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Abstract. We introduce the problem of diverse dimension decomposition in transac-
tional databases, where a dimension is a set of mutually exclusive itemsets. The problem
we consider requires to find a decomposition of the itemset space into dimensions, which
are orthogonal to each other and which provide high coverage of the input database.
The mining framework we propose can be interpreted as a dimensionality-reducing
transformation from the space of all items to the space of orthogonal dimensions.

Relying on information-theoretic concepts, we formulate the diverse dimension de-
composition problem with a single objective function that simultaneously captures
constraints on coverage, exclusivity and orthogonality. We show that our problem is
NP-hard and we propose a greedy algorithm exploiting the well-known FP-tree data
structure. Our algorithm is equipped with strategies for pruning the search space deriv-
ing directly from the objective function. We also prove a property that allows assessing
the level of informativeness for newly-added dimensions, thus allowing to define criteria
for terminating the decomposition.

We demonstrate the effectiveness of our solution by experimental evaluation on syn-
thetic datasets with known dimension and three real-world datasets, flickr, del.icio.us
and dblp. The problem we study is largely motivated by applications in the domain of
collaborative tagging, however, the mining task we introduce in this paper is useful in
other application domains as well.

Keywords: Diversity, transactional databases, dimension decomposition, information
theory, collaborative tagging

1. Introduction

Collaborative content creation and annotation is one of the main activities
and distinguishing features of the Web 2.0. Advances in social-media and user-
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t1 {fish,art,film,portrait,tattoo,xpro,crossprocessed,nikon,skin,n80}
t2 {sanfrancisco,black&white,building,art,stairway,fireescape,nikon}
t3 {portrait,color,art,me,illustration,blood,adobephotoshop,canon}
t4 {travel,brazil,plant,art,nature,color,strong,nikon,nikond70}
t5 {sunset,art,museum,landscape,minneapolis,canon,powershotg3}
t6 {sculpture,art,2004,festival,japan,culture,clay,a70,canon}
t7 {portrait,art,painting,color,europe,sony,sonyericssonk750}
t8 {black&white,art,film,photograph,street-photo,contax645}
t9 {art,black&white,skin,hand,bodypainting,nikon,d70}
t10 {red,woman,art,face,color,tear,canon,eos300d}
t11 {art,3d,unfound,photositook,sony,cybershot}
t12 {beautiful,woman,black&white,portrait,art}
t13 {landscape,nature,sunrise,wallpaper,art}

Fig. 1. An example of transactional dataset, having three diverse dimensions
(shown on the right). In this specific example from Flickr, each transaction cor-
responds to a picture, and its associated tags. All pictures have in common the
tag art.

generated content technologies have resulted in collecting extremely large vol-
umes of user-annotated media; for instance photos (flickr), urls (del.icio.us),
blogs (technorati), videos (youtube), songs (last.fm), scientific publications
(bibsonomy and citeulike), and others. All these platforms provide users with
the capability of generating content and assigning tags, i.e., freely chosen key-
words, to this content.

A repository of tagged resources can be seen as a transactional database,
typical to the paradigm of frequent-itemset mining: transactions correspond to
resources, and items correspond to tags. In this setting we are interested in study-
ing the problem of discovering an item-space decomposition, which we define to
be a set of orthogonal dimensions with high coverage. A dimension in turn is
defined to be a set of itemsets that rarely co-occur in the database.

Example 1. Consider for instance a query on flickr for photos about art (i.e.,
annotated with the tag art): the dataset D of such photos can look like the one in
Figure 1. In this setting dimensions might be, for example, such sets of itemsets
as {{portrait},{landscape}} or {{canon},{nikon},{sony}}. Indeed, almost all
photos in the dataset contain at most one of the itemsets from each of the two
dimensions.1

In particular, we are interested in discovering dimensions that represent di-
verse concepts, such as “type of photo” or “camera brand”, and whose different
values almost partition the dataset. For instance, each dimension in Figure 1 can
be seen as a different way of partitioning the transactions in D, and the three
dimensions together can be considered as a diverse decomposition of the space
of photos.

Extracting a set of diverse and orthogonal dimensions, that covers the var-
ious aspects of the underlying dataset, can be seen as a problem of automatic
facet discovery, with plenty of applications in social-media and user-generated
content platforms. Whenever users label resources with tags, the automatic dis-
covery of the relevant dimensions can improve user experience, e.g., facet-drive
browsing and exploration, faceted search [11], tag recommendation [10], tag clus-
tering [12, 13, 14, 15], and more. Similarly in recommender systems, whatever

1 While in this example each dimension is formed by singleton items, in general a dimension
is formed by itemsets of any size.
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is the subject of the recommendation (movies, songs, books, etc.) structuring
the recommendation by means of automatically discovered facets (i.e., orthogo-
nal dimensions) can improve the users experience and facilitate the discovery of
interesting resources. In the scientific bibliography domains, discovering diverse
and orthogonal dimensions can help highlighting the main trends in a scientific
community over a period of time.

Towards our goal, we adopt an information-theoretic perspective. While there
exist several studies applying joint entropy to the problem of identifying inter-
esting or informative itemsets [1, 2, 4, 5, 6, 7], this body of work can not be
applied to the problem of diverse dimension decomposition, as explained next.
Joint entropy is conventionally calculated as a sum of entropies over probabilities
(frequencies) of set’s instances: H(X) = −

∑
p(Xi) log p(Xi), where instances

Xi ⊆ X are often represented as binary vectors, where bits at each position are
indicating whether a particular item is present in the instance or not. In the fol-
lowing example we demonstrate, that items in such sets are usually semantically
unrelated:

Example 2. Consider a transposed view of the database from Figure 1, as
shown in Table 1. Following the approaches that use joint entropy, we will get
sets (templates) such as {color,nikon}, having the highest entropy (dark grey
lines), or {landscape,sony} as low-entropy sets (light grey lines).

We notice that high-entropy sets are characterized by more uniform appear-
ance of their instantiations in the database (e.g., instances 01, 10 and 11 appear
with roughly the same frequency), while low-entropy sets accumulate support
around the few most-frequent instances (in our example: 00), not necessarily
representing mutually exclusive items forming the dimension (with instances
001, 010, 100). Thus, using the existing interestingness measures does not solve
our problem.

In this article, we propose an entropy measure that expresses both the or-
thogonality among dimensions and the interestingness of dimensions. Moreover,
we show that the proposed measure also captures constraints on exclusivity and
coverage. Based on this measure, we formulate diverse dimension decomposition
as the problem of finding an optimal set of k dimensions, minimizing an objec-
tive function that closely resembles the mutual information measure, except for
a parameter α, which allows the analyst to trade-off between information loss
and orthogonality of the dimensions.

Our contributions are summarized as follows.
– We introduce the novel problem of diverse dimension decomposition in trans-

actional databases, as an optimization problem. We characterize our objective
function and show that the selected dimensions explain well the underlying
database.

– We prove a property that allows assessing the level of informativeness for
newly-added dimensions, thus allowing to define criteria for terminating the
decomposition.

– We show that our problem is NP-hard. We then propose a greedy algorithm
exploiting the well-known FP-tree data structure [8]. Our algorithm prunes
the search space, based on properties of our objective function.

– We experiment with the proposed approach using two real-world large datasets
in the collaborative tagging domain, flickr and del.icio.us, and one dataset
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Table 1. A transposed view of the dataset in Figure 1, showing most frequent
items taken from several dimensions.

item t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13
canon 0 0 1 0 1 1 0 0 0 1 0 0 0
nikon 1 1 0 1 0 0 0 0 1 0 0 0 0
sony 0 0 0 0 0 0 1 0 0 0 1 0 0
color 0 0 1 1 0 0 1 0 0 1 0 0 0
black&white 0 1 0 0 0 0 0 1 1 0 0 1 0
landscape 0 0 0 0 1 0 0 0 0 0 0 0 1
portrait 1 0 1 0 0 0 1 0 0 0 0 1 0

in the scientific bibliography domain (dblp) demonstrating the effectiveness
and scalability of our solution.

– We introduce two methods, which generate synthetic datasets with distribu-
tions of itemsets closely approximating the real data. Experiments on these
datasets indicate that our method is able to withstand noise and reliably iden-
tify dimensions even with small coverages.

– We evaluate, both theoretically and empirically, the ability of various itemset
similarity measures to facilitate the dimension decomposition. Moreover, we
outline several crucial properties for creating such measures.

The present article extends an earlier conference version [9] and has an up-
dated formalism. In particular, itemset frequency is used instead of itemset sup-
port count, and Theorem 2 is reformulated using ordered conditional entropies.
The rest of the article is structured as follows. In the next section we discuss
related work and in Section 3 we formally define the problem of mining diverse
dimensions from a transactional dataset. In Section 4 we present our methods,
while in Section 5 we report experimental assessment. Finally, we discuss future
work and conclude in Section 6.

2. Related work

We next survey the literature related to our work, dividing it into three groups:
(i) methods that aim at extracting diverse content from web data, (ii) space-
like representations of itemset databases, and (iii) entropy-based measures for
itemset interestingness.

2.1. Diversity in information retrieval

Extracting a set of diverse dimensions, that covers the various aspects of the
underlying dataset, can be seen as a problem of facet discovery. Such a facet-
discovery process has many applications in improving user experience, for in-
stance, tag recommendation [10], search and exploration [11], tag clustering [12,
13, 14, 15], and more. The work by Morik et al. [15], describing multi-objective
hierarchical termset clustering, represents an effective way of navigating tag-
annotated resources. However, the hierarchical clusters produced in the above
work do not represent orthogonal dimensions, which is one of our main goals.

Web search is another domain in which finding an answer set with diversity is
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important. Several studies have focused on the problem of search engines query-
result diversification [16, 17, 18, 19], where the goal is to produce an answer set
that includes results relevant to different aspects (facets) of the query.

2.2. Space-like representation of itemset databases

Traditionally, in association-rule mining, itemsets are represented as binary vec-
tors in the space of items: each axis corresponds to an item, and binary coordinate
values indicate whether each particular item is contained in the itemset. This
representation works well, if we are interested in finding association rules of the
form {bread,milk} ⇒ {butter}, which capture itemset-level correlations in
data. However, binary coordinates do not facilitate geometric decompositions of
the item space (which can be interpreted by a human).

As a possible solution, Korn et al. [20] use real-valued coordinates, where
coordinates can be interpreted as quantities of each item employed in the con-
struction of rules. This framework allows to perform spectral decomposition of
the item space (similar to SVD [21]), and to discover ratio rules, i.e., quantita-
tive correlations among itemsets. An example of such rule is {1:bread,2:milk,
5:butter}, which says that a typical ratio of bread, milk and butter within the
itemsets is {1:2:5} , so we can predict missing values of different items given
these rules.

Alternatively, one can represent a database in the transposed space of trans-
actions rather than items (like the one shown in Table 1). This is the main idea
behind the “geometrically inspired itemset mining” framework proposed by Ver-
hein and Chawla [22]. Their proposal is a framework for frequent itemset mining,
which can accept space transformations, such as SVD, subject to the constraint
that a measurement function should be able to be computed in the new space.
For instance, in the case of SVD, each new axis represents a linear combination
of transactions, featuring the largest variance in data. However, such a transfor-
mation is not very easily interpretable.

Our work is different in that we propose a method for decomposing the space
of items in a set of orthogonal dimensions that are readily interpretable. More-
over, our problem formulation is based on information theory, and is capable of
identifying dimensions in transactional databases in general, regardless whether
transactions have real values associated with items or not.

2.3. Entropy-based measures of itemset interestingness

Knobbe and Ho [1] define an information-theoretic measure for itemset inter-
estingness, joint entropy, which is optimizing for uniform co-occurrence among
items. In their terminology, a set is a template (or a collection of attributes taking
binary values), whose instances are itemsets. Entropy is calculated as a negative
sum of logarithm-multiplied occurrence probabilities for observed instances. This
measure indicates how likely a randomly-chosen set instance is to appear in data.
The same authors also introduced a notion of “pattern teams” [2], that can be
seen as feature sets. They theoretically evaluate the effectiveness of different fil-
tering criteria for feature sets used in machine-learning classifiers, noticing that
the measure of joint entropy does not satisfy the desirable properties that we
require from dimensions in this paper (i.e., mutual exclusivity, high coverage).
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Table 2. Summary of notation used in this paper.
I I ∈ I is an item X X ⊆ I is a pattern itemset
I I={I} is a set of all items δi δi ={Xi} is i-th dimension
t t ⊆ I is a transaction itemset ∆ ∆ = {δi} is a set of dimensions
D D={t} is a dataset of transactions I is a space of all possible itemsets: t ∈ I

Instead, the authors find that exclusive coverage (i.e., the sum of coverages mi-
nus co-occurrences) is much more suitable as a measure optimizing for these
properties.

Continuing the above line of research, Heikinheimo et al. define two related
problems, namely, mining high- and low-entropy sets [6]. Zhang and Masseglia [7]
extend the method of Heikinheimo et al. to work on streaming data. They pro-
pose to reduce the output size by removing similar sets according to criteria
based on mutual information [23]. A similar approach for counting subset fre-
quencies was also used by Tatti [3] to define the significance (surprisingness)
of itemsets, by comparing their Maximum-Entropy estimated frequency to the
observed one.

Finally, Tatti [4] and Mampaey et al. [5] propose to use joint entropy in an
MDL optimization framework, aiming at compressing the database. Maximizing
the entropy ensures that all the pattern subsets are uniformly distributed, while
the limit on pattern frequency (according to the exponential frequency decrease
assumption) facilitates the selection of frequent patterns.

Although these papers deal with itemset mining using joint entropy, their goal
is different from ours: they aim at extracting sets of items, which co-occur in the
database uniformly (when optimized for high entropy: same frequency for all
subset combinations) or sparsely (when optimized for low entropy: only certain
subsets are frequent). We discussed the difference between these approaches and
our proposal earlier, in Example 2.

In contrast to the above methods, we formulate the entropy of a dimension as
the uncertainty of the dimension’s itemsets for each document, and use it as an
indicator of quality for dimensions. Moreover, our goal is to find sets of itemsets
(not items), which are not only mutually exclusive (within each dimension), but
also independent (across dimensions).

3. Notation, concepts, and problem statement

We are given a transactional dataset D, which is a multi-set of transactions t ⊆ I,
where I is a ground set of items. An example of a transactional dataset is given in
Figure 1. As usual we call itemset any set of items X ⊆ I, and we denote by D(X)
its supporting set of transactions, i.e., D(X) = {t ∈ D | X ⊆ t}. Moreover we
denote by I the space of all possible itemsets on I. For the convenience, we are
presenting a short list of notation in Table 2.

In this paper we are studying the following problem. We are given an inte-
ger k and the goal is to discover a collection of k dimensions, that decompose
the itemset space I. Moreover, we want each dimension to almost partition the
dataset D; that is to say, we want (almost) all transactions t ∈ D to contain one
and only one of itemsets from the dimension.

Definition 1 (Dimension). Given an itemset space I, a dimension δi ⊂ I is a
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collection of pairwise disjoint itemsets, i.e., δi = {X i
0, ..., X

i
m}, such that for all

pairs of itemsets X i
k, X i

l ∈ δi with l &= k it holds X i
k ∩ X i

l = ∅.

As in decomposition methods in linear algebra, we want to decompose the
itemset space in dimensions that can be though as “orthogonal.” While orthog-
onality in linear algebra is a well-understood concept, when talking about the
itemset space the concept of orthogonality is much less clear. Motivated by our
example, we would like to argue that the dimension representing camera-brand
{{canon},{nikon},{sony},...} is orthogonal to the dimension type-of-photograph
{{portrait},{landscape},{street-photo},...}. The concept of orthogonality
can thus be formulated as independence among the dimensions: the fact that a
photograph is tagged by nikon should not reveal any information about the type
of the photograph. That is, the likelihood of that photograph being portrait or
landscape should remain the same as it is non conditional on camera-brand.

To formalize the above intuition, we use the concept of mutual information.
Given two random variables, X and Y , mutual information measures the infor-
mation shared between them. For example, if X and Y are independent, then
knowing X does not give any information about Y and vice versa, so their mu-
tual information is zero. In order to employ the definition of mutual information,
we need to define precisely how our dimensions define a probability space, and
what is the entropy of this probability space. We provide those definitions in the
next section.

In addition to finding orthogonal dimensions we also want to find “useful”
dimensions, in the sense of being able to explain the dataset succinctly. We
express this intuition by the concept of coverage. In the previous example, the
dimension camera-brand has high coverage because most of the photos have one
tag among the itemsets {{canon},{nikon},...}. We are able to show that the
concept of coverage can also be formulated in an information theoretic manner.
More importantly, we are able to combine both desiderata, high coverage and
orthogonality, in one single objective function, achieving to simplify our problem
formulation as well as the mining algorithm.

3.1. Entropy of dimensions

Our goal is to define the entropy H(δi | D) of the dimension δi = {X i
0, ..., X

i
m}

of the itemset space I, given the input dataset D. We first define the entropy of
the dimension δi conditioned on a single transaction t of the dataset.

H(δi | t) = −
∑

Xi∈δi

P (X i | t) log P (X i | t)

The probabilities P (X i | t) express the uncertainty that the itemset X i is
present in the transaction t, and are defined later in the section. Averaging over
all transactions of the dataset D, we now define the entropy of the dimension δi
as follows:

H(δi | D) =
∑

t∈D
H(δi | t)P (t),

where P (t) is the frequency of each transaction in the dataset. For instance, if
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H = 0.0 H = 1.0 H = 2.3

Fig. 2. Entropy for different probability distributions.

all transactions are distinct, then P (t) = 1/|D|. The conditional entropy of one
dimension given another, is defined as follows:

H(δi | δj ,D) =
1
|δj |

∑

Xj∈δj

H(δi | Xj,D)∑
t∈D P (Xj | t)

, where

H(δi | Xj,D) =
∑

t∈D
H(δi | Xj, t)P (Xj | t)P (t), and

H(δi | Xj, t) = −
∑

Xi∈δi

P (X i | Xj, t) log P (X i | Xj , t).

It remains to define the probabilities P (X i | t), which can be interpreted as
the probability of an itemset being relevant for a transaction. When computing
relevancy probabilities, we may use different set similarity measures, such as
cosine similarity, Jaccard coefficient, or binary inclusion/exclusion:

P (X i | t) =
|X i ∩ t|
||X i|| ||t|| , P (X i | t) =

|X i ∩ t|
|X i ∪ t| , or P (X i | t) =

{
1, X i ⊆ t;
0, X i &⊆ t.

Also note that after computing the set similarity measures we need to normalize
them in order to arrive to a valid probability distribution whose values sum
up to 1. The following example describes the meaning of different probability
distributions.

Example 3. Let us consider a dimension δi containing five itemsets: {{canon},
{nikon},{olympus},{pentax},{sony}}. Each transaction t in the dataset may be
relevant to one or several itemsets of the dimension, or not relevant at all. Figure 2
shows three different transactions with the following probability distributions:
t1 = {pentax,camera,test} is relevant only to {pentax}, with probability 1.0;
t2 = {pentax,nikon,test} is relevant to two cameras, with probability 0.5;
t3 = {dslr,cameras,test} may be relevant to any camera, thus resulting in
equal probabilities and maximal entropy. In this example, entropy reflects the
uncertainty of the dimension being relevant to a transaction. When only one
itemset is relevant we have low entropy, as in the first case. When none of the
itemsets is relevant, resulting in the unclear choice, the entropy becomes high.
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3.2. Problem statement

As we mentioned before, the problem we consider is to discover k diverse di-
mensions that explain well the input dataset. Let us denote by ∆ = {δ1, . . . , δk}
such a set of k dimensions. Our objective function evaluates the goodness of the
dimension set∆ in terms of entropy and diversity. We define these concepts next.

Definition 2 (Entropy of a dimension set). Given a set of dimensions
∆ = {δ1, . . . , δk}, its entropy is defined as the sum of entropies of its dimensions2

H(∆) =
∑

δi∈∆

H(δi).

Definition 3 (Diversity of a dimension set). Given a set of dimensions
∆ = {δ1, . . . , δk}, its diversity is defined as the sum of conditional entropies over
all pairs of dimensions

DIV (∆) =
∑

δi,δj∈∆

H(δi | δj).

Central to our problem is the concept of mutual information, which we define
here for a pair of dimensions δi and δj .

Definition 4 (Mutual Information). The mutual information of two dimen-
sions δi and δj is defined as follows

I(δi; δj) = H(δi) − H(δi | δj) = H(δj) − H(δj | δi).

The mutual information of two dimensions is symmetric and is computed by
taking the difference between an entropy of the first dimension, H(δi), and its
conditional entropy given another one, H(δi | δj). The latter entropy expresses
the amount of information which one dimension contains about another, and
we want this amount to be low (this happens when the conditional entropy of
dimension δi remains large after we have identified dimension δj). In order to
evaluate the goodness of the set of dimensions ∆ we are summing the mutual
information among all pairs of dimensions of the set ∆. We are now ready to
formally define our problem.

Problem 1 (Diverse Dimension Decomposition). Given a dataset D, find
a set of k dimensions ∆ that minimize f(∆):

f(∆) =
[
H(∆) − α

k − 1
DIV (∆)

]
. (1)

In the above problem definition, we propose using an optimization function
f(∆) derived from mutual information.

Additionally, we introduce a parameter α to control the effect of entropy
and conditional entropy over the optimization criterion. One can notice that the
value of α = 1 corresponds to the case when the criterion is based precisely on

2 Throughout our paper we assume that all entropies are calculated with respect to the dataset
D, omitting it in order to simplify the notation.
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the pairwise sum of mutual informations, but we may pick any other positive
real value. This gives us the possibility to optimize either for information loss
(when α is small, e.g., α = 0), orthogonality (when α is large, e.g., α = 1), or
for both (when α takes an intermediate value).

Furthermore, we are able to show that by minimizing the objective func-
tion (1) we are also ensuring that the resulting dimensions explain well the
underlying dataset. We first define the notion of coverage of a dimension.

Definition 5 (Coverage of a dimension). Coverage C(δ) of the dimension δ
on the dataset D is the fraction of transactions t in D, for which t ∩ X &= ∅, for
some itemset X ∈ δ.

Definition 6 (Maximal co-occurrence of a dimension). We define the
maximal co-occurrence R(δ) of the dimension δ on the dataset D as the fraction
of transactions t in D which contain all the itemsets from a subset {X} ∈ δ, and
none of the other subsets of δ are more frequent.

The following two lemmas are needed in our exposition that minimizing f(∆)
ensures high coverage.

Lemma 1. If the value of the objective function is less than a threshold,
f(∆) ≤ ψ, then the entropy of the dimensions is also bounded:

H(∆) ≤ ψ

1 − α .

Proof. For all pairs of dimensions δi and δj , we have that H(δi | δj) ≤ H(δi),
what implies that I(δi; δj) ≥ 0. In the case of a pairwise sum, DIV (∆) ≤
(k − 1)H(∆). Consequently, if [H(∆) − αDIV (∆)/(k − 1)] ≤ ψ we have that
[H(∆) − αH(∆)] ≤ ψ, or equivalently, H(∆)(1 − α) ≤ ψ.

The lemma implies that for values of α ≥ 1 the entropy becomes unbounded.
In other words, when optimizing solely for orthogonality the quality (entropy)
of dimensions may become uncontrollable as some of them can be added to a
collection solely because of their high independence to others. This can happen
for dimensions that have negative contributions to f(∆) because of a high value
of the parameter α.

Property 1. For a dimension δ, let s be the number of co-occurring itemsets in
a transaction t, where 2 ≤ s ≤ |δ|. Then, in the case of binary probabilities

P (X | t) =
1
s
, and H(δ | t) = −s

1
s

log
1
s

= log s,

where in the case of no-coverage we have s = |δ|, since all itemsets are equally
improbable.

Lemma 2. Let δ be a dimension with m itemsets, and consider the case that
the probabilities P (X | t) take binary values. Then for the coverage C(δ) of the
dimension δ it should be

C(δ) ≥ 1 − H(δ)
log m

.
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Proof. Entropy takes its maximum value in the case that a transaction is not
covered by a dimension δ. Applying Property 1, we have that max(H(δ | t)) =
log m. Therefore, the maximal ratio of not covered transactions would be less
than H(δ) divided by the maximum entropy. Thus, 1 − C(δ) ≤ H(δ)/ logm,
what proves the lemma.

Lemma 3. If probabilities P (X | t) are computed using binary similarities, then
maximal co-occurrence R between any two itemsets in a dimension δ should be
less than its entropy per single transaction: R(δ) ≤ H(δ).

Proof. Property 1 shows that the minimal entropy of single co-occurrence is equal
to log 2. The maximal relative number of how many times the two itemsets may
co-occur would be H(δ) divided by the minimal entropy of single co-occurrence.
Therefore, we have max(R(δ)) = H(δ)/ log 2 = H(δ).

We are now stating the theorem that small values of f(∆) imply high cover-
age. The theorem is a direct consequence of Lemmas 1 and 2.

Theorem 1. Let ∆ = {δ1, . . . , δk} be a set of k dimensions and C(∆) be their
total coverage, defined as C(∆) =

∑
δi∈∆ C(δi). Finally, let m0 be the size of

the smallest dimension of ∆. If f(∆) ≤ ψ then for the total coverage we have:

C(∆) ≥ k − ψ

(1 − α) log m0
.

Proof. According to Lemma 2, the sum of dimensions coverages is greater than:
∑

δi∈∆

C(δi) ≥ k −
∑

δi∈∆

H(δi)
log m

≥ k −
∑

δi∈∆

H(δi)
log m0

Applying our notation and using Lemma 1, we have:

C(∆) ≥ k − H(∆)
log m0

≥ k − ψ

(1 − α) log m0
!

We can use the above theorem to evaluate the quality of the dimensions, or to
limit the number of dimensions in the result, e.g., by conforming to the specified
constraint on the minimum coverage.

We next evaluate the dependency of f(∆) over the number of dimensions k.
Suppose that we have a set of dimensions, and want to add another dimension.

Theorem 2. Adding a candidate dimension δ will improve f(∆) as long as
its average mutual information (across dimensions ∆) is less than the average
information of dimensions in ∆ discounted by ( 1

α − 1 + 1
k )H(δ).

Proof. The difference d in the optimality value can then be written as follows:

d = H(δ) − α
k

DIV (∆ ∪ δ) +
α

k − 1
DIV (∆)

≤ H(δ) − α
k

[DIV (∆ ∪ δ) − DIV (∆)]

≤ H(δ) − α
k

∑

δi∈∆

[H(δ|δi) + H(δi|δ)]
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We are interested in cases when this difference will be negative, corresponding
to improving optimality:

H(δ) − α
k

∑

δi∈∆

[H(δ|δi) + H(δi|δ)] ≤ 0, and since

H(δ|δi) + H(δi|δ) = H(δ) + H(δi) − 2 · I(δ; δi), we have

H(δ) − αk − 1
k

H(δ) − α
k

∑

δi∈∆

H(δi) +
2α
k

∑

δi∈∆

I(δ; δi) ≤ 0, equivalent to

1
k

∑

δi∈∆

I(δ; δi) ≤ 1
2
[
1
k

H(∆) − (
1
α
− 1 +

1
k

)H(δ)] !

In other words, f(∆) will decrease when dimensions in ∆ on average contain
less information about δ than their average information discounted by H(δ). As
we noted before, since I(δ; δi) is always greater than zero, smaller α would re-
quire addition of dimensions with smaller H(δ) to satisfy this condition, thus
optimizing for information loss. This property allows assessing the level of in-
formativeness for newly-added dimensions, and defining criteria for terminating
the decomposition.

4. Algorithm

We observe that Diverse Dimension Decomposition (Problem 1) is NP-hard, by
reduction from the Set Partitioning problem, where we want to partition a set
into non-overlapping and non-empty parts that cover the entire set. This inherent
complexity of the problem motivates us to seek for a heuristic algorithm. In the
rest of this section, we describe our solution based on a greedy strategy.

4.1. Algorithm overview

In order to solve the optimization problem of finding the optimal k dimensions,
we propose identifying dimensions one-by-one. Our greedy strategy works as fol-
lows. We start by constructing the first more prominent dimension, according
to our objective function f(∆). The process begins with an empty single dimen-
sion, and at each iteration we decide whether to add a new dimension, or grow
existing itemsets, according to the strategies discussed below. The construction
of each dimension stops either if it is not possible to improve its score or if all
items have been partitioned. Then, we do the same for the remaining dimensions
iteratively, with the only difference that f(∆) now takes into account all the pre-
viously identified dimensions, optimizing with respect to their orthogonality.

To store the data for our problem, we adopt a compressed database repre-
sentation in the form of the well-known FP-Tree data structure [8]. In Figure 3,
we show an example of such a tree, for the transactional dataset of Figure 1.
This structure allows us to perform efficient pruning based on the coverage,
co-occurrence and non-overlap (partitioning) requirements, as explained next.
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Fig. 3. FP-Tree constructed from the dataset shown in Figure 1. For the sake of
simplicity, we omitted frequency counts from the nodes, cross-references among
nodes and the header table, showing only the prefix-tree. To avoid having a too
large figure, the tree is shown after a pruning of itemsets of frequency less than
2. Nodes highlighted in light gray represent items from first-order dimensions,
which are blocked and become transparent when considering itemsets for a new
dimension (highlighted in blue).

4.2. Search strategies

We now discuss the search strategies that can be used over the FP-tree data
structure, as well as the pruning techniques that can be applied on top of those.

– Breadth-first strategy (expansion): (a) Locate, and remove from fur-
ther consideration, individual nodes for items that are already in the dimension
(according to the non-overlap criterion; for example, nodes, highlighted in gray
in Figure 3); (b) add one of the remaining available singleton items as a new
itemset; we add these items one at a time.

– Depth-first strategy (refinement): (a) For an itemset in the dimension,
locate the correspondent paths in the FP-tree; (b) Expand this itemset by adding
one item at a time from the available children nodes of its paths.

However, the problem with the above strategies is that neither of them can
lead to a good solution, when used independently: the breadth-first strategy
may include many singleton items so that refinement (or expansion) of individual
itemsets in a dimension is no longer possible; the depth-first strategy may restrict
adding new itemsets to the dimension by expanding existing itemsets with their
children items.

– Mixed strategy (expansion + refinement): Apply the expansion and
refinement steps at every iteration. This is the strategy we use in this paper, and
we discuss it in more detail in the following paragraphs (refer to Algorithm 1).

4.3. Pruning strategies

We have already described the basic pruning strategy (non-overlap) based on
our definition for dimensions. Our more advanced pruning strategy is based
on the relationship between entropy and such characteristics as coverage and
co-occurrence, as described in Lemmas 2-3. For each candidate dimension with
entropy H , we are interested in obtaining refined dimensions, which do not ex-
ceed this value. Thus, we compute the corresponding thresholds for the minimal
coverage C and maximal co-occurrence R (according to the above lemmata), and
use them for pruning the itemsets which are added or refined.
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Algorithm 1: Mining Orthogonal Dimensions
Name : findNewDimension
Input : First-order dimensions ∆ = {δk}, k < i,

Candidate dimensions candidates = {},
FP-Tree, memoryBudget

Output: Optimal dimension δiout of order i
1 repeat
2 forall the dimension δi∈candidates.unprocesseddo
3 forall the itemset X i ∈ δi do
4 forall the items I ∈ children(X i), I /∈ δi,∆ do
5 if validItemset(X i ∪ {I} | δi) then
6 //add one item to the current itemset
7 δitemp = {δi | X i = X i ∪ {I}};

checkOptimality(δitemp | ∆);
candidates.temp.add(δitemp);

8 end
9 end

10 end
11

re
fin

em
en

t
ex

pa
ns

io
n

forall the items I ∈ I, I /∈ δi,∆ do
12 if validItemset({I} | δi) then
13 //add one more item as an itemset
14 δitemp = δi ∪ {I};
15 checkOptimality(δitemp | ∆); candidates.temp.add(δitemp);
16 end
17 end
18 end
19 //mark unprocessed as processed
20 candidates += candidates.unprocessed;
21 //newly generated become unprocessed
22 candidates.unprocessed = candidates.temp;
23 candidates.temp = {};
24 //sort so that most optimal values are first
25 candidates.sort();
26 //remove candidates exceeding the allocated memory
27 repeat
28 candidates.remove(candidates.lastElement);
29 until candidates.size > memoryBudget;
30 until candidates.unprocessed.size > 0;
31 return δiout = candidates.firstElement ;

4.4. Description of the algorithm

We formulate our optimization problem in a greedy fashion, relying on a mixed
candidate generation strategy and an iterative refinement of the candidate set.
The complexity of this approach (almost) linearly depends on the size of the
candidate set (as seen in Figure 5), which we use as a parameter. Another input
of our algorithm is the FP-Tree, optionally containing only the most frequent
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Algorithm 2: ItemSet pruning method validItemset. Entropy for a given
dimension will improve only if the new itemset meets coverage and co-
occurrence requirements computed using Lemmas 2-3 for the dimension’s
entropy.
Name : validItemset
Input : Dimension δi, itemset X , FP-Tree
Output: true if itemset is valid, false otherwise

1 //use Lemma 2 to calculate min coverage
2 covmin = Lemma2(H(δi));
3 //use Lemma 3 to calculate max co-occurrence
4 coocmax = Lemma3(H(δi));
5 return (C(X ∪ δi) > covmin & R(X, δi) ≤ coocmax);

items. This initial pruning does not affect the output (as long as the items
forming the dimensions are preserved), but significantly reduces the complexity
of the problem.

Our general approach starts with an empty set of dimensions, and uses Algo-
rithm 1 to find each new dimension, resulting in the best optimality value when
added to the set of previously selected dimensions; up to the specified number k.

The most essential part of this algorithm is the greedy dimension optimization
procedure findNewDimension, which takes as a parameter a set of the first-
order dimensions ∆, and an empty set of candidates, and after a finite number
of iterations (the first loop) it converges to the single most optimal dimension,
which is added to the ∆ as the next one.

More specifically, Algorithm 1 iteratively refines dimensions in the candidate
set (the empty initial set is refined only by expansion) and at each iteration
performs sorting of candidates according to their optimality. The list of sorted
dimensions is then being pruned according to the specified memory budget. By
doing this operation, the algorithm ensures that at each step it would refine and
check the optimality of only a short list of candidates, which is equal to the
memory budget or lower. After all candidates in the list were refined, they are
marked as processed (transferred to the main list), and the newly generated list
of candidates becomes the next list of unprocessed candidates. The algorithm
converges when there are no candidates left in the list, which were not refined.
Then it outputs the topmost optimal candidate.

More insights on the algorithm can be obtained by examining Figure 4. In
that figure, we depict detailed results of the refinement procedure for two specific
domains, namely, “pyramid” and “art”, from the flickr dataset. In both cases,
we focus on the identification of the first dimension, and we depict for each
iteration of the Algorithm 1 the size (number of itemsets) of the currently best
dimension (bottom graphs), as well as the corresponding entropy value (top
graphs).

We observe that for the “pyramid” domain the algorithm quickly increases
the size of the dimension by adding more itemsets (seen as diagonal steps) and
refining them (seen as horizontal steps), resulting in a significant initial improve-
ment of the entropy of the dimension. Starting at iteration 6, the number of
itemsets remains stable, though, the algorithm adds new items to them, leading
to further improvements in entropy (which can be observed by the decrease of
value on the top-most graph). In contrast, for the “art” domain the algorithm
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Fig. 4. Optimization statistics of the first dimension for “pyramid” and “art”
(flickr).

starts with a dimension of good quality (low entropy), which after a single refine-
ment (from iteration 1 to 2) stays on the top of the list of candidates till iteration
9 (the value of entropy does not increase during this interval), while other candi-
dates are being refined. Then, starting from the iteration 10, another candidate,
refined to a better quality, takes its place and shows even better improvement in
entropy. Finally, iterations converge and the best dimension is being identified.

We note that the final dimensions identified for the “pyramid” and “art”
domains (after 17 and 15 iterations, respectively) are also the optimal single
dimension decompositions for these domains.

5. Experimental evaluation

We evaluate our algorithm on both synthetic3 and real-world datasets. Evalua-
tion of precision and performance is done in a controlled scenario, using large-
scale synthetic datasets with artificially generated dimensions having itemset
distribution similar to that of real datasets. We evaluate the time of decompo-
sition and the quality of extracted dimensions depending on various noise and
coverage parameters and for several versions of our method. The observed re-
sults convince that our method achieves good performance and is capable of
reconstructing dimensions even in most unfavorable conditions.

We provide additional evidence regarding the usability of our method by ap-
plying it to two real-life datasets, containing tag-annotated resources, and one
dataset, containing titles of scientific publications. The first dataset, extracted
from flickr, a popular photos sharing website, contains 28 million tag-sets (or
transactions), obtained by taking annotations for all pictures that contain a spe-
cific domain tag, for 34 different domains. To remove noise, we allow only unique
tag-sets for each user id. The second dataset contains tag-sets from del.icio.us,
a social bookmarking website. For this dataset, we select annotations for URLs
starting with specific domain names picked from Yahoo!Directory. Overall, the
del.icio.us dataset contains 1.7 million tag-sets over 150 domains. The num-
ber of unique tags in each of the datasets is about half a million. The third
dataset, dblp4, is the largest collection of publications in the area of Computer
Science, containing more than 1.9 million titles organized by venue and year. In
our experiments, we used publications titles as sets of tags, removing stop-words,
punctuation and duplicate words.

3 Synthetic datasets are available at http://disi.unitn.it/∼tsytsarau/#content=Datasets
4 DBLP database dump is publicly available at http://dblp.l3s.de/dblp++.php
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A limited amount of additional cleaning is performed on all datasets by re-
moving the domain term, numeric and navigational tags, as well as removing
some language variability, based on a custom-built dictionary. No sophisticated
preprocessing is applied, so some of the discovered dimensions in our experimen-
tal results still contain repetitions due to synonyms and misuse of tags.

We implement our algorithms in Java, and run the experiments under Java
JRE 1.6.13 on a machine with Intel Xeon 2.4 GHz processor, using a single core
and 1Gb of allocated memory.

5.1. Quantitative results on real datasets

In the first set of experiments, we report the execution time (Figure 5) and the
entropy of the best solution found (Figure 6), as a function of the maximum
number of candidates considered by our algorithm. We vary the number of items
between 8 and 20, over the 150 domains of the del.icio.us dataset. In the graphs,
we report the normalized values, averaged over all the 150 domains, as well as the
standard deviation for these values (for most of the points standard deviation is
too small and not visible). In order to make the results directly comparable to
each other, we first normalize each series using the minimum (maximum) value
of its regression line for the time (entropy) graph. Then, we compute the average
normalized series, and its deviation.

In Figure 5, we report the averaged normalized execution times versus mem-
ory budget. We observe, that an increase in number of items results to an increase
in complexity. Overall, the algorithm scales linearly with respect to the memory
budget. When the number of items becomes large, the complexity is still deter-
mined by the memory budget (remember, that at each iteration the number of
refinements is proportional to the size of the candidate set).

In Figure 6, we observe that for a small number of items, an increase in
memory brings a considerably larger improvement in entropy, than for larger
numbers of items. In the case of 8 items, the series drops until the entropy reaches
its minimum for a maximum number of candidates of 32, which corresponds to
the optimal solution. For larger number of items, the same effect is observed for
a higher setting of the maximum number of candidates.

5.2. Synthetic dataset generation

In order to evaluate various properties of our approach in a controlled environ-
ment, we construct a synthetic dataset by generating itemsets for a number of
dimensions closely resembling dimensions found in real datasets. These dimen-
sions contain two to five itemsets of sizes up to three items, and we require exactly
two dimensions to be present in each dataset. We demonstrate an example of gen-
erated dimensions in Table 3. Following the construction of dimensions, we use
two different ways of assuring their distribution in data, which are represented
in Algorithms 3 and 4 and described as follows:
Item-based generator (Algorithm 3) We calculate the frequency of single-
ton items by applying Zipf’s law with a specified parameter z, f(Ik) ∼ 1/kz.
We chose this distribution because it is known to resemble word frequencies in
real-world datasets. Moreover, generating data from the Zipfian distribution al-
lows to produce frequencies that are close to the uniform (when z is small), or
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the exponential (when z is large) distributions. Both of the extreme cases are
challenging for our problem, because with uniform frequencies non-dimensional
items can occasionally form dimensions with a high coverage, and with exponen-
tial frequencies higher-order dimensions have a very small coverage.

We then add a uniform noise of level ν to these frequencies, and harmonize
them for the items belonging to each of the dimension’s itemsets (to account
for the observed rule that itemsets in dimensions usually have equally frequent
items; for example, both tags in {eiffeltower} usually appear together).
Coverage-based generator (Algorithm 4) We randomly pick a coverage for
the itemsets of each dimension (i.e. the relative proportion of time each itemset
represents its dimension), assuring that this value is not smaller than 1/|δi|2. To
all the items allocated to dimensions are assigned frequencies of their respecting
itemsets. To the rest of the items are assigned frequencies according to Zipf’s
distribution, scaled to half of the minimal frequency of allocated items. This step
is needed in order to assure that non-dimensional items would not occasionally
form any dimensions at the time of generating itemsets. As in the previous
method, we add a uniform noise of level ν to these frequencies.
Generating itemsets (Algorithm 5) For both of our methods, the itemsets
are generated by iteratively sampling the distribution of items with respect to
the specified dimensions. In this process, we use Gibbs sampling first to select a
dimension (independently from other dimensions) and then to select the itemset
representing it (allowing for co-occurrence with a level of 0.5ν). The rest of items,
not covered by any dimension, are distributed with respect to their frequency.

In these experiments, we restrict the number of items to n = 16, which is
equivalent to our minimum-support filtering on real datasets. Overall, we gener-
ate 10 thousand itemsets for each set of parameters for the first dataset and one
thousand for the second one, to ensure a smooth distribution according to our
model.

5.3. Experimental results on synthetic datasets

We assess the quality of the identified dimensions by comparing them to the
dimensions used while generating the dataset. Our first similarity measure (used
in Figure 7) is based on Hamming distance d between two dimensions (repre-
sented as binary vectors) divided by the total number of items: sim(∆;∆0) =
1 − d(∆;∆0)/n.

Since this measure is not able to distinguish incorrect positioning of items
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Algorithm 3: Generating Item-based synthetic data.
Input : Dimensions ∆ = {δi}, number of itemsets n, noise level ν, Zipf z
Output: Dataset D of itemsets

1 //generate frequencies for singleton items i, using Zipf’s law with noise
2 f [Ik] = (1 + νξ)/kz //random variable ξ is evenly distributed on [-0.5;0.5]
3 //normalize and regularize frequencies
4 f [Ik] = f [Ik]/

∑
f [Ik];

∀X i ∈ δi from ∆ and {Ii
k, Ii

l } ∈ X i : |f [Ii
k] − f [Ii

l ]| ≤ ν;
5 return D = GenerateItemsets(∆,n,ν,frequencies);

Algorithm 4: Generating Coverage-based synthetic data.
Input : Dimensions ∆ = {δi}, number of itemsets n, noise level ν,

Zipf z, coverage C.
Output: Dataset D of itemsets

1 //randomly generate frequencies for dimension itemsets
2 f [X i

j] = 1/|δi| + (1 − 1/|δi|)ξ1 //ξ1 is uniformly distributed on [0;1]
3 f [X i

j] = f [X i
j]/f [δi]; //normalize frequencies within each dimension

4 //add noise to frequencies
5 forall the items Ik do
6 if Ik ∈ X i

j then f [Ik] = f [X i
j ];

7 else f [Ik] = 0.5 C min(f [X i
j])/kz;

8 f [Ik] = f [Ik](1 + νξ2); //ξ2 is uniformly distributed on [-0.5;0.5]
9 end

10 return D = GenerateItemsets(∆,n,ν,frequencies);

Algorithm 5: Generating itemsets GenerateItemsets(∆, n, ν, frequencies).
1 forall the transaction t ∈ D, 1..n do
2 while |t| = 0 do
3 forall the dimension δi ∈ ∆ do
4 //sample the dimension using uniform ξ3 and ξ4
5 if ξ3 < C then
6 repeat sample X i with co-occurrence level at 0.5ν
7 //sample the itemset using Gibbs method
8 X i = GibbsSampling(δi, f [X i]); t = t ∪ X i;
9 until ξ4 > 0.5ν;

10 end
11 end
12 forall the non-allocated items Ik do
13 //sample according to f [Ik] using Gibbs method
14 Ik = GibbsSampling(I, f [Ik]); t = t ∪ Ik;
15 end
16 end
17 end
18 return D;
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Table 3. An example of dimensions used by Algorithms 3 and 4
∆1 {{0}, {1}, {2}, {3, 4}}, {{5, 6}, {7}}
∆2 {{0}, {1, 2}, {3, 4}}, {{5, 6}, {7}}
∆3 {{0}, {1}, {2}}, {{5}, {6}}
∆4 {{0}, {2}, {3}}, {{4, 5}, {6}, {7}}
∆5 {{0}, {1}, {2}, {3}, {4}}, {{5}, {6}, {7}}
∆6 {{0, 1}, {2}, {3}, {4}}, {{5}, {7}}
∆7 {{0}, {1}, {2, 3}, {4}}, {{6}, {7}}
∆8 {{0}, {1, 2}, {3, 4}}, {{5}, {6, 7}}
∆9 {{0}, {1}, {3}}, {{2}, {4}}
∆10 {{0}, {2}, {4}}, {{1}, {3, 5}}
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within identified dimensions, in the subsequent experiments we use its more elab-
orate derivative, i.e., averaging similarities between the corresponding itemsets
within each dimension. To achieve this, we first map dimensions to each other
according to maximal sim(∆i;∆j) between them, and then average similarities
between itemsets using the same mapping method.

These measures take values in the range [0, 1], with higher values indicating
stronger similarity: a value of 1 means that the algorithm correctly identified
the planted dimensions. We note that these measures do not account for the
varying significance of items, which is not favoring our approach, since including
low-support items in the dimensions represents a challenge, even without the
additional noise.

The evaluation of quality against noise for different parameters z is shown in
Figure 7. In gray lines we plot the 0.95 confidence intervals for average values.

We can see that regardless of the noise added, our method is able to recon-
struct almost perfectly the optimal dimensions for a wide range of distributions.
As expected, the similarity between the identified and the optimal dimensions
decreases on average with growing noise, and is significantly lower for smaller
parameters z (more uniform items distribution).

In Figure 8 we evaluate the monotonicity of f(∆) over the number of dimen-
sions k, for different values of α parameter. It is clearly visible that for small
values of α optimality gets higher (worse), while for large values every new di-
mension improves optimality (albeit, not the quality of extracted dimensions).
For our experiments we chose α = 0.5, since it provides a good balance between
orthogonality and interestingness, and allows to rely on Theorem 2 (controlling
the decomposition) for a wide range of data distributions.
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Table 4. Top dimensions for different domains in flickr and del.icio.us.
δi collection of itemsets for δi (flickr)

domain “jaguar”
1 {automobile}, {zoo}
2 {etype}, {auto}

domain “eiffel tower”
1 {paris france europe tower}, {lasvegas}
2 {night seine}, {holiday travel}
3 {architecture}

domain “pyramid”
1 {egypt giza cairo sphinx}, {louvre paris

museum glass}, {mexico maya ruins},
{sanfrancisco transamerica}

2 {france sky}, {travel teotihuacan}
3 {architecture night}, {chichenitza}

domain “hollywood”
1 {losangeles california sign},

{star film actor}
2 {us universalstudios}, {hollywoodboulevard

night}
3 {theatre party sunset}, {canon street}

domain “art”
1 {painting drawing}, {graffiti streetart},

{sculpture museum}, {newyork}, {color},
{photo}, {street}

domain “spain”
1 {barcelona catalonia}, {madrid europe},

{andalusia granada}, {seville},
{valencia}, {holiday travel}

2 {architecture}

δi collection of itemsets for δi (del.icio.us)
domain “nytimes.com”

1 {news politics}, {food health}, {science},
{article}, {business}, {technology}

domain “dpreview.com”
1 {photo camera review}, {dslr}
2 {digital}
3 {shopping}

domain “lifehacker.com”
1 {howto lifehacks tips},{software windows

tools freeware}
2 {firefox internet}, {linux utilities},

{email extensions}, {mp3 download},
{organization toread}, {photography}

domain “apple.com”
1 {mac osx software},{ipod itunes

music},{video quicktime},
{movies trailers},{iphone},{podcast
podcasting},{technology}

2 {macosx howto}
domain “microsoft.com”

1 {windows software tools},{.net programming}
2 {security xp}
3 {utilities}

domain “ixbt.com”
1 {hardware software news computers russian},

{photo photography}
2 {article}
3 {reviews}

5.4. Qualitative results on real datasets

We now report results on a qualitative evaluation of the proposed approach. We
ran our algorithms on a set of different domains from flickr, del.icio.us and
dblp datasets: “eiffel tower”, “art”, “hollywood”, “pyramid”, and “spain” for
flickr; “nytimes.com”, “lifehacker.com”, “dpreview.com”, “apple.com”, “mi-
crosoft.com”, and “ixbt.com” for del.icio.us; and “vldb”, “cikm”, “sigir” and
“www” for dblp. We use a 3% minimum support threshold on items for all do-
mains. The results of this experiment are summarized in Tables 4 and 5, where
for each domain we report the top dimensions identified by our algorithm. We
should note, that because of the fixed minimum support threshold, for some of
the domains all available items are allocated to the first few dimensions, thus
resulting in the varying number of dimensions being identified. In every case, we
limit this number to the 3 top dimensions.

The dimensions reported by our algorithm are successfully describing the dif-
ferent concepts under each domain. For example, under the “eiffel tower” domain,
we have as first dimension the Eiffel Tower in Paris and Las Vegas,5 as second
dimension holidays in Paris, and as third dimension architecture, all of which
are different concepts related to “eiffel tower”. Similarly, the “dpreview.com”
domain in the del.icio.us dataset is described by the concepts of photographic
camera reviews, digital [photography], and shopping.

The results of this experiment demonstrate that our approach can effectively
identify the diverse concepts related to some domain, in an automatic fashion.

5 The city of Las Vegas (NV, USA) hosts a replica of the Eiffel Tower.
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Table 5. Top dimensions for different conferences in dblp (by decades).
δi collection of itemsets for δi

conference VLDB (’80-’90)
1 {database}, {data}
2 {queries}, {objects}, {transactions},

{algorithms}, {applications}, {large}
3 {interface}, {logic}

conference VLDB (’90-’00)
1 {database}, {data}
2 {queries}, {objects}, {performance},

{integration}, {indexing}, {large}
3 {optimization}, {relations}

conference VLDB (’00-’10)
1 {data}, {queries}
2 {database system}, {xml index}, {search},

{information}, {network}
3 {optimization}, {view}

conference WWW (’00-’05)
1 {web}, {search engine}
2 {model}, {approach}, {content}
3 {application}, {page}, {xml}

conference WWW (’06-’10)
1 {web}, {social network}
2 {user}, {engine}, {approach}
3 {service}, {page}, {framework}

δi collection of itemsets for δi

conference SIGIR (’80-’90)
1 {retrieval information}, {system}
2 {documents}, {text}
3 {data}, {approach}

conference SIGIR (’90-’00)
1 {retrieval}, {search}
2 {information}, {documents}
3 {text}, {queries}

conference SIGIR (’00-’10)
1 {retrieval}, {search}
2 {answer prediction}, {summarization}
3 {filtering results}, {ir}

conference CIKM (’90-’00)
1 {database}, {information}
2 {queries}, {data}, {index}, {models},

{objects}, {approach}, {management}
3 {association}, {classification}

conference CIKM (’00-’10)
1 {queries}, {data}
2 {search}, {information}, {retrieval},

{system}, {text}, {web}, {documents},
{models}

3 {extraction}, {analysis}, {detection}

Finally, we observe that our algorithm provides meaningful results, even when
operating on noisy tagsets, such as flickr and del.icio.us, which contain a
large number of non-useful tags.

To counter the results shown on tagset annotations, we additionally evaluated
our algorithm on a different kind of data: publication titles of papers in different
database and information retrieval conferences from the dblp dataset. The main
difference between this dataset and flickr and del.icio.us is that keywords
are often used in combination (in order to express a specific notion or idea), and
have larger variability than tags. Moreover, noun words and verbs have different
distributions across titles, making this dataset harder to process for our method.

In this set of experiments, we apply our method in order to process the paper
titles of various conferences separately, and over different time intervals. This
analysis can show us not only what the prevalent dimensions for each conference
are and how they compare to other conferences, but also how these dimensions
evolve over time. We report the discovered dimensions during different time
intervals in Table 5.

In this case, dimensions appear as mixed sets of scientific topics and relevant
methods, mainly due to their conditional dependency (in the paper titles). Still, it
is possible to compare topics of conferences and see their evolution over time. For
instance, the 3rd dimension for VLDB demonstrates that topics have changed
from “interface” and “logic” to “relations” and “optimization” and finally to
“view” and “optimization” in the past three decades. Another example of topic
change is visible in WWW, where the initial dominance of “search engine” has
been replaced by “social network”.
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Table 6. Various itemset similarity measures.
Measure Formula Description

Binary
Inclusion


1, X ⊆ t;
0, X $⊆ t. The most strict similarity measure, which requires all

of the items to be present in the transaction

Cosine
Similarity

|X ∩ t|
||X|| ||t||

A less strict measure, which, however, performs less
well for long transactions

Jaccard
Coefficient

|X ∩ t|
|X ∪ t|

A more sensitive measure, which after the normaliza-
tion provides almost length-independent probabilities

Matched
Fraction

|X ∩ t|
|X|

A non-symmetric measure independent of transaction’s
length, which is good to handle items ambiguity

Weighted
Fraction

P
X∩t log−1 (k+1)

Pn
k=1 log−1 (k+1)

A measure similar to Matched Fraction, but items are
weighted according to their relative supports

5.5. Probability measures

Following our qualitative evaluation, we now study and compare the different
probability measures, which determine the characteristics of the identified di-
mensions. This becomes particularly relevant in the context of our optimization
problem, where a probability space affects the overall shape of the optimization
objective and its convergence.

As we point out in Section 3.1, our approach is generic and can assume various
probability measures. Probability similarity measures, different than the binary,
may become useful for domains where itemsets can be approximate or uncertain,
thus requiring less strict, or probabilistic matching between itemsets.

In this study, we explore the use of five such measures and mention their
specific properties (summarized in Table 6). Additionally, we provide a few in-
tuitions, which we followed when designing them: (i) a probability measure can
treat patterns X and database transactions t differently, according to their se-
mantics; (ii) probabilities should not be affected by a varying length of t after the
normalization; (iii) we can weight the occurrences of items from X in t, accord-
ing to their importance; (iv) very small probabilities can make entropy’s penalty
of a non-coverage or co-occurrence ineffective. We discuss these intuitions in a
more detailed way on the concrete examples below.
Binary Inclusion facilitates the selection of concise itemsets with high coverage.
It is sensitive to mutual exclusivity of itemsets, leading to compact and noiseless
dimensions. This similarity measure works best for datasets with low ambiguity
among items. For example, if there co-exist multiple spellings of the same tag
(usually non co-occurring), binary inclusion will treat them as separate itemsets
in a dimension, or even as itemsets from another dimension.
Cosine Similarity is an approximate measure, dependent both on the lengths
of a pattern and an itemset. Therefore, it tends to minimize the co-occurrence
by refining patterns (through addition of items). This process may lead patterns
in a dimension to be unusually long and with low coverage.
Jaccard Coefficient shares similar properties to cosine similarity, except that
it is more sensitive to the overlap between a pattern and an itemset.
Matched Fraction handles the ambiguity of items better than the other mea-
sures, but it may allow patterns with low-support items, if they do not co-occur
with the other patterns in a dimension.
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Fig. 9. Similarity to optimal dimensions versus noise and coverage.

Weighted Fraction is similar to matched fraction, but it weights overlapping
items according to their importance (frequency), thus approximating (but not
substituting) a coverage-based pruning behavior.
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Fig. 10. Average time to discover dimensions versus noise and coverage.

5.6. Evaluation of probability measures

We evaluated the general performance of these measures on a collection of syn-
thetic datasets generated by Algorithm 4, as well as on the real datasets.

First, we generated a database of 200 dimensions templates, each containing
two dimensions. Then, for each of the parameter combinations (coverage, noise
level) and each of these templates we generated a dataset of 1000 itemsets.
We varied coverage from 1.0 to 0.6 and noise level from 0.0 to 0.4 using 0.1
increments. Since all the 200 generated datasets use the same set of dimensions
templates, it is possible to measure and compare properties for various parameter
combinations. In our evaluation, we run each experiment on all datasets, and
report the mean values. We omit the presentation of confidence intervals for
brevity, but we note that all results are concentrated close to the corresponding
mean values. We also note that all the observed dependencies are statistically
significant.

In Figure 9 we evaluate the quality of the identified dimensions by measuring
their similarity to the optimal dimensions (used for constructing the dataset).
Binary similarity demonstrates very predictable performance, having about 100%



26 M. Tsytsarau et al.

precision in the case of 100% coverage, and then gradually loosing precision as the
parameters become less favorable. The performance is still acceptable, at 75%,
when we have high noise and low coverage. It is worth mentioning, that the
average precision is exactly 100% (0% variance) in the case of 30% noise, while
this is not true for 0% noise, as one might expect. This behavior can be explained
by the fact that our method does not include the length of itemsets into the
optimization criterion, and dimensions with smaller number of items and same
coverage are indistinguishable. On the other hand, noise helps to differentiate
the coverage for various itemset refinements, and facilitates selecting optimal
and complete dimensions.

Cosine and Jaccard similarities show more dramatic decreases in perfor-
mance. Moreover, the quality of identified dimensions is less than 100% without
noise, indicating that these measures are not suitable for itemset distributions
used in our datasets.

Matched and Weighted similarities perform more stable across the parameters
ranges (the similarity to optimal dimensions is always between 0.55-0.75), yet
they demonstrate a surprising behavior: precision grows with decreasing cover-
age. This behavior, which is statistically significant, can be explained as follows.

– Minimizing entropy forces selecting very short (or very long) itemsets which
maximize (or minimize) the probabilities;

– Both kinds of itemsets are very sensitive to co-occurrence;
– Co-occurrence decreases proportionally with the coverage, while
– Short itemsets have virtually the same coverage as the optimal ones and long

itemsets have even larger overall coverage (not in a binary sense), which de-
creases slower than the actual binary coverage (used as a parameter);

– The optimality of longer itemsets grows when the difference between coverage
and co-occurrence becomes more pronounced, with the decreasing coverage.

The above conditions result in selecting itemsets of proper length with the de-
creasing coverage.

When we couple these similarity measures with the constraint based on min-
imal coverage, we observe that quality improves (refer to the bottom graphs in
Figure 9). The results show that we can achieve a better quality for high cover-
age and low noise (up to 0.93). Quality for low coverage and high noise settings
drops to 0.75, but remains always better than without constraining the itemsets.
Note that in this case, we use Lemma 2 in order to stop refining the itemsets.
Without this constraint, longer itemsets will be preferred due to the nature of
applied probability measure, leading to solutions with less frequent and more
noisy itemsets. Even though Lemma 2 was proven for binary probabilities, we
can still use it here as a constraint, because it is based on the entropy measure,
which is still indicative of the information content of dimensions (that is, cover-
age) even when different probability measures are applied. Note that instead of
Lemma 2, we could use any hard constraint on coverage, in order to achieve a
similar behavior.

Figure 10 depicts the dependency of execution time to the same parame-
ters of coverage and noise (the reported results are again averages over 200
experiments). We observe that for binary similarity, the execution time depends
inversely on noise, and decreases along with coverage. Such improvement of exe-
cution time, when the dataset quality decreases, has a simple explanation: noise-
free and good-coverage dimensions require more iterations to converge, since till
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the end of the optimization process multiple revisions of optimal dimensions are
being concurrently optimized. On the other hand, the suboptimal dimensions
in noisy data move out of the allocated memory budget quite fast, and conse-
quently, the algorithm converges faster. However, this does not imply that the
identified dimensions are better, as can be verified with the help of Figure 9.

As can be seen in Figure 10 (top right), our pruning technique based on
Lemma 2 demonstrates a considerable improvement of execution time for the
binary method (25% on average).

In terms of performance, matched and weighted similarities (refer to the
bottom graphs of Figure 10) are faster than the rest, since in this case a memory
budget is very quickly flooded with various sub-optimal refinements, which can
not lead to any optimality improvements, therefore, preventing further iterations.

6. Conclusions and future work

Motivated by applications on repositories of annotated resources in the collabora-
tive tagging domain, we introduce the problem of diverse dimension decomposi-
tion in transactional databases. In particular, we adopt an information-theoretic
perspective on the problem, relying on entropy for defining a single objective
function that simultaneously captures constraints on coverage, exclusivity and
orthogonality.

We present an approximate greedy method for extracting diverse dimensions,
that exploits the FP-tree representation of the input transactional dataset and
clever pruning techniques. Our experiments on datasets of tagged resources from
flickr and del.icio.us confirm effectiveness and efficiency of our proposal, and
analysis of titles from dblp demonstrates a possibility of applying diverse di-
mension decomposition to text datasets as well. The assessment on synthetic
and artificially noisy data confirms that our method is able to reconstruct the
“true” dimensions, and it withstands noise.

In our future investigations, we plan to have a user study for evaluating the
discovered dimensions in different domains. A possibility is also that of develop-
ing a vertical application exploiting our method for mining diverse dimensions
in order to detect, in unsupervised and automatic fashion, collection of web sites
with diverse content from del.icio.us.
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