viewed to be comprising of fine granules of similar type,

composition of which forms the matter in question. Zadeh

in [12] identified granulation, along with organization and

causation, as one of primary concepts underlying human

cognition. Therefore information granulation has to be the

core of any intelligent system or methodology for repre-

sentation of the real world imprecision.

Information granulation caters to partial knowledge,

partial understanding, partial belief and partial certainty in

the real world. We often classify the objects together that

look broadly similar to us for information simplification.

For example, all domestic cats, lions and tigers belong to

Cat or Felidae family because of the common traits like

muscular body, twisted front legs bones, soft pads in paws

etc. In view of the available knowledge of traits they

appear indiscernible and hence are classified under one

family. With access to more information, they can be fur-

ther classified into subfamilies: Pantherinae (that includes

tigers and lions) and Felinae (that includes domestic cats).

Further at a macroscopic level they all fall into order

Carnivore and class Mammalia. Each class or these cate-

gories can be viewed as a granule of similar or indiscern-

ible objects in view of the available information. A

linguistic quantifier with underlying fuzzy granulation

offers a good potential in modelling of such natural rep-

resentations [23, 24].

The rough set framework has been widely accepted as

an approximation tool with incomplete knowledge. In the

rough set theory, any set of all indiscernible objects is

called an elementary set or an information granule. A

collection of such information granules may also be

referred to as elementary knowledge. In the conventional

rough set and its existing generalizations, this elementary

knowledge is either in the form of crisp values or MF

values. Combining linguistic quantifiers with the rough set

theory replaces the numerical (or MF) based elementary

knowledge with words that are the labels of knowledge

granules. The resulting elementary knowledge that forms

the grammar for approximation of imprecise concepts is

termed as linguistic approximation space (LAS). The

common principle of granulation shared by fuzzy quanti-

fiers and rough set framework facilitate the generation of

LAS.

3.2 Linguistic approximation space

There lies a clear symmetry between the rough set and

linguistic quantifier frameworks in the sense that both are

characterized by indiscernible objects or granules of

knowledge about the universe. This symmetry aids the

integration of these two uncertainty representation for-

malisms. The proposed linguistic approximation space

(LAS) is characterized with the linguistic hedges such as

very low, low, high etc., which are synonymous with an

information granule. The objects that are similar, or are in

close proximity to each other, are assigned the same lin-

guistic quantifier and are classified under the same granule.

LAS operates directly upon these linguistic quantifiers,

which greatly simplifies the task of dealing with large and

complex real valued data sets in real life applications by

achieving data compression and summarization of data. All

approximations are in terms of these linguistic quantifiers

in a process analogous to the granulate-and-simplify

strategy, commonly used by the human brain.

LAS is characterized with a finite and totally ordered

discrete linguistic label set S ¼
siji ¼ 	z; . . .;	1; 0; 1; . . .; zf g; where z is a positive inte-

ger, si represents a linguistic label [25], and satisfies si [ sj

if i [ j: An example of a discrete linguistic label set is

shown as follows:

S1 ¼ fs	4 ¼ extremely poor; s	3 ¼ very poor;

s	2 ¼ poor; s	1 ¼ slightly poor; s0 ¼ medium;

s0 ¼ slightly good; s2 ¼ good;

s3 ¼ very good; s4 ¼ extremely goodg:

The linguistic set S1 can be used to express the assess-

ments of alternatives. This method is especially useful to

express human perceptions or judgments with partial

knowledge. The use of numbers in such cases brings in

unwanted precision that distorts the original imprecise

assessment. This concern remains unaddressed with the

fuzzy set theory as the representation of uncertainty

through membership grades lead to the loss of original

vagueness inherent in the linguistic representations. The

direct use of linguistic quantifiers suitably addresses this

concern.

The linguistic quantifiers in S also caters to partial

knowledge and understanding of an observer, or underlying

vagueness in the real world. So when two alternatives

P and Q are assessed by an expert as good and poor

respectively against a criterion, the expert has a wide range

in his mind for ‘‘good’’ and ‘‘poor’’. The alternatives P and

Q fit well within this range and hence they are respectively

assigned these linguistic labels. Here, we again emphasize

that ‘‘good’’ and ‘‘poor’’ are the easily interpretable terms
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chosen from the natural language, and they label a set

(granule) of objects, falling under a category depending

upon their similarity. The use of such linguistic quantifiers

let an expert to distinguish between two alternatives

without undesired precision creeping in distorting the ori-

ginal intent. The linguistic quantifiers are imprecise in their

basic character, yet precise enough to compare and eval-

uate different alternatives.

Therefore a delicate balance needs to be maintained in

choosing the cardinality of set S. If the quantifiers are too

fine-tuned, it would lead to the loss of the original under-

lying imprecision. Similarly, broadly spaced linguistic

quantifiers would bring in too much generalization at the

cost of accuracy of approximation. For example, consider a

set of linguistic labels S2 as shown

S2 ¼ s	1 ¼ poor; s0 ¼ medium; s1 ¼ goodf g:

An expert using such a system to evaluate alternatives

would be seriously incapacitated due to lack of choices he

is having at his disposal to grade the alternatives.

In comparison, let us consider another set S3 as shown

S3 ¼ fs	8 ¼ pathetic; s	7 ¼ deplorable;

s	6 ¼ miserable; s	5 ¼ feeble; s	4 ¼ extremely poor;

s	3 ¼ very poor; s	2 ¼ poor; s	1 ¼ slightly poor;

s0 ¼ medium; s1 ¼ slightly good; s2 ¼ good;

s3 ¼ very good; s4 ¼ extremely good,s5 ¼ excellent;

s6 ¼ outstanding,s7 ¼ exquisite; s8 ¼ elegantg:

Such a set is fine-tuned with more number of linguistic

quantifiers. In summary, the choice of linguistic quantifiers

should be directly in line with the context of the problem. If

the number of alternatives to be compared is very large and

expert is confidently able to give his assessments over the

finely grained linguistic quantifiers, S3 might be an ideal

choice. On the other hand, if only a few alternatives are to

be compared or there are wide differences in the perfor-

mance of alternatives, S1 or S2 should be fine. The formal

definitions related to LAS now follow.

Definition 3.1 A linguistic approximation space can be

defined as a system U;C;Lð Þ; where U ¼ x1; x2; . . .; xmf g
and C is the set of attributes (features, variables). The family

of attributes is also known as knowledge in the universe. Each

attribute c 2 C defines an information function fc : U ! L
where L is the set of linguistic labels for the approximation

space. A granular approximation space may also be termed as

granular information system (GIS).

GIS ¼ U;C;Lð Þ ð16Þ

Example 3.1 An oil mining expert performs the assess-

ment of five oil-fields x1; x2; . . .; x5f g for mining oil in

terms of three criteria: geological structure CGð Þ; quality of

oil Cq

� �

; and legal position Clð Þ: The results of the

assessment are given as follows.

In Table 1, five alternatives ðU ¼ x1; x2; . . .; x5f gÞ are

described by three attributes or criteria

C ¼ CG;Cq;Cl

� �� �

: Each alternative is assigned a lin-

guistic quantifier from the set S1 (Here, L ¼ S1) as its

assessment against a criterion. Each of these linguistic

quantifiers is analogous with a knowledge granule.

Example 3.2 Consider the information system of Table 1.

Determine the indiscernible alternatives in terms of lin-

guistic quantifiers.

In this example, x1 and x3 form one equivalence class

over the attribute CG as both the alternatives have the same

linguistic value, slightly poor s	1ð Þ against the criterion of

geological structure CGð Þ. Similarly, the alternatives x1 and

x4 are indiscernible over LAS U;C;Lð Þ; with C ¼ Cq;Cl

� �

and L ¼ S1:

4 Linguistic rough sets

This section is devoted to the concept of linguistic rough

set. We first discuss the concept of inclusion degree that is

central to linguistic rough set, followed by a presentation of

the linguistic rough set.

4.1 Inclusion degree

The concept of inclusion/covering degree is introduced into

rough set theory in [26, 27]. Recently, some properties of

covering-based rough set are investigated in [39]. Since the

basic motivation behind LRS is to retain the underlying

imprecision, robustness has to be at the heart of the

approximations obtained through LRS, so that they could

withstand the inaccuracies in uncertainty assessments.

With this goal in sight, we have used the concept of

inclusion degree as the basis for LRS, which is in stark

contrast to the fuzzy equivalence relation used in FRS.

Before we delve upon the concept of linguistic rough set,

we adapt the concept of inclusion degree based on the

partially ordered relation in the context of LAS.

Table 1 Simple granular infor-

mation system
Criteria CG Cq Cl

Alternatives

x1 s	1 s4 s	3

x2 s0 s1 s3

x3 s	1 s	4 s	1

x4 s2 s4 s	3

x5 s1 s2 s	2
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A partially ordered set L;4ð Þ is a binary relation 4 with

the following properties of reflexivity, antisymmetry and

transitivity [26]:

1: x4x

2: x4y and y4x ¼) x ¼ y and;

3: x4y and y4z ¼) x4z: ð17Þ

Let L;4ð Þ be a partially ordered set. For any

V;Wð Þ 2 L, the inclusion degree, D on L is defined as a

real number D V;Wð Þ with the following properties:

1: 0
D V ;Wð Þ
 1;

2: V4W ¼) D W ;Vð Þ ¼ 1;

3: V4W4Z ¼) D W ;Vð Þ
D Z;Vð Þ: ð18Þ

We now give the definition of inclusion degree in the

context of linguistic approximation space.

Definition 4.1 Consider a LAS ðU;C;LÞ over the non-

empty and finite set of objects U. We recall that U ¼
x1; x2; . . .::; xmf g: Let C ¼ C1;C2; . . .. . .;Cnf g be a family

of concepts from the power set of U, denoted as F Uð Þ;
which forms a partition of U; D W ;Vð Þ be the degree of

inclusion of concept V in concept W ; V xið Þ and W xið Þ be

the corresponding linguistic quantifiers for an object xi 2
U; and I W ;Vð Þ ¼ V xið Þ
W xið Þf g; 8xi 2 U: Then the

degree of inclusion D W ;Vð Þ for W ;V 2 F Uð Þ for LAS

ðU;C;LÞ is defined as

D W ;Vð Þ ¼ I W ;Vð Þj j
Vj j ð19Þ

where, :j j denotes the cardinality of a set or the count of

elements. Note: If V ¼ / then D W ;Vð Þ ¼ 1:

The inclusion degree D W ;Vð Þ gives the relative count

of objects for which V xið Þ
W xið Þ: If this condition is

true for all objects xi 2 U; then concept V is fully

included in W . Since, D depends on linguistic quantifi-

ers, it is not sensitive to membership degrees. In com-

parison, FRS is based on membership grades that are

assumed to be sacrosanct. Any inaccuracy in member-

ship grade directly affects the approximation arrived at

through FRS. These kinds of errors are drastically min-

imized in the proposed approach due to the following

facts

• The linguistic quantifiers are synonymous with wide

knowledge granules, which obviate the need to assign

numerical membership grades. As a result, the approx-

imations obtained are generalized and broad-based.

• Since the inclusion degree is the relative count of

objects, it is not much affected with a noisy sample. For

instance, with the presence of a noisy sample, the

inclusion degree is not affected as far as the condition

V xið Þ
W xið Þ remains true. Even in the case of this

condition getting violated (falsely) due to erroneous

V xið Þ or W xið Þ; the impact is only 1=Vj j on D W ;Vð Þ:

Another advantage that is imparted to LRS with inclu-

sion degree as its basis is the generalization in the

approximations. In FRS, the approximations are rigidly

true only with respect to the given LAS, and not for the

larger population (due to deviations from the given LAS).

In contrast, the controllable inclusion degree parameter in

LRS helps to control the trade-off between generalization

and accuracy of the approximations. A balance could be

maintained between the two by choosing D 2 0; 1½ � as per

the context and desirability. Full covering or complete

inclusion of concept V by W is achieved when D W ;Vð Þ ¼
1; which guarantee maximum accuracy (of approximations

holding good with respect to the given LAS) but nil

generalization.

We now give yet another measure of accuracy (or

generalization) of the approximation obtained through

LRS. We term this measure as degree of certainty of

approximations, and it is based on the concept of inclusion

degree.

Definition 4.2 We consider the family of concepts C ¼
C1;C2; . . .. . .;Cnf g from P Uð Þ and Y 2 P Uð Þ. The lower

and upper bounds for the degree of certainty of approxi-

mations are denoted by kL and kU ; and are given as

kL ¼ D Y ; \
Cj2C

Cj

� �

kU ¼ D [
Cj2C

Cj; Y

� �

ð20Þ

The net degree of certainty k is given as

k ¼ min kL; kUf g ð21Þ

where, \
Cj2C

Cj ¼ min
j

Cj xið Þ
� �m

i¼1
and [

Cj2C
Cj ¼ max

j
Cj xið Þ
� �m

i¼1
: kL indicates the level of certainty that

\Cj xið Þ
 Y xið Þ for 8xi 2 U and kU indicates the level of

certainty that Y xið Þ
 [Cj xið Þ for 8xi 2 U: Also,

kL; kU ; k 2 0; 1½ �: If kL ¼ kU ¼ 1; it can be concluded that

\Cj xið Þ
 Y xið Þ
 [Cj xið Þ; 8xi: If the approximations of Y

are obtained with degree of certainty k; then we say Y is k-

approximable.

The degree of certainty k 2 0; 1½ � indicates the level of

generalization or accuracy in the approximation. The

nearer it is to 1, more accurate is the approximation

obtained with respect to the given LAS, however lesser is

its generalization for a larger population with deviations

from the values in the given LAS. The choice of kL and kU

Int. J. Mach. Learn. & Cyber.

123



provides decision makers a convenient lever to control the

trade-off between the generalization and accuracy levels.

4.2 Linguistic rough sets

We now present the concept of linguistic rough set to

approximate a decision concept Y in terms of linguistic

quantifiers assigned to various objects against condition

concepts set C.

Definition 4.3 Let Y 2 PðUÞ be a k-approximable set in

LAS U;C;Lh i; P(Y) denote the set K � C;f
D Y;\Cj2 KCj

� �

� kg; and Q(Y) denote the set

L � C;D [Cj2 LCj; Y
� �

� k
� �

: Let K� 2 PðYÞ and L� 2
QðYÞ be such that

card [
Cj2 L�

Cj 	 \
Cj2 K�

Cj

� �

¼ min
K2P Yð Þ;L2Q Yð Þ

card [
Cj2 L

Cj 	 \
Cj2 K

Cj

� �

:

ð22Þ

Then the lower and upper approximations of Y in LAS

U;C;Lh i are given by

Ck Yð Þ ¼ \
Cj2K�

Cj

Ck Yð Þ ¼ [
Cj2L�

Cj: ð23Þ

The pair Ck Yð Þ;Ck Yð Þ
� �

is called linguistic rough set. It

is possible to obtain more than one pair of approximation

of Y with the proposed linguistic rough set in case there are

multiple pairs of sets K� and L� such that K� 2 PðYÞ and

L� 2 QðYÞ: It can also be observed that the identification of

the attribute sets K and L ensures a balance between quality

of approximation and generalization. The condition in (22)

is meant to ensure crispness in approximations. We now

give separate measures for quality and crispness in

approximations.

Definition 4.4 The quality of approximation for linguistic

rough set is indicated by tolerance coefficient and is given

by

TC Yð Þ ¼
Ck Yð Þ 	 Ck Yð Þ
�

�

�

�

�

�

�

�

Uj j : ð24Þ

Definition 4.5 The crispness coefficient for the approxi-

mations obtained with LRS is obtained by taking the dif-

ference between 1 and the ratio of sum of differences of

lower and upper approximations of various objects and the

count of objects in U. That is

j ¼ 1	
P

i [Cj2L�Cj xið Þ 	 \Cj2K�Cj xið Þ
� �

Uj j : ð25Þ

Definition 4.6 The accuracy of approximation is mea-

sured by the coefficient

ak Yð Þ ¼
Ck Yð Þ
�

�

�

�

�

�

�

�

Ck Yð Þ
�

�

�

�

: ð26Þ

We now discuss some of the properties of concepts that

hold true in a linguistic approximation space.

Theorem 4.1 The following properties stand true for any

two concepts V ;W 2 P Uð Þ in LAS U;C;Lh i:
The upper approximation of a set of condition attributes

is the set itself. That is

Ck Cð Þ ¼ C:

The upper approximation of an empty set is the empty set.

That is

Ck /ð Þ ¼ /:

The properties related to lower and upper approximations

of union or intersection of two concepts are given as follows.

Ck V \Wð Þ ¼ Ck Vð Þ \Ck Wð Þ

Ck V [Wð Þ ¼ Ck Vð Þ [Ck Wð Þ
Ck Vð Þ [Ck Wð Þ � Ck V [Wð Þ

Ck V \Wð Þ � Ck Vð Þ \Ck Wð Þ:

The following properties show that if V is a subset of W,

then the lower and upper approximations of V are bound to

be subsets of that of W.

V � W ¼) Ck Vð Þ � Ck Wð Þ

V � W ¼) Ck Vð Þ � Ck Wð Þ:

Proof The proof follows directly from (23).

The above properties lead us to the following properties

that are about intersection and union of a concept with itself.

Theorem 4.2 Given a LAS U;C;Lh i and concepts

V ;W 2 P Uð Þ; we have

1. Ck Vð Þ ¼ Ck Wð Þ () Ck Vð Þ ¼ Ck V [Wð Þ ¼ Ck Wð Þ;
2. Ck Vð Þ ¼ Ck Wð Þ () Ck Vð Þ ¼ Ck V \Wð Þ ¼ Ck Wð Þ

3. Ck Vð Þ ¼ Ck Wð Þ and Ck Vð Þ ¼ Ck Wð Þ ¼) V ¼ W

Proof

1. We are given that Ck Vð Þ ¼ Ck Wð Þ:Also, from Theorem

3.1, we have Ck V [Wð Þ ¼ Ck Vð Þ [Ck Wð Þ; so we have

Ck V [Wð Þ ¼ Ck Vð Þ ¼ Ck Wð Þ: Therefore, Ck Vð Þ ¼
Ck Wð Þ () Ck Vð Þ ¼ Ck V [Wð Þ ¼ Ck Wð Þ:
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Conversely, if Ck Vð Þ ¼ Ck V [Wð Þ ¼ Ck Wð Þ then by

transitivity we have Ck Vð Þ ¼ Ck Wð Þ:

2. Similarly, if Ck Vð Þ ¼ Ck Wð Þ; then Ck Vð Þ ¼

Ck V \Wð Þ ¼ Ck Wð Þ: The converse is also true by

transitivity.

3. The proof straightforwardly follows from (23).

The above properties show that the approximations in

LRS follow the general properties of sets. This adds to the

usefulness of LRS. On the similar lines, we now prove a

few more properties of LRS.

Theorem 4.3 Let us consider concepts V ;W ;V1;W1 2
P Uð Þ in LAS U;C;Lh i; then we have

1. If Ck Vð Þ ¼Ck V1ð Þ;Ck Wð Þ ¼Ck W1ð Þ ¼) Ck V [Wð Þ
¼Ck V1[W1ð Þ;

2. If Ck Vð Þ¼Ck V1ð Þ; Ck Wð Þ¼Ck W1ð Þ ¼) Ck V\Wð Þ

¼Ck V1\W1ð Þ

Proof

1. We are given Ck Vð Þ ¼ Ck V1ð Þ and Ck Wð Þ ¼ Ck W1ð Þ:
From Theorem 3.1, we know that Ck V [Wð Þ ¼
Ck Vð Þ [Ck Wð Þ: Therefore, Ck V [Wð Þ ¼ Ck V1ð Þ
[Ck W1ð Þ ¼ Ck V1 [W1ð Þ: That is Ck V [Wð Þ ¼
Ck V1 [W1ð Þ:.

2. From Theorem 3.2, we have Ck V \Wð Þ ¼ Ck Vð Þ \

Ck Wð Þ: Therefore, Ck V \Wð Þ ¼ Ck V1ð Þ \Ck W1ð Þ ¼

Ck V1 \W1ð Þ: That is Ck V \Wð Þ ¼ Ck V1 \W1ð Þ:

Similarly, the following two properties of LRS are also

useful in decision making applications.

Theorem 4.4 For any two concepts V ;W 2 P Uð Þ in LAS

U;C;Lh i; the following relations stand true.

1. If V � W ; Ck Wð Þ ¼ ; ¼) Ck Vð Þ ¼ ;;
2. If V � W ; Ck Vð Þ ¼ Cj ¼) Ck Wð Þ ¼ Cj

Proof

1. We have V � W ; C
k

Wð Þ ¼ ;; and from Theorem 3.1,

we know that Ck V � Wð Þ ¼ Ck Vð Þ � ;: This implies

that Ck Vð Þ ¼ ;:
2. From Theorem 3.1, we know that Ck V � Wð Þ ¼

Ck Vð Þ � Ck Wð Þ: Since, Ck Vð Þ ¼ Cj; Ck Wð Þ ¼ Cj:

5 Application of linguistic rough set in decision making

In this section we show an application of the proposed

linguistic rough set in a real world case-study.

5.1 Approximation of fuzzy decision concept

with linguistic rough set

We consider a decision making framework as given in

Fig. 1. Here, U ¼ xif g; i ¼ 1; . . .;m represents a set of

alternatives. A set C ¼ Cj

� �

; j ¼ 1; . . .; n denotes the set of

fuzzy concepts, in terms of which a given concept should

be approximated. These concepts are referred to as con-

dition concepts, in the sequel. We consider that the experts

only have partial information to evaluate an alternative

from U against each of the condition concepts

Cj

� �

; j ¼ 1; . . .; n. It is easier for the experts to assess an

alternative broadly in terms of the linguistic quantifiers.

Let cij denote the assessment (in terms of a linguistic

quantifier) of alternative xi against condition concept Cj.

Our objective is to approximate a set of fuzzy concepts,

denoted by Y ¼ Y1; Y2; . . .; Ytf g, in terms of condition

concepts Cj

� �

; j ¼ 1; . . .; n, on the basis of linguistic

assessments cij

� �

; i ¼ 1; . . .;m; j ¼ 1; . . .; n: We refer to

the concepts in set Y as decision concepts.We now perform

the following steps and apply the proposed linguistic rough

set to approximate a decision concept.

Step 1 We construct an information system with the

given alternatives, say U ¼ x1; x2; . . .; xmf g, condition

concepts C ¼ C1;C2; . . .;Cnf g and decision concepts

Y ¼ Y1; Y2; . . .; Ytf g. An alternative xi is assessed against

the various condition concepts from C in terms of the

linguistic labels from linguistic set L. The weights of

various condition concepts may be taken into account

while arriving at the assessments for decision concepts Y.

The information system may be represented by a matrix,

I½ �m�n. Each entry iij
� �

in the matrix I½ �m�n is a linguistic

term denoting the assessment of ith alternative against jth

criterion. A sample matrix I½ �m�n is shown in Table 2.

Fig. 1 Multi criteria decision making paradigm
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Step 2 We find the degree of inclusion of each condition

concept Cj in each decision concept Yk by applying (19). The

degree of inclusion of jth conditional concept in kth decision

concept, DðYk;CjÞ is computed by applying (19) as

DðYk;CjÞ ¼
cij
 yik; i ¼ 1; 2; . . .m
� ��

�

�

�

m
:

Step 3 Similarly, we also find the degree of inclusion of

each decision concept in each condition concept by

applying (19). The degree of inclusion of kth decision

concept in jth condition concept, DðCj; YkÞ is found as

DðCj; YkÞ ¼
yik
 cij; i ¼ 1; 2; . . .m
� ��

�

�

�

m
:

Step 4 To compute the lower approximation of Yk, we

look for highest degree of inclusion/covering of any Cj by

Yk. The degree of covering indicates certainty in the

approximation. A degree of covering DðYk;CjÞ of 1 reflects

that the Cj is fully covered by Yk. We look for the highest

degree of covering so as to ensure the maximum possible

certainty in the lower approximation of a decision concept.

That is, we look for Cj such that

Cj : max DðYk;CjÞ
� �

; j ¼ 1; 2; . . .; n:

The condition concept Cj corresponding toDðYk;CjÞ ¼ 1

would be the lower approximation for decision concept Yk.

Step 5 If the value of DðYk;CjÞ\1, we compute the

degree of inclusion of Cj in combination with other con-

dition concepts by Yk in an attempt to obtain a higher

degree of covering by Yk. That is

Cj \Cu : max D Yk;Cj \Cu

� �� �

; u ¼ 1; 2; . . .; n; u 6¼ j:

Step 6 In case the value of D Yk;Cj \Cu

� �� �

\1, we

repeat Step 4 with combination of Cj \Cu and remaining

condition concepts in a bid to obtain a higher degree of

inclusion than the one obtained so far, until a degree of

inclusion of 1 is obtained or all the condition concepts are

exhausted. That is

Cj \Cu \ . . . : max D Yk;Cj \Cu \ . . .
� �� �

:

Step 7 We compute the upper approximation of Yk by

looking for highest degree of inclusion of Yk by any Cj. A

degree of covering DðCj; YkÞ of 1 reflects that Yk is fully

covered by jth condition concept

Cj
0 : max D Cj; Yk

� �� �

; j ¼ 1; 2; . . .; n:

The condition concept Cj corresponding toD Cj;Yk

� �

¼ 1

would be the upper approximation for decision concept Yk.

Step 8 If the value of D Cj
0 ; Yk

	 


\1, we compute the

degree of inclusion of Yk by Cj
0 in union with other con-

dition concepts to check for the possibility of obtaining a

higher degree of inclusion of Yk by the union of condition

concepts. That is

Cj
0 [Cu : max D Yk;Cj

0 [Cu

	 
	 


; u ¼ 1; 2; . . .; n; u 6¼ j
0
:

Step 9 If the value ofD Cj
0 [Cu; Yk

	 


\1, we repeat Step 8

with union of Cj
0 [Cu and remaining condition concepts in a

bid to obtain a higher degree of inclusion than the one

obtained so far until a degree of inclusion of 1 is obtained or

all the condition concepts are exhausted. That is

Cj
0 [Cu [ . . . : max D Yk;Cj

0 [Cu [ . . .
	 
	 


:

Step 10 We repeat Steps 4–10 for approximating each of

the decision concepts.

5.2 Case illustration

We now apply the approach, conceived above, in an oil

investment case [28] characterized by linguistic assessments

by experts. It may be intuitively felt that when vague or lin-

guistic assessments are involved, the decisions in such situ-

ations should also not be crisp but little vague so as to

represent a wide range of values in commensuration with

linguistic inputs. The approximations obtained through LRS

represent a wide range of acceptable values that fit well with

the linguistic nature of the decision making problem.

The suitability of a region as a potential oil investment

case depends broadly upon the perception of prospectivity

(C1), exploration programme (C2), favorable legal position

(C3), favorable fiscal position (C4), stratification position

(C5) and potential of the area for supporting oil discovery

(C6). It can be easily observed that given these condition

Table 2 Granular information

system I½ �m�n

m is the total number of

alternatives, n is the total

number of condition concepts,

and t is the total number of

decision concepts

Alternatives C1 C2 … Cj … Cn Y1 Y2 … Yk … Yt

Alternatives

x1 c11 c12 … c1j … c1n y11 y12 … y1k … y1t

x2 c21 c22 … c2j … c2n y21 y22 … y2k … y2t

… … … … … … … … … … … … …
xi ci1 ci2 … cij … cin yi1 yi2 … yik … yit

… … … … … … … … … … … … …
xm cm1 cm2 … cmj … cmn ym1 ym2 … imk … imt
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concepts, the experts may not be completely knowledge-

able to arrive at the precise evaluations of alternatives

(objects) against these condition concepts in terms of crisp

numbers. In such situations, linguistic quantifiers greatly

simplify the task of evaluation of alternatives. At the same

time, the rough set framework helps to approximate

imprecise decision concepts. Hence, the proposed lin-

guistic rough set is of special use in such applications.

The weight vector of the condition concepts is

w ¼ 0:25; 0:18; 0:22; 0:15; 0:09; 0:11ð Þ. The actions of the

investment may lead to three possible results: Invest (Y1),

Not invest (Y2) and Defer (Y3), which form the decision

concepts to be approximated. The decision makers (DMs)

evaluate the prospective regions (alternatives) xiði ¼
1; . . .8Þ with respect to the criteria Cjðj ¼ 1; . . .; 6Þ and

assign linguistic terms from the set S that is shown as

S ¼ fs	4 ¼ extremely poor; s	3 ¼ very poor; s	2 ¼ poor;

s	1 ¼ slightly poor; s0 ¼ medium; s1 ¼ slightly good;

s2 ¼ good; s3 ¼ very good; s4 ¼ extremely goodg:

The DMs assign a linguistic term from S against each of the

decision concepts Yiði ¼ 1; 2; 3Þ. The linguistic information

system so generated is shown in Table 3. We now approxi-

mate of each of the decision concepts Y1, Y2 and Y3 in terms of

the condition concepts by applying proposed linguistic rough

set framework. The approximations are arrived at on the basis

of the linguistic information system, shown in Table 3.

Solution We now perform the steps as outlined in Sect.

5.1 to approximate Y1, Y2 and Y3.

Step 1 We generate the linguistic information system as

given in Table 3 with condition concepts Cj (j = 1,…, 6),

decision concepts Yi (i = 1, 2, 3) and universe of discourse

represented by the set of alternatives xiði ¼ 1; . . .; 8Þ.
Step 2 The degree of inclusion of Cj in Yk, denoted by

DðYk;CjÞ, is computed by applying (19). The values

D Yk;Cj

� �

; j ¼ 1; . . .; 6; k ¼ 1; . . .; 3 are reported in Table 4.

Step 3 Similarly, we compute the degree of inclusion of

Yk in Cj, denoted by D Cj; Yk

� �

, and populate the values in

Table 5.

The degrees of inclusion in Tables 4 and 5 form the

basis of approximation of decision concepts

Yk; k ¼ 1; . . .; 3. We now find the lower and upper

approximations of Yk; k ¼ 1; . . .; 3 by applying the pro-

posed linguistic rough set.

Approximation of Y1

Step 4 We find the lower approximation of decision

concept Y1. From Table 4, C3 is seen to be having the

highest degree of covering by Y1 at 0.625. Since this value

is less than 1, we look for other conditional concepts in

combination of which we could obtain a higher degree of

inclusion, and hence a higher degree of certainty in lower

approximation of Y1.

Step 5 We find Cj such that D Y1;C3 \Cj

� �

[ 0:625; j ¼
1; . . .; 6; j 6¼ 3: The process is continued until all the con-

ditional concepts Cj are exhausted or the degree of inclu-

sion of 1 is obtained.

Step 6 The combination C1 \C2 \C3 is found to be

having the degree of inclusion as 1, that is

D Y1;C1 \C2 \C3ð Þ ¼ 1. Here, it is recalled that a degree

of inclusion of 1 indicates that the lower approximation of

Y1 is C1 \C2 \C3 with a degree of certainty of 100 %.

Step 7 The upper approximation of decision concept Y1

is found in this step. From Table 5, the highest degree of

inclusion of Y1 by any Cj is 1 for C2, C5 and C6.

It is found that an alternative xi belongs to the granule

‘‘Invest’’ with the linguistic coefficient of membership at least

as high as minimum of its membership in C1, C2 and C3. Also

the propensity to invest is bounded by an upper limit of the

maximum linguistic value among the assessment of xi against

the condition concepts C2, C5 and C6. In other words, the

linguistic assessment of an alternative in the granule ‘‘invest’’

would lie somewhere between the lower limit of C1 \C2 \C3

and the upper limit of C2 [C5 [C6.

Approximation of Y2

It can be seen from Table 4 that the highest degree of

covering of any Cj by Y2 is 0.75 for C3. Therefore, we

would find Cj such that D Y2;C3 \Cj

� �

¼ 1; j ¼
1; . . .; 6; j 6¼ 3. No such combination is found, which means

with the given data, it is not possible to have a degree of

Table 3 Linguistic information

system for potential regions of

oil investment

xi Prospectivity

C1

Exploration

program C2

Legal

position C3

Fiscal

position C4

Stratification

position C5

Potential of

area C6

Y1 Y2 Y3

1 s0 s4 s	2 s	4 s4 s4 s	2 s2 s4

2 s3 s0 s1 s2 s1 s1 s0 s1 s2

3 s	1 s2 s2 s3 s2 s1 s0 s2 s3

4 s2 s2 s1 s1 s3 s4 s1 s2 s1

5 s4 s4 s	4 s2 s3 s4 s	3 s2 s4

6 s1 s3 s2 s	1 s2 s2 s1 s	2 s2

7 s3 s4 s3 s4 s3 s3 s3 s	4 s	4

8 s4 s4 s	3 s4 s4 s4 s	2 s	3 s4
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certainty as 1 in lower approximation of Y2. Hence it can be

seen that the lower approximation of Y2 is C3 with the

degree of certainty as 0.75. Similarly in order to find the

upper approximation of Y2, we look for maximum degree

of covering of Y2 by any Cj in Table 5. We find that

D C5; Y2ð Þ is 1. In other words, the upper approximation of

Y2 is found to be C5 with degree of certainty as 1.

That means that the linguistic coefficient of an alterna-

tive in the granule ‘‘not invest’’ should be at least as high as

its respective coefficient against C3 but not higher than its

linguistic coefficient against C5. The degree of certainty in

this approximation is the minimum of the two degree of

certainty values for the lower and upper approximation. In

the present case the degree of certainty in this approxi-

mation is 0.75.

Approximation of Y3

It is seen from Table 4 that the highest degree of cov-

ering of any Cj by Y3 is 0.875 for C3 and C4. Therefore, the

lower approximation of Y3 is C3 \C4 with degree of cer-

tainty as 0.875. We do not find any Cj such that

D Y3;C3 \C4 \Cj

� �

¼ 1; j ¼ 1; . . .; 6; j 6¼ 3; 4. Hence it

can be seen that the lower approximation of Y3 is C3 \C4

with the degree of certainty as 0.875. Similarly, it can be

seen from Table 5 that the maximum degree of covering of

Y3 by any Cj is 0.75 for C2 and C6. Also, it is found that

D C2 [C4 [C6; Y3ð Þ ¼ 1. Therefore, the upper approxi-

mation of Y3 is C2 [C4 [C6 with degree of certainty as 1.

This infers that the linguistic assessment of an alternative

in the granule ‘‘defer invest’’ is approximated to lie

somewhere between those against C3 and C4, and

maximum of the linguistic assessments against C2, C4 and

C6. The degree of certainty in this approximation is 0.875.

5.3 Comparison with fuzzy rough set

In fuzzy rough set (FRS), every sample xi i 2 1;m½ �ð Þ from

a dataset of m objects is determined by N fuzzy charac-

teristics. Each of these is a fuzzy set that is measured as

partial membership degree, l j
i j ¼ 1; . . .;Nð Þ 2 0; 1½ �:

xi ¼ l1
i ; l

2
i ; . . .; lN

i

� �

: ð27Þ

Hence, in the fuzzy rough set theory, each of the con-

dition concepts is a fuzzy set. In order to apply the fuzzy

rough set theory to our case-study at hand, we first generate

the set of fuzzy condition concepts from the set of attri-

butes C and the set of linguistic quantifiers S by obtaining

their Cartesian product. As a result, the fuzzy condition

concepts generated corresponding to C1 are

C1 Prospectivityð Þ ¼ fC11 : extremely poor prospectivity;

C12 : very poor prospectivity, C13 : poor prospectivity;

C14 : slightly poor prospectivity;C15 : medium prospectivity,

C16 : slightly good prospectivity;C17 : good prospectivity;

C18 : very good prospectivity;C19 : extremely good prospectivityg

Similarly, fuzzy condition concepts corresponding to

remaining attributes Cj

� �

; j ¼ 2; . . .; 6 can also be gener-

ated. Hence, the number of condition concepts in an

example like the case-study at hand is N ¼ Sj j � Cj j, where

:j j refers to the cardinality of the set. In the present case-

study, we need to deal with a set of N ¼ 54 condition

concepts.

As the next step, depending upon the expert’s evaluation

of each object xi against a condition concept

Cjk j ¼ 1; . . .; 6ð Þ; k ¼ 1; . . .; 9ð Þ, a partial membership

degree ljk
i is assigned. Thus, object xi is characterized by

the following membership degrees:

xi ¼ l11
i ; . . .; l19

i

� �

; l21
i ; . . .; l29

i

� �

; . . .; l61
i ; . . .; l69

i

� �� �

:

Once, we have the partial membership degrees

ljk
i

n o

j ¼ 1; . . .; 6ð Þ k ¼ 1; . . .; 9ð Þ for the objects

xif g; i ¼ 2; . . .;m, we could apply the standard fuzzy rough

set framework as given in (7) and (8).

It can be easily observed that as the number of features

increase in a dataset, the number of fuzzy condition con-

cepts grow tremendously. Hence, the fuzzy rough set

approach may be computationally too much demanding,

when the number of attributes is large. Secondly, since

approximations in FRS are based on the partial member-

ship degrees of the given set of objects (that may be termed

as training samples) in various condition concepts, there is

no guarantee that these approximations hold good in

Table 4 Degrees of inclusion

of condition concepts by

decision concepts

j Y1 Y2 Y3

D Yk;Cj

� �

C1 0.375 0.375 0.625

C2 0.125 0.375 0.625

C3 0.625 0.75 0.875

C4 0.375 0.375 0.875

C5 0.125 0.25 0.75

C6 0.125 0.25 0.75

Table 5 Degrees of inclusion

of decision concepts by

condition concepts

j Y1 Y2 Y3

D Cj; Yk

� �

C1 0.875 0.75 0.625

C2 1 0.875 0.75

C3 0.75 0.625 0.375

C4 0.75 0.75 0.625

C5 1 1 0.625

C6 1 0.875 0.75
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general, for a larger population. Also, as we briefly men-

tioned earlier, the impact of even few noisy samples (with

incorrect membership degree) is quite strong on the

approximations obtained, for FRS is solely based on

membership degrees.

In contrast, the proposed linguistic rough set (LRS)

directly operates on linguistic quantifiers (which are fuzzy

sets in themselves). As a result, the number of condition

concepts is far lesser. In the case-study at hand, the

information system is comprised of condition concepts

with linguistic quantifiers as values. The approximations

obtained are also in terms of these linguistic quantifiers.

Since, LRS does not require numerical membership

degrees; it is not having the difficulties associated with

assigning membership grades to condition concepts and

their interpretation. The linguistic quantifiers and the

principle of inclusion degree at the heart of LRS ensure

robust and generalized approximations. Unlike FRS, the

trade-off between generalization and accuracy (to the given

state of knowledge) in approximations obtained through

LRS can be controlled by the adjustable inclusion degree.

6 Conclusions

Pointing to the complementarity of linguistic quantifiers

and rough set theory, specifically against their common

background of granulation of values drawn together by

similarity and vagueness, we have proposed linguistic

rough set (LRS). LRS provides a method to model the

imprecision in natural languages while retaining the ori-

ginal imprecision. LRS is inspired by the human thought

process that constantly makes use of granulation of values

for information summarization in decision making with

partial knowledge. The proposed LRS framework gives

general and imprecise approximations of natural repre-

sentations. The simplicity of operating directly with lin-

guistic quantifiers adds to the usefulness of LRS in the real

world decision making.

The measures for measuring the accuracy, generaliza-

tion and crispness in the approximations obtained through

LRS are proposed. A comprehensive approach is devel-

oped LRS to model natural representations. This approach

is illustrated through a real world case-study. The proposed

framework, despite its simplicity, is comprehensive enough

to represent imprecise concepts and yield robust approxi-

mations. The work carried out in this study has several

possible extensions, since this is the introductory paper on

LRS. LRS can be integrated with probability theory to

model occurrence related uncertainty along with uncer-

tainties of imprecision and vagueness. In this regard,

interesting extensions such as LRS based probabilistic

classification, probabilistic LRS, and Bayesian LRS models

can be developed. Also, on the lines of several extensions

of rough set theory, it should be interesting to have deci-

sion-theoretic LRS, variable precision LRS, and parame-

terized LRS models. These possible extensions will foster

the use of rough set theory in real world decision making

and would broaden its domain of applications.
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