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ABSTRACT

The analysis of social sentiment expressed on the Web is becoming
increasingly relevant to a variety of applications, and it is important
to understand the underlying mechanisms which drive the evolution
of sentiments in one way or another, in order to be able to predict
these changes in the future. In this paper, we study the dynamics of
news events and their relation to changes of sentiment expressed on
relevant topics. We propose a novel framework, which models the
behavior of news and social media in response to events as a con-
volution between event’s importance and media response function,
specific to media and event type. This framework is suitable for
detecting time and duration of events, as well as their impact and
dynamics, from time series of publication volume. These data can
greatly enhance events analysis; for instance, they can help distin-
guish important events from unimportant, or predict sentiment and
stock market shifts. As an example of such application, we ex-
tracted news events for a variety of topics and then correlated this
data with the corresponding sentiment time series, revealing the
connection between sentiment shifts and event dynamics.

1. INTRODUCTION

The problem of monitoring the evolution of sentiment has been
studied in the context of different research areas, from social stud-
ies to reputation management [13]. However, there is still a lack
of understanding of what causes the crowd’s sentiment to change.
Some people change their attitude for personal reasons, some do
so influenced by their connections, but most likely people change
their opinion when a new evidence comes into their consideration.

By aggregating sentiments, expressed in multiple texts, and as-
sessing the result with statistical measurements, we can capture
certain changes, or shifts, in global sentiment, which cannot be
attributed to random variation [12]. Understanding the reasons
for these sentiment shifts provides insight about products, services
and policies to companies and institutions. Thus, this problem has
gained a lot of attention in academia and industry [16, 10, 4, 7].

In this paper, we propose studying the correlation of important

shifts in sentiment to news events reported by different news sources.

The objective of this paper is to exploit the current work on senti-
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ment analysis and contradiction detection, and extend the state of
the art by understanding news events dynamics and modeling rela-
tionships between sentiment changes and news events.

We observe that most news events are announced as atomic pieces
of information and their impact is not readily intelligible from the
text alone. To determine the importance and impact of news to peo-
ple, it is crucial to consider the publication dynamics of the whole
crowd, rather than only from news agencies or news media [10].
Analyzing the aggregated publication volume or user interest on a
specific topic over time can help in understanding the event’s im-
portance and dynamics. Earlier detection of such events can be use-
ful to publishers, content providers and search engines [9]. How-
ever, in certain cases social media can contribute to this volume all
by themselves (without any external stimuli, such as a news event
coming from a news agency) and also maintain a trending volume
growth over long time periods. These effects distract the observed
events dynamics and may even make them undetectable.

Our method addresses these problems by representing publica-
tion dynamics as the result of the interplay between the original
news’ importance and social response. More specifically, our mod-
eling is based on the idea that news media (or social media) can
be described by a special “response” function, which determines
the resulting dynamics of news publication (or user interest) for an
event. This opens up the possibility of recovering the original event
sequence and its varying importance over the time dimension.

The response function can be seen as a likelihood of a “delayed”
publication for an event: similar to a phone conversation, where a
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Figure 1: An example time series, with sentiment shifts (top)
correlated to news volume (mid) and events importance (bottom).
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Figure 2: Some of the events identified by our system for “iPad”.

delay in circuits creates the “echo” effect, news and social media
tend to re-publish, cite, and discuss previous articles, extending this
activity over time. In this case, the peak intensity of publications
does not always coincide with the beginning of the event, or its
peak importance. To tackle these problems and recover the original
event importance, we employ deconvolution, which is a popular
technique for improving audio or image quality [3].

Based on this method, we are able to accurately measure events
importance and response dynamics, opening up the possibility to
evaluate their impact on sentiment evolution. The results obtained
by our study indicate the existence of different types of response
dynamics in Twitter, and reveal their impact on sentiment changes.

1.1 Motivating Scenarios and Examples

We would like to make the reader more familiar with our goals
by introducing the following use cases.

Example 1: Consider a search interest [9] time series extracted
from Google for the topic “iPad”, shown in Figure 2, blue. It fea-
tures a growing number of search queries overlaid with a series of
overlapping bursts of user interest, making it very hard to detect
news events. The output time series (Figure 2, red), processed us-
ing our method, demonstrates a more vivid event separation and
dynamics, making them easily detectable. Moreover, the output
time series appears without the global trend, which is processed
alongside the deconvolution. We note, that achieving the same ef-
fect is not possible by subtracting a moving average or by using
linear regression, since the presence of peaks in time series biases
the trend estimation.

Example 2: It is known, that response dynamics is often deter-
mined by events, and can be used to classify events by their impact
and expectedness [2, 5]. For example, in the time series shown in
Figure 3, we see that the death of Michael Jackson was so impact-
ing to media, that their response lasted for over a year. On the con-
trary, the interest to Harry Potter movies has usually a two-month
period of decay. Moreover, we observe that these events have dif-
ferent decay patterns (we further discuss this point later in the pa-
per). Our method has been designed to detect and analyze different
response dynamics, making suitable for cases like the above.

Example 3: Since its early announcement, Samsung’s “Galaxy
Tab” was regarded in social media as a very fine competitor to Ap-
ple’s “iPad”, receiving mostly positive sentiments. However, the
attitude of people dramatically changed to negative at the moment
when Samsung published the price for the device. By observing
the media reaction to these and other impacting news, it becomes
possible to predict changes in their opinion more rapidly, i.e., as
soon as we are able to recognize the establishing trend dynamics.

S(t) |Raw sentiment time series £(r) |Random variable

s(1) [Sentiment feature time series p() [Correlation function

¢(t) |Eventimportance time series 0(t) |[Dirac (pulse) function

n(t) |News volume time series h(r) |Heaviside (step) function

x(1) |Aggregated (total) news volume A,8 |Lags between time series

rf(t) |Response function of a user ¥(t) |Importance decay function
mrf(t) | Response function of entire media Tp, ¢ | Response decay parameters

Table 1: Notations used in this paper.
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Figure 3: Dynamics of Google Search volume for different topics.
Extracted event importance is shown as triangles (normalized).

1.2 Contributions

To the best of our knowledge, this is the first work that proposes a
principled modeling of news dynamics in various media and news
interaction with sentiments. Our main contributions are summa-
rized as follows.

e We analyze the existing models of publication dynamics, and
discuss their foundational principles.

e We model the dynamics of news volume as a convolution
between events importance and media response function.

e We develop a method for news events extraction, based on
deconvolution with automated parameter optimization.

o We assess several sentiment features for their correlation to
news events, and the possibility of predicting their changes.

Since our framework relies on deconvolution, it can accommo-
date various response functions, suitable for different cases. We
note that our method does not require describing the news publica-
tion dynamics using a differential equation. Moreover, it is possible
to automatically learn media response functions from the data.

2. FORMALISM

We summarize the most important notations used in our paper
in Table 1 and discuss them in Section 2.1. Following that, we
introduce our problems in Section 2.2.

2.1 Definitions

We are given a time series of numeric values, s(r), which is de-
rived from raw sentiments S(¢) for a particular topic 7 and repre-
sents some sentiment feature or interestingness measure, €.g., con-
tradiction level [15]. These time series are shown in Figure 1 ( top),
where s(¢) represents the contradiction level of raw sentiments S(z).
Along with the sentiment time series, we are given the news fre-
quency time series represented by n(z) (Figure 1, middle), and the
corresponding correlation function p(s,n), which takes both time
series as input parameters and computes a real-valued correlation
coefficient. We note that p(s,n) can be a special function adapted
for particular measures used to compute s(7) and n(¢). For instance,
n(t) can be a rather bursty time series, where the notions of mean
value and deviations from the mean make no apparent physical
sense. Thus, it can be more effective in this case to consider a
correlation measure based on derivatives, or on bursts alignment.
Finally, we use the event importance time series e(¢) to model event
dynamics, and response functions rf(¢) and mrf(t) (represented in
Figure 1, bottom) to model social and news media behavior. We
describe these functions in more detail in Section 3.



2.2 Problems

We are given a collection of sentiment feature time series s(z)
and news volume time series n(¢) for various topics. For a par-
ticular topic 7', we want to detect the most important sentiment
shifts according to s(¢), and identify the news events, which have
caused them, so that it will be possible to predict future sentiment
changes on that topic upon observing and analyzing relevant news
events. This general problem can be decomposed into a set of sub-
problems with the scopes of news-sentiment interaction and news-
events interaction respectively.

News and sentiments interaction can be coarsely modeled by cor-
relation. However, the problem of finding dependencies between
sentiments and news is inherently complex, since sentiment shifts
may be correlated not only with the news on the same topic, but
also with several other (related) topics.

PROBLEM 1. Given s(t) for a topic T and a correlation mea-
sure p(s,n), determine a list of topics T;, whose news time series
n;(t) correlate with s(t). For each correlation pair, determine a
time lag between the two series.

After determining a substantial amount of news events, which
caused sentiment changes, it may be possible to predict shifts in
sentiment for related topics by extracting features of the recognized
event and using them as input to a classifier model. Related topics
can be determined by referring to the list of news time series, which
are correlated with the given sentiment time series. The classifier
model can be trained on a dataset of confirmed causality cases be-
tween news events and sentiment shifts. Alternatively, it can use
automatically extracted correlation pairs. We note that this prob-
lem requires a deeper study with complex causality modeling, and
we defer it to a future study. In this paper, our goal is to explore
the event dynamics in different media, and establish the connection
between events and sentiment shifts.

3. BACKGROUND AND RELATED WORK

There exist approaches that tackle specific aspects of our prob-
lem in various domains, yet, they cannot be combined to solve the
problem that our approach solves. In this section, we provide a de-
tailed evaluation of their properties and design principles, and use it
to establish a theoretical and empirical background for our method.

To the best of our knowledge, there is currently no other system,
or method, capable of automatically detecting impacting events and
identifying properties of their dynamics from news publication vol-
ume. There exist only few news tracking methods which are able
to recognize different event types, but neither of them provides nu-
meric characteristics useful for event modeling and sentiment pre-
diction purposes, such as a correct time framing and importance
level of an event. Still, they are not capable of distinguishing adja-
cent events when their publications are highly overlapping. Finally,
the existing dynamics models target only individual news propaga-
tion media (e.g., blogosphere, microblogging, youtube), and have
not been generalized (or tested) on multiple domains.

3.1 Event Models

Lehmann et al. [5] study collective attention in Twitter and its
propagation through user networks. They measure the aggregated
volume before, during and after the event’s peak by subtracting
the baseline level of attention (computed using a sliding window).
Based on the relationship between these three values, they define
four classes of news events according to their expectedness and
impact. Accordingly, events can be: a) expected impacting, where
there is a growth of volume before an event (anticipation) and a

decay afterwards (response); b) expected non-impacting, where the
event’s outcome is of a lesser concern than the event itself; ¢) un-
expected impacting, featuring an instant appearance and a lengthy
response; d) unexpected non-impacting or transient, where neither
the event nor its outcome are important to the media;

Alternatively, Crane and Sornette [2] consider events as having
internal (endogenous), or external (exogenous) origin, and being
of either critical, or sub-critical importance to social media. We
observe that exogenous critical and exogenous sub-critical event
types in their classification coincide with unexpected impacting and
unexpected non-impacting event types from [5]. In addition, the
authors also introduce a concept of endogenous events, which is
broadly similar to memes in social media.

While these classes capture events semantics on a very good
level, a more detailed analysis of news dynamics requires reliable
extraction of peak shapes and proper modeling of social media. The
first requirement is important since publication volume often con-
tains noise and (evolving) background level, which masks individ-
ual peaks. The second requirement is necessary to distinguish be-
tween the volume generated by endogenous factors (imitation) and
that generated by exogenous factors (news importance). Therefore,
we investigate the most recent models of news dynamics and their
ability to correctly describe and predict news volume.

3.2 Meme Model

Memes in social media are the outbursts of publications on some
topic, which can be assigned to the “endogenous critical” type of
the above classification. Since they have no particular external driv-
ing force or impact on sentiment, we want to distinguish them from
“expected impacting” events. The topic of news dynamics in social
media (and memes in particular) was studied by Leskovec et al. [6],
who propose a model of meme and news dynamics based on three
assumptions for the interaction of news sources: imitation, recency
preference and concurrency. The imitation (endogenous) hypothe-
sis assumes that news sources are more likely to publish on events
that have already seen large volume of publications. The recency
hypothesis marks the tendency to publish more on recent events.
Finally, the concurrency hypothesis states that news sources have a
limited capacity and choose only one event at a time to report on.
The authors express the imitation and recency preferences through
the functions of a combined news volume, f(x), and time passed
since the beginning, y(¢):

() = % = e 0 m
t
In the above equation, dx/dr represents the amount of publications
at time ¢, and x represents the total amount integrated since the
beginning. We note that whereas equation (1) is based on the as-
sumptions given in [6], it is different to the equation studied in that
paper, where x + dx/dt were mistakenly used as n(r)!.

Leskovec et al. demonstrate that in the simulated environment
consisting of concurrent news sources, both time and volume com-
ponents are necessary to generate the oscillating nature of news vol-
ume. However, repeating this experiment with the original meme
time series revealed a substantial deviation between predicted and
observed volumes, when the same assumptions (namely, global
time and volume) were used. First, the global volume (accumu-
lated since the beginning of the time series) is not useful to predict
any but the very first peak. Second, the global time (either from the
beginning of the time series or from the first peak) is both arbitrary
(which peak is the first? when a time series begins?) and can not
capture subsequent peaks. This said, we assume that the authors

1. Leskovec. Personal communication, June 2013.



implied the global nature of their model with respect to parame-
ters, while the time and the volume were local for every seeded
event. Nevertheless, we believe that equation (1) intuitively cap-
tures some of the properties of news dynamics, and is therefore
worth considering.

3.3 Stochastic Multiplicative Model

Asur et al. [1] propose a model for news dynamics, described
by stochastic multiplicative process, driven by independent random
variables (noise) and a time-decaying variable (recency). Based on
this model, they predict a linear initial growth of publications vol-
ume, and a log-normal distribution of this volume over different
time series. Both hypotheses are supported by an empirical evalua-
tion on Twitter [1] and Digg [17] data. However, this model is not
useful for prediction purposes, since it relies on a mixture of ran-
dom variables (located at subsequent time intervals). Even though
it is possible to infer values of these variables for past time inter-
vals, the hypothesis that they are independently distributed forbids
estimation of subsequent variables.

A closer look at this model reveals that it is formulated in a re-
cursive manner, where the total volume accumulated by a time tick
t +dt is expressed through the volume at time 7, i.i.d. random vari-
able &(¢) and time-decaying component ¥(¢):

Xt dx = [1+y(0)5(1)]x 2

To analyze the proposed dynamics, the above equation can be trans-
formed into a more convenient form (remember though, that dx/dr,
x and ¢ remain discrete):

dx

n(r) =0 = Y& @)

Now it can be clearly seen that the volume of news published at
time ¢ depends on the previously accumulated volume x, discounted
by ¥(¢), and on random variable &(r). Although the dependency
of (3) on random variables forbids its analytical derivation, we ob-
serve that it is very similar to (1), and can also be represented as the
product of exponent and time factors, especially in the case when
&(t) are not i.i.d.

Another important observation in favor of the continuity of & (¢)
is that these variables may represent an exogenous factor, the news
importance e(t), which pushes volume up and counteracts the de-
creasing trend of y(r). Comparing (1) and (3) under this perspec-
tive, it becomes evident that they are essentially the specific cases
of a more general model, multiplying endogenous and exogenous
factors. Our model differs from these two by considering a convo-
Iution between endogenous and exogenous factors.

3.4 HawKkes Poisson Process Model

A study of social system’s dynamics by Crane and Sornette [2]
comes the closest to our work with regard to a modeling based
on user response. The authors study dynamics of book sales [8]
and social content [2], based on a widespread model of hyperbolic
(long-memory) user response function rf () ~ 1/t'7%, 0 < 6 < 1.
Taking the ensemble average of a Hawkes Poisson Process driven
by this response function and a spontaneous rate e(t), they express
n(t) conditional on itself and on an average branching ratio p:

) =e(t)+u [ rfle—on(ode @

Correspondingly, equation (4) takes the form of the convolution
between event importance e(¢) and a media response kernel mrf(t),
considered as the output of (4) in the case when e(t) = d(¢) :

Aggregating Applying | Detecting
Volume Deconv. Events News
Extracting Aggregating Detecting . _
Sentiments Sentiments ‘ | Changes Sentiments

Figure 4: Interaction between key components of the system.

n(t) = /jmmrf(tf’t)e(’t)dr )

Summarizing the above studies, we see that the imitation factor
does not play as important role in news dynamics as in meme dy-
namics. Moreover, [1] and [5] observe that propagation of news
through user networks is not epidemic, i.e., it rather depends on
news importance than on numbers of followers of users who spread
the news. Therefore, we consider publication likelihood being de-
pendent more on recent volume than on past volume, deviating
from the purely endogenous model. In addition, we consider that
news events have continuity and varying importance, which also
affect the publishing dynamics (exogenous assumption). These as-
sumptions require a more complex modeling of news dynamics, but
result in more accurate models, which we discuss in the following
sections.

4. PROPOSED METHOD

Our task requires processing two different kinds of data, i.e., sen-
timents and news volume, which come from different sources and
also at very different rates. In Figure 4, we show the overall ar-
chitecture of our system by dividing its major components into two
main layers: News Layer and Sentiment Layer.

In the News layer, we aggregate the volume of the news for a
topic into a time series, which will be further analyzed to detect
news events. To detect a news event and extract its features we per-
form a deconvolution of news volume time series (or its fragment).

The Sentiments layer aggregates sentiments over time for a spe-
cific topic, and detects interesting changes, which can be contradic-
tions, outbursts of sentiments’ volume, or other situations.

4.1 Detecting Impacting Events

As we already noted, not every kind of publications outbursts is
caused by external news. For instance, “endogenous critical” and
“expected impacting” events may produce a similar response in so-
cial media, yet only the latter one is relevant to our study. More-
over, not every kind of news dynamics has an impact on sentiment,
so we want to distinguish them at a fine level of detail.

Following these observations, we introduce our model for social
media and news dynamics. We start with the description of basic
social media responses and our representation of event importance.
Then, we introduce a novel method to extract important properties
of events, which is based on deconvolution, and propose methods
to estimate the parameters for this process.

4.1.1 Modeling News Dynamics

‘We model the observed news dynamics (frequency of publications)
as a response of social media to external stimuli. We represent the
output as a convolution of two functions: the news events impor-
tance sequence and the media response function:

n(t) = / T rf (1) et — v de ©)

—oo



where mrf(t) is the media response function (in general, decaying),
and e(t) is the actual event sequence, which is unobserved. We
depict these functions in Figure 1, bottom.

However, in order to recover the original event sequence, we
need to perform a deconvolution of news frequency time series,
for which we should know the exact shape of mrf(¢). To model the
behavior of media, we propose using a family of normalized decay-
ing functions, which have the aggregated volume equal to 1.0 and
which are defined on ¢ > 0 using the Heaviside step function h(t).
For instance, these functions can be linear, hyperbolic or exponen-
tial, as demonstrated in Figure 5 and formalized below.

linear mrf(t) = (%0 — %) h(t)h(tp—1) )
hyperbolic ~ mrf(t) = h(r) O‘T—;l ('t—:o) - (8)
exponential mrf(t) = T—loefr/ Pn(r) 9

We note, that linear response has the shortest effect and hyper-
bolic response has the longest effect on time series if we consider
comparable values of decay time 7y, which takes on a role similar
to the half-life of radiation decay.

We consider decaying response functions, because news events
become obsolete and cease being published very soon after their
appearance. Another possible explanation for this phenomenon is
the saturation of content providers: the likelihood (the temporal
rate) of news publication in the absence of events activity is in-
versely dependent on the number of news, which have been previ-
ously published. Moreover, the shapes of response functions con-
vey additional information regarding impact and expectability of
events, and also reveal properties of the media.

Linear Response (7). In the case of a linear response, the probabil-
ity of publishing on an event linearly decreases with time, and the
media cease publishing after a finite cutoff time 7. Linear response
is characterized by a constant rate of content generation, and results
in nearly linear dynamics of news volume for spike event shapes.
We are interested in evaluating it since this kind of dynamics was
observed by [1] for event buildups.

Exponential Response (9). For the exponential response, the rate
of decline is proportional to the current probability value at any
moment, hence the decay is initially more rapid than the linear,
but becomes less pronounced towards the end, with the probability
reaching 0 in an infinite time.

Hyperbolic Response (8). In the case of hyperbolic (power law)
response, the probability follows a more pronounced decay com-
pared to exponential (the decay rate is usually quadratic to the cur-
rent value). It decreases very rapidly when the time 7 is small, but
has a heavy tail afterwards. Here, parameters & > 1 and 79 > 0 con-
trol the sharpness of a response. The hyperbolic response is very
interesting since its amplitude can reach infinity in a constant time
(unlike the exponential) and in the case of & ~ 1 its rate of decline
is proportional to the square of its current value.

Symmetric and Asymmetric Responses. Aside from being im-
pacting or non-impacting, events can be anticipated or unexpected.
These properties of events manifest themselves through the ob-
served response of the media. For instance, unexpected events will
have no buildup of volume preceding the event (consider earth-
quakes), and expected non-impacting events will have abrupt de-
cay of volume upon their end (consider football finals). Therefore,

s linear (7) s
10 T0=1.0 10
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=05 a=2 | 1w
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magnitude, dB
=
o
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Figure 5: Media response functions and their frequency domain.

response functions for a particular event can be either asymmetric
(Figure 5, top), featuring only buildup or only decay, or symmetric,
featuring both sides, not necessarily of the same shape (Figure 5,
middle). Both types are important to recognize, since they allow to
reason about events semantics.

4.1.2 Modeling Events Importance

We model events by using a piecewise linear approximation of
event importance e(¢). This model introduces a set of meaningful
parameters, that can succinctly describe event importance, namely,
buildup and decay rates, longitude of an event and its maximum im-
portance level. We show the most basic shapes of event importance
in Figure 1 (bottom) and describe them below. Accordingly, there
are rectangular (Event 2) and triangular (Events 1 and 3) models,
which can also merge to trapezoid-like shapes (Event 3”).

The Rectangular model of e(¢) is suitable for long-duration events
with roughly constant importance and coverage, like “Olympics”.
This model is represented using a step function with the constant
height of ng and the longitude 7.: e(t) =n,0 <t < 7.

The Triangular model adds the parameters of buildup a and decay
b, when e(t) is of varying importance to mass media during its
period. Accordingly, we can represent it using a piecewise linear
function, which originates at time # = 0, and reverses its direction
att =tg: e(t) =at,0 <t <ty; e(t)= (a+b)tog—bt,t>ty.

We show the shapes of the resulting news functions in Figure 6.
In this example, we used news events of three different longitudes
(7. =0.25, 0.5 and 1.0 day) and selected the parameters of response
functions so that n(t) would reach the same amplitude after 0.5
days for an event with a constant importance (as can be seen in the
second event). We observe that a varying time length of events in
this model results in varying sharpness of news frequency peaks.
Correspondingly, short-time events have a shorter period of actu-
ation and long-time events eventually result in the saturation of
news media. In all cases, the period of relaxation of news media
is mainly characterized by the shape of the corresponding media
response function.

According to our model, the height of the event on the event se-
quence e(t) indicates its importance, while the length describes its
longitude. Events can be of constant importance, like those shown
in Figure 6 (left side), or of varying importance, shown in Figure 6
(right side). In both cases, the time longitude as well as the maxi-
mum importance can be different for different events even for the
same topic.
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4.1.3 News Deconvolution

Deconvolution is the opposite process to convolution [3]. With this
procedure we are able to recreate the original event importance se-
quence, as shown in Figure 1, bottom. Moreover, deconvolution
helps to detect and separate nearby, but distinct events, which may
otherwise be considered as a single event due to their overlap.

However, deconvolution can be expressed in the functional form
only for a limited number of response functions (e.g. exponential,
linear), while our framework is designed to support any kind of
finite integrable functions. Therefore, we take an approach to de-
convolution, which relies on the frequency domain of the signals,
as explained below.

The Convolution theorem states, that the Fourier transformation
of a time-domain convolution of two series is equal to the multipli-
cation of their Fourier transformations in the frequency domain:

FAn(t)} = F{e(t) xmrf(t)} = F{e()}- F{mrf(t)} ~ (10)

According to this equation, for every cyclic frequency @, we can
obtain Fourier coefficients e(®) of the original series e(¢) by di-
viding Fourier coefficients of the observed series n(t) by the corre-
sponding coefficients of the response function mrf(¢). During this
process, we can also remove global trends from the time series by
lowering the values of low-frequency components. Finally, we ob-
tain a time-domain representation of e(r) by performing an inverse
Fourier transformation:

e(t) = 7 He(@)} = 7 Hn(0)/mrf(@)} (D)

In this paper, we use the analytical Fourier representations of
the three example response functions considered in our framework,
although it is possible to use numerically-computed Fourier coeffi-
cients of any arbitrary decay function (symmetric or asymmetric).

Our method is also able to distinguish between symmetric and
asymmetric mrf(t), and use the appropriate one for deconvolution.
For instance, let’s consider the differences between the two models
for the “Solar Eclipse” event from Twitter, illustrated in Figure 7.
In the left part of the figure, we observe that the main event (shown
in red) has a duration of one day, and was also discussed the day
after (when photos were published). The symmetric deconvolution
was able to extract these parameters and correctly match (green
color) the observed volume of publications (blue color). For the
asymmetric deconvolution, shown on the right, if we consider only
the decay part of mrf(t), we end up with the incorrect estimation
of event’s time and duration and also less correct prediction of the
volume (green color, right side).

Symmetric mrf(tﬂ Asymmetric mrf(t)“
deconv-hyp 0.8 deconv-hyp
deconv-out deconv-out

— volume — volume

—t 0.0 -
05.07.2009 12.07.2009 19.07.2009 05.07.2009 12.07.2009 19.07.2009

Figure 7: Symmetric (expected) and asymmetric (unexpected)
response functions applied to “Solar Eclipse” event from Twitter.

Deconvolution with small decay parameters is fail-safe and loss-
less as long as event shapes are not approximated or event impor-
tance is not becoming negative. However, only a high level of
deconvolution helps to recover the original event importance, and
to represent its dynamics using the desired model. Since higher
than necessary deconvolution may result in smaller events becom-
ing outcast by a “shade” from their preceding larger neighbors, we
need to apply the largest possible, but still adequate level of decon-
volution, using the parameter estimation as described below.

4.1.4 Parameters Estimation

A conventional method for estimating parameters of response
functions relies on observing event decay shapes under the assump-
tion that events are singular in time (i.e., they can be represented
by Dirac’s delta function). Parameter estimation in this case can be
done by regression parameter fitting, following the peak detection
and extraction of their slopes. First, we normalize the ascending
or descending slopes of time series and then analyze them using
either linear, power-law or exponential regression. Next, we take
the average of the extracted parameters across the peaks, weighting
them by regression error and level of importance.

Nevertheless, regression fitting can only be achieved for a few
known response functions. In order to learn the parameters of any
response function, we propose to optimize them over the fitness of
our model for the entire time series (of news volume for a specific
topic). A direct measure of fitness can be computed by averaging
fitting errors of piecewise linear regression of event importance.
However, this measure only improves with more powerful decon-
volution, as more and more events obtain spike shapes, thus de-
feating our purpose. Therefore, we optimize the parameters using
residual deconvolution errors, as follows.

First, we perform a deconvolution of n(t) using a chosen re-
sponse function with an initial set of parameters. Then, we approx-
imate the resulting time series using a piecewise linear function,
obtaining triangular e(¢). Following that, we repeat the process of
deconvolution in the opposite way: convolving the approximated
series with the same response function. Finally, the output is com-
pared to the original time series, and the error of fitting is calcu-
lated. If the error of fitting improves by flipping to asymmetric
response function, this type becomes chosen. The whole process
repeats until the optimal parameters are identified. It is also possi-
ble to determine the best response function type for every peak and
process the corresponding time interval individually. This choice
can be based on the best fitness, or on the preferences of the given
media and topic. In this paper, we apply deconvolution to the whole
time series, to compare different response functions and the stabil-
ity of their parameters, leaving per-peak processing for the future.

The proposed method is effective for identifying parameters for
any event models and response functions. It is also efficient thanks
to a concave error surface, where for small decay times the error
is dominated by the event’s model approximation, and for large
decay times the error is caused by a longer than necessary response.
Therefore, we apply gradient descent for estimating parameters.



4.2 Detecting Sentiment Shifts

In this paper, we are interested in sentiment measures that are
sensitive to particular kinds of sentiment changes and that can also
be correlated with events. Nevertheless, not many studies propose
a suitable measure for opinion shifts, which can be analyzed coher-
ently with the news time series in order to extract correlations. The
particular methods which can be adopted to our problem are senti-
ment volume [10] and contradiction level [15], discussed below.

4.2.1 Sentiment Extraction

We extract texts for a particular topic using the Apache Lucene
index, by querying it for documents that contain a given topic’s
keywords. Analyzed texts are first cleaned from markup, such as
urls, user names, hashtags, and quotes in the case of tweets. Then,
we use the SentiStrength algorithm [11, 10] to extract sentiment
polarities of texts. Obtained sentiment labels S are scaled to be in
the range [-1;1], and later aggregated as real values.

4.2.2 Sentiment Volume

Thelwall et al. [10] evaluate how twitter sentiment and its vol-
ume are changing before and after news events. By analyzing the
peaks in sentiment, they show that the volume of negative senti-
ment is increasing just before an event, while there is an increase
of positive sentiment at the event’s peak intensity. Their results
indicate that external events usually lead to changes in sentiment
and, more importantly, increase the contradiction level. One more
observation made by the same authors is that the changes in sen-
timent are particularly small, making it necessary to apply more
sophisticated methods for shift detection and properly align these
small fluctuations with the underlying news time series.

Sentiment Volume is defined as the amount, or the sum of senti-
ments of the same polarity, expressed within a specified time inter-
val. It captures bursts of a particular opinion polarity, e.g., positive:

s(@0) =Y. S7 (1), or s(t) =15](t) (12)

4.2.3 Contradiction Level

Another suitable measure for sentiment shifts is the sentiment
contradiction level [14, 15], which is based on the first statistical
moments of sentiment values. The intuition behind this measure is
that when the average sentiment value g is close to zero, while the
sentiment variance GSZ is high, then the polarization of sentiments
is high, indicating contradiction and diversity. Combining pg and
652 in a single formula, the authors propose the following measure
for contradictions:

V-0

O+ ug

s(1) W(n) (13)
where n is the number of sentiments, ¥ # 0 is the normalizing con-
stant, and W is a weight function that takes into account the sig-
nificance of sentiment statistics involved in the calculation [15]. A
distinct property of this measure is that it detects both changes of
sentiment polarity as well as temporary shifts of sentiments.

4.3 Correlating News and Sentiments

We observe that different sentiment and news measures require
different correlation methods p (s, n, §), which also consider a time
lag between the time series, 6. In the case of continuous time se-
ries, which usually deviate around their average values, we can use
the Pearson cross-correlation coefficient, which is defined as the
normalized covariance of two time series:

Volume

PosVolume
05 WMW

08.2009 09.2009 10.2009 11.2009 12.2009

Figure 8: Correlated news and sentiment series from Twitter for
movie “Hangover”, where bursts are extracted using deconvolution.

_ Cov [n(t),s(t+ 8)]

14
0,0, (14)

p(s,n,8)
However, Pearson correlation is intended to determine a linear

dependency between variables, which is hardly observable for bursty
time series such as unexpected events or sentiment contradiction.
Such time series do not have a definite average level, around which
the movement is happening. Instead, their values are outbursting
from the minimum level at some points in time. This behavior re-
quires a special correlation technique, which takes as input only the
bursty points within a specified time interval. Let’s assume that sets
of bursts for sentiment and news are denoted as S; and N; respec-
tively. Following this, any kind of binary similarity measure can be
applied, for example cosine similarity pc or Jaccard coefficient py:

PC(S n 6) _ |St+5me| _ |S[+5me|
o (IS5 1N:]” |S1+-6 UN:|

In the above equations, intersecting bursts are determined accord-
ing to some proximity region &, and in addition to counting the
number of overlapping bursts, we can apply burst weighting, for
example based on their magnitude.

While we can determine bursts of sentiments using simple meth-
ods, events require more robust methods, as can be seen in Figure 8,
where a group of two (out of three) events in the right part of the
time series are located on the monotonic slope of n(t), and are not
detectable by thresholds, or by derivative tracking. Remarkably,
deconvolution can recover these and other “hidden” events and re-
sult in a more accurate correlation. It is also crucial to consider the
level of event importance, obtained after the deconvolution, rather
than the original news volume, as can be seen in Figure 2, where
iPad 1 and iPad 2 announcements had different importance to peo-
ple (red) but almost the same volume (blue) due to a trend. Thus,
we select n(r) peaks by their level of importance, that yields the
highest correlation.

We also consider that sentiment changes may be preceded or fol-
lowed by news events with some time lag. In order to align the two
sequences, we have to determine this time lag, which is different
for different topics and media. Here again, deconvolution helps
identifying correct event timings and, therefore, time lags. It shifts
peaks backwards in time to the extent determined by a response
function and event dynamics. The optimal time lag A can be deter-
mined by maximizing the cross-correlation coefficient over a range
of positive (reaction) and negative (anticipation) time lags o:

A = argmax [p(s,n,d)] (16)
1)

pf(svn75) (15)

An unconstrained optimization is inefficient, since it requires com-
puting correlation for every parameter 8, whereas a heuristic opti-
mization can produce wrong results, when news time sequence is
a repetitive process. To overcome this, the absolute time lag must
not exceed the first maximum of the news autocorrelation function.



S. EXPERIMENTAL EVALUATION

The main goal of our experimental evaluation is to study the
properties of the real data and evaluate the proposed and existing
models and their assumptions. We analyze the news dynamics and
evaluate our models on several social media datasets with different
characteristics. The agenda of our evaluation is the following:

e Compare accuracy to previous models;
o Evaluate the proposed response dynamics;

o Check the correlation of events and sentiments;

Our Meme dataset [6] consists of the top 100 meme time se-
ries? and approximately 500 peaks, that represent various events of
endogenous nature, which circulated in the blogosphere in the pe-
riod from August 2008 to May 2009. While some of the analyzed
memes have a connection to real news events, the largest part of
them are just sticky phrases gaining popularity from time to time.
The analyzed time series have a granularity of aggregation of 4
hours and varying lengths (typically, one month).

For our Twitter dataset, we selected 30 topics3, which featured
the most prominent events for the period of half a year, from June
2009 till December 2009. The dataset contained approximately 7
million tweets in total and over 400 peaks during the events. We
extracted time series of volume and sentiments using a 1 day aggre-
gation. Twitter data has very different properties when compared
to the output of blogs or news media. First, this platform has a
distinct bias towards current events and temporal activity of users.
So usually there is no accumulated interest, since any activity fades
out to zero after a short time. Second, there are different types of
dynamics present at the same time: daily activity and trending ac-
tivity. Whereas the first one is largely driven by work schedules
in different time zones, the second one demonstrates a more clear
pattern of event interest and is our main subject.

To compare the accuracy of our models for different media, we
perform news volume deconvolution using automatically extracted
parameters (as described in Section 4.1.4), and then quantify the
accuracy of fitting in a way that is comparable across different time
series (and across different peak heights). Accordingly, errors in
fitness are measured as RMSE for every peak, and then normal-
ized by its height, so that the results can be averaged and compared
across peaks.

5.1 Evaluation of Meme Dataset

Taking into account our findings in Section 3.2, we used dynam-
ics equation (1) to predict the values of every peak by applying
it on the volume and time accumulated since the peak’s start time.
Considering the linear form for the imitation factor expressed as
f(x)=a+bx,and 6(t) =1~%* (o > 1), we have:

dx _ —a
a+bx ct™ “dt
L la+bx] = £1'"%4C
b I
f@) =a+bx ~ exp({25117%)
d. b —oty.—
n(t) = d—f ~ exp(l_catl oy« (17

In Figure 9 (a) we demonstrate an example prediction of this
model in the case when o = 3.3 and bc = 3.3. We observe that
the first peak’s buildup and decay can be matched using these pa-
rameters only approximately, while the shapes of all the subsequent
peaks cannot be matched at all.

2The complete meme dataset is available at: http://www.memetracker.org/
3The list of selected topics is available upon request.
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Figure 9: “No way, no how, no McCain!" meme from [6]. Peaks
are approximated by meme model [6] using fixed (a) and fitted (b)
parameters, and by deconvolution using fixed parameters (c).

Fitting equation (1) to individual peaks using least squares re-
gression yields much better accuracy for small peaks (Figure 9
(b)), but does not match the sharpest peaks, where buildups and
decays seem to require different model parameters. In the above
experiment, fitting employed four parameters, which were indepen-
dent among peaks and had different values for every peak. Two of
these parameters are effectively stretching the model to accommo-
date real data: base level (a) indicates the volume accumulated be-
fore the peak, and scale (b) serves the purpose of fitting the peak’s
height, to counterweight the normalization effect caused by divid-
ing on volume in equation (1). Normalizing the predicted volume
over the top 100 time series (the concurrency factor) did not yield
any improvement neither for fixed, nor for individually fitted peak
parameters. This can either indicate that the time series evolve in-
dependently of each other, or that the top 100 time series are not
sufficient to cover the whole publishing activity.

Overall, we observed an irregularity of meme model’s parame-
ters for different peaks of the same time series. In contrast, our
deconvolution model uses a single set of parameters for the en-
tire time series, which are automatically estimated by performing a
peak slope regression (using a single or multiple peaks). Figure 9
(c) demonstrates the output of a hyperbolic deconvolution model,
which fits the time series consistently across all peaks. The output
in this case is the time series, constructed by performing an inverse
process of convolution over the deconvolution-estimated time se-
ries of event importance.

5.1.1 Evaluation of Accuracy

First, we compare the observed error distributions between the
meme and hyperbolic deconvolution models in Figure 10. A hy-
perbolic deconvolution model was chosen as the closest match to
a meme model regarding the predicted shapes of peak slopes (re-
fer to Equation 17). Moreover, our model used triangular e()
shapes, automatically extracted using a deconvolution with param-
eters T = 0.8 days and o = 2.0, fixed for all time series. The de-
convolution model reached an average RMSE of 0.11 with the stan-
dard deviation of 0.09. The meme model demonstrated an average
RMSE of 0.22 with standard deviation of 0.09. Taking into account
the artifacts of data aggregation, noise and deviation of peak start-
ing times, the error level of 0.2 can still be considered as acceptable
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Figure 10: Accuracy of meme (fit) and deconv (fixed) models.
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Figure 11: Deconvolution models accuracy for Meme dataset.

for the meme model. Nevertheless, it fitted more than half of the
evaluated peaks with larger errors than our model, which used a
single set of parameters for all time series.

We note that choosing smaller decay times results in smaller dif-
ferences between event importance (deconvolved volume) and vol-
ume. On the other hand, this introduces more errors to the esti-
mation of e(r) shapes (performed by piecewise linear regression)
and therefore results in larger errors for the output approximation.
Choosing larger decay times, can also induce approximation errors
due to the omission of smaller peaks from e(z). Nevertheless, the
output of our model is stable with respect to parameter variation (as
demonstrated by our experiment in Figure 10, where fixed param-
eters still yield a good approximation quality). Thus, it is possible
to perform deconvolution using the estimated parameters achieving
nearly the same performance as when using the optimal parameters.

The performance of deconvolution models on meme dataset is
depicted in Figure 11. We observe that the linear and hyperbolic
deconvolution models reached the best accuracies with average er-
rors of 0.03 and 0.05 respectively, and standard deviations of 0.06
(thus, the difference in performance is not significant). However,
while the linear model had an average parameter T of 0.5 (very
small), the average parameters T and o of the hyperbolic model
were 0.36 and 2.8 respectively. A more careful evaluation of the
estimated parameters reveals that the hyperbolic model has almost
the same parameter T of 0.36 40.03 across all topics in the dataset,
but quite different o of 2.8 £0.96. A similar pattern is observed
for the triangular model, where a single decay parameter 7 has val-
ues in the range 0.5 £ 0.3. The exponential model demonstrated an
average RMSE of 0.11 with standard deviation of 0.09, almost the
same to our previous experiment with fixed parameters, but in this
case the estimated parameter T was (on average) equal to 0.65, thus
trying to approximate a usually much steeper hyperbolic response.
From these observations we conclude that meme data is more likely
to have a hyperbolic response pattern. But while the dominance of
linear and hyperbolic response functions is clearly visible, their pa-
rameters are significantly different from peak to peak.

5.2 Evaluation of Twitter Dataset

We analyzed 30 time series from Twitter using 1d aggregations.
The results of our evaluation, presented in Figure 12, demonstrate
a good performance for the linear model, though the average pa-
rameter T was 2.5 with a deviation of 0.9, indicating that a rather
high fraction of peaks had small 7. Since in our dataset we usually
have a small number of samples per peak (8-10), it is not possible to
fully verify the hypothesis of the linear model. The obtained results
only prove that most events have a fast rise and drop of importance
around their peaks. The two other models (hyperbolic and expo-
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Figure 12: Deconvolution models accuracy for Twitter dataset.

nential) have more powerful estimated decay parameters than the
linear model but also larger errors (& =2.4+0.5, 7, = 1.3+0.6
and 7, = 1.540.7). Finally, we observe that both models encoun-
tered large variations of the error, probably indicating the existence
of different kinds of response dynamics for topics or different re-
sponse parameters for various events during the same time series.

5.3 News and Sentiments Correlation

In this section we evaluate correlation between sentiment shifts
and events, where events are extracted with the help of deconvo-
lution, and sentiment shifts are determined using the measures of
positive and negative sentiment volumes s*(¢) and s™(), and senti-
ment contradiction level C(r).

To evaluate the correlations, we picked 22 out of 30 selected
topics in our Twitter dataset, which contained a sufficient number
of events, and were suitable for computing bursts correlation. The
results of our evaluation are summarized in Table 2, where for each
time series and sentiment measure we present the values of Cosine
similarity pc and time lag A of the best correlation. Additionally,
we report the best-fit response dynamics "Type", and the average
number of overlapping bursts "Num". We do not report Jackard
coefficient py, since for highly-overlapping sets it shows the same
behavior as pc.

We observe that negative sentiments demonstrate the highest over-
all correlation, followed by contradictions and positive sentiments.
Taking a closer look at the data, we see that positive sentiments are
usually preceding the expected events (correlated with a negative
lag), whereas negative sentiments are observed after or during these
events (positive lag). For instance, such behavior is observed in our
table for events surrounding the movie sequels “Hangover”, “Ice
Age” and “Harry Potter”, which had positive expectations before
(during) the event, and negative sentiment afterwards. Anticipated
events like “LCROSS”, “Super Bow]” or “Leica” also have positive
expectations, but in this time connected to events. Another group
of anticipated events, like “CERN LHC”, “Beer Summit”, “Aquila
Summit” and “Transformers” features negative expectations and
positive outcomes. Interestingly, heavily promoted events like new
camera announcement for “Leica” on 09.09.2009, or availability
of “Google Wave”, have initially positive sentiments, but then re-
ceive a mixture of controversial opinions during their peaking inter-
vals. In addition, some of unexpected events, like “Iran Election”,
“Iraq”, “Obama”, “Gmail Blackout” seen a bump of negative senti-
ments after their appearance, while Michael Jackson death flipped
initially controversial (negative and positive) sentiments to positive.

Overall, we observe that the particular types of sentiment changes
are connected to the particular behavior of events, and the same is
true for their news dynamics. While different topics and media
can be better described with different response functions, unusual
events can still occur in the course of time, affecting sentiments in
their own way. Therefore, it makes sense to organize the depen-
dency modeling component to operate at the level of events, rather
than topics. This component still needs to monitor correlations for
each topic, but this time filtering the events according to their type
and particular characteristics, before trying to detect the relevant
sentiment shifts in their proximity.



Topic Name Contradiction | PosVolume NegVolume
Type | Num
Measures pPc lag pPc lag pc lag
Hangover lin | 20 [ 0.68 0.0 [0.:65]| 0.0 | 0.60: 2.0
Ice Age exp | 22 | 0.58 06 [0.66] -1.0 | 0.65 1.6
Harry Potter exp | 13 | 0.42 1.7 0.57 0.0 0.45 1.7
LCROSS hyp | 12 [ 0.65| -0.9 -1.5 -1.4
CERN LHC hyp | 21 [ 0.68 1.0 | 0.61 1.0 | 054 -14
NASA hyp| 6 [067] -15 1.5 -1.5
Michael Jackson | hyp | 14 [ 0.54| -1.3 | 0.49 1.5 0.51 -1.1
Eclipse hyp| 6 [067| -14 | 042] 2.1 0.50 1.9
Swine Flu exp | 19 [ 0.58 06 [059| 00 | 056 -0.5
Barack Obama hyp | 17 | 0.60| -1.6 | 0.55 0.0 | 047 0.6
Iran Election hyp | 17 | 051 -05 | 047]| 0.0 [ 0.53 1.6
Iraq hyp | 22 [ 061| -16 | 0.58] -1.6 0.6
Follow Friday lin | 20 -1.3 [ 0.62| 0.7 -1.4
"Aquila Summit™_| exp | 30 05 [J0B3] 09 -0.5
"Beer Summit" hyp | 6 0.8 0.62 0.9 -0.8
Transformers exp | 16 [ 056 -1.8 [ 0.58] 06 | 051 -1.9
Facebook hyp| 15 [ 060| -12 | 0.50]| 0.8 -1.3
TwitterPeek hyp | 6 -13 [072] 00 0.0
Leica hyp | 22 0.0 0.60 [ -1.7 -0.5
Gmail hyp | 20 06 | 055] -19 0.6
Super Bowl lin | 20 0.0 0.53| -1.6 0.0
Google Wave hyp | 11 | 050 0.5 [ 067 -1.0 [ 0.51 0.5

Table 2: Correlation between sentiment shifts and events in Twitter.

6. CONCLUSIONS

Our evaluation of news dynamics and their impact on sentiments
is the first systematic work in this direction, which employs a thor-
ough and principled modeling of news distribution in various media
and studies news interaction with sentiments. We develop a novel
model of news event dynamics, which allows to capture meaning-
ful and important characteristics of news events. Our model can ac-
commodate various response functions, suitable for different cases,
which should not necessarily be expressed as a differential equa-
tion, but can be learned from the data. The results obtained by
applying our methods to different real datasets confirm their ro-
bustness and universality. Nevertheless, they also reveal that we
need to address several more major challenges.

First, we observe that while different media have preferences for
particular response dynamics, these are often determined by event
types and topics. Thus, we need to extend our method of news
volume deconvolution so that it will automatically determine the
best model for every particular event and process the corresponding
time interval individually. The choice of the suitable deconvolution
model can be based on the (learned) preferences of the given media
and topic, but should also take model fitness into account. Above
all, this involves a refinement of the events importance model and
development of a robust and precise deconvolution optimization
strategy.

We also observe the existence of different parameters of response
dynamics for various events even during the same topic time series.
Each of these events has a different importance, and also a different
impact on sentiments, suggesting that it is possible to predict sen-
timent changes. In order to do that, we need to take into account
the type of response dynamics (mrf) in addition to the event’s im-
portance level, creating a more elaborate causality model. Still,
predicting the types of these possible changes requires building a
database of event and sentiment shift profiles, and constructing a
classifier model based on these features. We aim at creating such a
dataset as our next step towards the final solution.

Finally, we speculate that sentiment shifts may be caused by
events on related topics, in addition to events on the same topic.
This leads to the necessity for a more advanced correlation and
causality modeling, in order to predict sentiment shifts across re-
lated topics.
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