
DISI - Via Sommarive, 5 - 38123 POVO, Trento - Italy
http://disi.unitn.it

KEYWORD QUERY TO GRAPH
QUERY

Zekarias Kefato
zekarias.kefato@studenti.unitn.it
Matteo Lissandrini
ml@disi.unitn.it
Davide Mottin
mottin@disi.unitn.it
Themis Palpanas
themis@disi.unitn.eu

October 2013

Technical Report # DISI-14-003

Abstract

Keyword query to graph query is a problem which aims at mapping
entities and relationships mentioned in a query to entities and rela-
tionships in a knowledge-base. It has a very important application
in different domains like that of information retrieval, data mining,
genomics etc.

Obviously keyword queries are preferred by users because they are
based on natural language. Even though this point is a plus from the
users point of view, it is a challenge from the machines perspective.
This is because of the fact that natural languages are ambiguous and
keyword queries are over specified.

In this work a model decomposed into three sub-components is pro-
posed. The first sub-component is used to remove ambiguity from
the keywords and map them to clearly known entities in a knowl-
edge base. The remaining two sub-components are used to extract
interesting relationships between the clearly known entities. At the
end top-k output sub-graphs are returned as the final output of the
model. These results show mappings of the keywords to entities and
the relationship between the mapped entities.

Experimental results proved that the model has a good performance
in terms of both quality and efficiency. Particularly the quality is
similar to what is reported in state-of-the-art works. The experiments
are performed on both synthetic and real queries.

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Overview . 1
1.2 Motivating Example . 3

2 Problem 5
2.1 Problem Definition . 5
2.2 Auxiliary Definitions . 7

3 Literature Review 8
3.1 Entity Linking . 8
3.2 Keyword Interpretation . 10
3.3 Relationship explanation . 12

4 Methodology 14
4.1 Overview . 14
4.2 Disambiguation . 17

4.2.1 Nodes importance scoring 21
4.2.2 Top-τ Path selection . 24

4.3 Candidate Sub-graph Generation 25
4.4 Output sub-graph extraction . 31

ii

4.4.1 Singular Iteration . 33
4.4.2 Integrated Iteration . 35
4.4.3 Extraction . 36

4.5 Ranking . 37

5 Experiments and Results 39
5.1 Experimental Setting . 39

5.1.1 Data set . 40
5.1.2 Evaluation Measures . 40

5.2 Time Performance evaluation . 42
5.3 Results . 42

6 Conclusion and Future Work 47

APPENDIX A 49

APPENDIX B 57

References 62

List of Figures

4.1 The Complete Framework . 15
4.2 Referent graph for the running example 18
4.3 All semantic paths enumeration for the referent graph in figure 2 . 25
4.4 Freebase specific modeling . 29
4.5 (a) Edge reward, (b) interestingness w.r.t a single entity node and

(c) w.r.t all the entity nodes example 31

5.1 Quality evaluation for τ = 1, 2, 3, α = 0.5,0.6,0.7,0.8,0.9 and fixed
number of entities = 3. 44

5.2 Time performance evaluation for fixed α = 0.7 and τ = 2. 45
5.3 Time performance evaluation for τ=1,2,3 , α = 0.2,0.5,0.7,0.9 and

fixed number of entities = 3. 46

1 Example 1: ground truth query graph 50
2 Example 1: output sub-graph, rank 1st 50
3 Example 1: output sub-graph, rank 2nd 51
4 Example 1: output sub-graph, rank 3rd 51
5 Example 2: ground truth query graph 52
6 Example 2: output sub-graph, rank 1st 52
7 Example 2: output sub-graph, rank 2nd 52
8 Example 2: output sub-graph, rank 3rd 53
9 Example 3: ground truth query graph 53
10 Example 3: output sub-graph, rank 1st 54
11 Example 3: output sub-graph, rank 2nd 54
12 Example 3: output sub-graph, rank 3rd 55

iv

13 Example 4: ground truth query graph 55
14 Example 4: output sub-graph, rank 1st 55
15 Example 4: output sub-graph, rank 2nd 56
16 Example 4: output sub-graph, rank 3rd 56

List of Tables

4.1 Basic Symbols Used . 17
4.2 Entity Disambiguation Illustration 20
4.3 Importance score of candidate entities 24

5.1 Results quality grading scheme 41

vi

Chapter 1

Introduction

1.1 Overview

It has become very common to use search engines to look for a wide variety of
concepts on the web by using keywords. With a very little clue, usually keywords,
in mind on a particular subject, users make use of search engines to explore more.
As in the traditional search engines, one way of quenching this quest is providing
documents which talk about the keywords. Apart from that however, it will be
more appealing and interesting to a user, if he could get semantically enriched
results, instead of a mere occurrence based results. In particular, this can be
done for those keywords which target real world entities.

Thanks to the availability of massive knowledge-bases on the web, this need
can be satisfied by employing them. Several combined efforts has already led
to the emergence of various homogeneous and heterogeneous knowledge bases
[1, 2, 20, 21, 26] which contains facts about real world entities .

However due to the massiveness of these knowledge bases, there is desider-
atum for efficient and effective techniques at the back end of query processing
frameworks.

In this particular work, we wish to efficiently and effectively extract mean-
ingful and interesting relationships that exist between entities mentioned (entity
mentions) in a query. Given an entity based query, we aim at mapping those
entity mentions, which are inherently ambiguous, to a clearly known entities in a

1

knowledge base, and extract the most interesting relationships that hold between
them.

Assuming that we have a knowledge base modeled as a graph, a model which is
decomposed into three interdependent sub-components is proposed in this work.
The first sub-component is the disambiguation sub component, where its goal is to
produce disambiguated entities for each entity mention by leveraging a knowledge
base. Each entity mention will have a list of candidate entities extracted from
the knowledge base according to some string similarity measure. Because these
lists are very long, the aim of this sub-component is to generate top-τ candidate
entities.

And the second sub-component, the candidate sub-graph generator, extracts
a local sub-graph that strongly interconnect candidate entities represented by
nodes (entity nodes) of the graph. This sub-component generates a candidate
sub-graph between all ties, that is between the candidate entities of different
entity mentions. Even though a candidate sub-graph strongly interconnects the
entity nodes, most of the connections are meaningless and noisy.

The third and last sub-component will take the responsibility of setting aside
meaningless and noisy relationships and picks up the interesting ones according
to some given interestingness criteria.

The disambiguation task in this particular work is very similar to that of entity
linking [7, 8, 19, 27]. In a nutshell, their difference is, in the later case mostly
there will be a document from which entity mentions are extracted. However,
in the former case it is from an over specified query that entity mentions are
extracted.

Closely related studies [3, 12, 13, 14, 17, 18, 22] with different assumptions
and targeted applications has already been done. Some however, either implicitly
or explicitly aimed at extracting the most interesting or informative relationships
between entities. Nonetheless [3, 18] focused on a pair of entities, [12, 13, 22]
considers only entity keywords, and [17] impose a constraint on the position of
keywords in the query. In this work we will consider not only pair of entities, but
any number of entities and we also make use of relationship mentions whenever
they exist. Moreover we impose no constraint on the position of keywords so that
we might be able to extract relatively complex relationships. Therefore we can

informally state the problem as mapping of both entity mentions and relationship
mentions of a given query, into known entities and relationships in the knowledge
base.

1.2 Motivating Example

Suppose a user is searching for two related entities for which he has some knowl-
edge about. For example, for two scientists “Friedrich Hegel" and “Heinrich
Hertz". A traditional search engine may provide him a list of documents that
may talk about these entities. However, the user might also be interested to
know existing facts or some useful relationships between them. It will be a very
daunting, if not impossible, task to manually extract these facts and relationships
from the documents provided by the search engine. Thus, possible results that
might be of interest for the user are:

1. Both are scientists, and philosophers

2. Friedrich Hegel is a Physician and Heinrich Hertz’s son “Carl Hellmuth
Hertz" is Physician

Cases like the first one are relatively easy to be extracted, however cases like
the second one are a little bit involved, and need a careful consideration. Let
us further suppose that the user has included a keyword indicating relationships
between entities, consider the following example “Comedy starring Lili Tomlins".
Where “starring" being a keyword indicating some sort of relationship between
the two entities (concepts) “Comedy" and “Lili Tomlins". One might bring an
argument about the possible interpretations of the query; however we set aside
this argument by simply taking one valid interpretation of the query. Then, one
possible interpretation is, the user is asking for movies with “Comedy" genre,
where “Lili Tomlins" is “starring". Suppose that this interpretation is the intent
of the query, then the user is most probably looking for results of “starring" em-
bedded relationships between “Comedy" and “Lili Tomlins". We refer “Friedrich
Hegel", “Heinrich Hertz", “Comedy" and “Lili Tomlins" as entity mentions, and
“starring" as relationship mention.

Therefore a system claiming to support such a feature should be able to pro-
vide some facts about and relationships between entities. This will also to some
extent bridge the semantic gap in the traditional search engine.

Even though there are existing techniques for this task, we claim that there
are still important gaps that needs to be addressed. Because of the existence of
our approach this problem can be solve by considering that

• There can be any number of entity mentions in the query

• There is an inherent ambiguity on any keyword (mental model) that a user
provides and there should be a way to disambiguate it.

• No constraint should be imposed on the order of the keywords position in
the query, the system should automatically take care of this while extracting
relationships.

• A ranked list of results should be provided

• The solution has to be online, or at least fairly close to online.

We know of no work addressing all these at once; and these are the main
contributions of this work. Therefore, we believe that the realization of this work
is very important.

Chapter 2

Problem

2.1 Problem Definition

We assume that we have a set of keywords, where these keywords might corre-
spond to real world entities e.g Person, location, company, thing, etc. They might
correspond to some kind of relationship between the entities such as, parental,
containment, marriage, position, etc.

It might be the case that a keyword can be specified by using an atomic word
or as a combination of atomic words. Generally a keyword is composed of n
words, where we refer to it as n-gram keyword, and it is formally stated as:

Definition 2.1.1 (n-gram keyword) An n-gram keyword is a sequence k =

〈w1, w2, ... wn〉 of atomic words of cardinality n, where wi ∈ V (any human
language Vocabulary).

Thus, we give the formal definition for a query as:

Definition 2.1.2 (Query) A query is a represented as a set of n-gram keywords
N, i.e. N = {k1, k2, ... km |m ≥ 2}. Where each n-gram keyword is categorized
as either n-gram entity mention keyword, em or n-gram relationship mention
keyword rm.

An entity mention is a mention of any real world entity in a query and re-
lationship mention is mention of a relationship between the entity mentions. It
is not necessary for n to be the same across n-gram keywords (i.e, each n-gram

5

keyword might have a different value of n). For brevity sake, an n-gram keyword
is simply termed as keyword from this point on.

In addition to a query we assume that we have access to a knowledge base,
which contains facts about entities and the relationships between them. A knowl-
edge base is formally defined as follows.

Definition 2.1.3 (Knowledge-base) Let E be a finite set of entities, and let
R be a finite set of relationship between entities in E. Each relationship r ∈ R is
defined on an alphabet of relationships ΣR; Thus a multigraph GKB = 〈E,R,ΣR〉
is called Knowledge base.

Every entity in the Knowledge base is represented by a node e ∈ E, and there are
a finite set of labeled relationships {ri | i = 1, ..., t} ⊆ R that goes from and come
into this entity from and to a (finite) set of other entities {ei|i = 1, ...,m′} ⊆ E.
Every relationship r ∈ R is an edge and it has an associated label l ∈ ΣR where
the edges are directed.

Definition 2.1.4 (Candidate entity) An entity e ∈ E which corresponds to
an entity mention keyword em is called candidate entity. The set of candidate
entities of an entity mention em, is represented by E(em) Such that E(em) ⊆ E

Throughout the paper, we interchangeably refer to candidate entities as enti-
ties and to entity mentions as mentions.

Therefore, given a query as a set of n-gram keywords N = {ki | i = 1, ...,m}
and a knowledge base GKB = 〈E,R,ΣR〉, our goal is, to find a mapping of each
keyword to entities and relationships in the knowledge base. Such mapping yields
a connected sub-graph G = 〈E′,R′,Σ′R〉 of the knowledge base, G ⊆ GKB.
Thus, the core of our problem, which is the mapping, is formally stated as follows.

Problem 2.1.1 (Mapping) Given a set of m keywords N = {ki| i = 1, ...,m}
as input, we wish to find a mapping, which is a function φ : N → GO that will
give us a set of small connected output sub-graphs, GO = {G|G ⊆ GKB}.

And hence the last challenge is, given a set of output sub-graphs GO, we wish to
find a ranking function F : GO → G′O, to produce top-K ranked output sub-graphs.

2.2 Auxiliary Definitions

In the following additional definitions are given. They are simply given in order
to provide more clarity to the sections to follow.

Definition 2.2.1 (Full query) is a keyword query which contains both entity
mention keywords and relationship keywords as part of it’s keyword sequence,
and it is formally given as:
Let EM = {ei|i = 1, ..., t} be the set of entity mention keywords and RM =

{ri|i = 1, ..., u} be the set of relationship keywords, then a full query is a set
QF = {EM ∪RM}

Definition 2.2.2 (Partial query) is a query which contains only entity men-
tion keywords as part of it’s keyword sequence, and it is formally given as a set
QP = EM

The above definitions will bring us to the following definition, which is the type
of a query.

Definition 2.2.3 (Type of query) is a property of a given keyword query in-
dicating whether the query is a full query or a partial query.

Definition 2.2.4 (Type of a keyword) is an indicator of the nature of key-
words in a given keyword query, i.e. whether the keyword is a entity mention
keyword or relationship keyword.

Example 2.2.1 Consider the following user query
Q = “C. S. Lewis’s author of the Chronicles of Narnia."
The query represented as a set of n-gram keywords will be
N = {“C. S. Lewis", “author of", “the Chronicles of Narnia"}.
The set of n-gram keywords with keyword type entity mention are
EM = {“C. S. Lewis", “the Chronicles of Narnia"}
The set of n-gram keywords with keywords type relationship are
ER = {“author of"}

The query in the above example has the type full query.

Chapter 3

Literature Review

Though machines understand formal languages, it is apparently clear that they
are not handy for communication among homo sapiens. Natural languages are so
easy and preferred for personal communication and if possible even with machines.
These trend has already led scientists, long before, to consider communication be-
tween a human being and a machine using natural languages. Applying keyword
based communication, more particularly in the information retrieval community,
is fairly ubiquitous. Obviously, this very work also revolves around keywords, and
a couple of other studies which are some how related to this are briefly observed
as follows.

3.1 Entity Linking

Entity linking like the keyword query to graph query mapping, has a goal of map-
ping entity mentions in a document to entities in a knowledge base. However,
these mappings are usually for the sake of disambiguating the entity mentions. It
doesn’t go further into dealing with relationships between disambiguated entities.

Collective entity linking [8] is one which addresses this problem. This is
a graph based approach, which uses the graph representation called "Referent
Graph" to tackle this problem. The graph captures the local compatibility rela-
tion, a relation between entity mentions and candidate referent entities, and the
global interdependence between entity linking (EL) decisions. After observing

8

that considering the global interdependence between entity linking decisions, in-
stead of only considering the local compatibility relation, will give a more effective
entity linking result, they exploited this interdependence through the correspond-
ing candidate referent entities in the referent graph. This is what they referred
as collective entity linking.

On top of that, the graph structure is used to propagate and iteratively update
evidence score starting from an initial evidence score of entity mentions. The
initial score is directly obtained from the entity mentions relative importance
for the document they are extracted from. And this evidence is considered as a
prior importance of the mentions. It is used to anticipate which mention is more
important.

A final inference on the entity linking is made after this evidence is iteratively
propagated using the stochastic transition matrix; and hence a ranking score for
each candidate.

Another approach which is followed by the same authors of the above work
is [7] - A Generative Entity-Mention Model for Linking Entities With Knowledge
Base. In this approach, they used a generative approach, which models the
likelihood that a given entity will be a referent entity of an entity mention as a
combination of three heterogeneous probabilistic distributions. The distributions
model three knowledge, i.e the entity popularity, name and context knowledge.

The popularity knowledge is used to know the likely hood of an entity appear-
ing in a document, so that it can help to identify the possible referent entities for
an entity mention. The other knowledge, name knowledge will provide the possi-
ble names of the entity and the likelihood of a name referring to a specific entity.
The last knowledge, which is also applied in their graph-based approach is the
context knowledge. This knowledge tells us the likelihood of a name appearing
in a given context. Therefore, the final decision to select a referent entity for an
entity mention is made based on the one which maximizes the likelihood of the
referent entity on the combination of these three heterogeneous models.

Related to the entity linking task another similar work is [19] LINDEN: linking
named entities with knowledge base via semantic knowledge. They also used a
semantic network graph to link entity mentions in a document with candidate
entities obtained from knowledge base. A given document which contains the

entity mentions is scanned to obtain Wikipedia concepts. This concepts and the
candidate entities together with Wikipedia articles linked with the concepts and
the taxonomy of the Knowledge base (YAGO - [20, 21]), are used to construct
the Semantic network.

Four statistics, (Link Probability - LP, Semantic Associativity - SA, Semantic
Similarity - SS, and Global coherence - GC) computed by leveraging the semantic
network are used as features for each candidate referent entity. In addition, a
learned weight vector is used to capture the different degrees of importance that
these features have. A final score to rank the candidate entities is computed by
taking the product of the weight vector and the feature vector.

As one can easily observe the entity linking problem goes upto dis-disambiguating
entity mentions from a given document, however in our work we not only wish
to disambiguate entity mentions, we would also like to analyze the relationship
between the disambiguated entities in the knowledge base. The other clear differ-
ence is that, while our study considers entity mentions and relationship mentions
in short queries, the entity linking problem is almost studied only for documents
with rich context information. In a more succinct expression, it is a subset of our
problem.

3.2 Keyword Interpretation

Keyword query interpretation is a problem that is getting an increasing research
interest because of the trend towards semantic web. In this problem in stead of a
simple occurrence based search for keywords, the goal is to understand the intent
of keywords and return facts about them. Relatively speaking this is a problem
which is more close to ours.

Interpreting Keyword Queries over web knowledge bases [16] is one among
state-of-the-art works in this direction. The authors target is interpreting short
and ambiguous keywords over a knowledge base. The approach is a method
which will find the best or top-k formal semantics of the user query by leveraging
a knowledge base and coarse linguistic structures of keyword queries. They first
annotate the given keyword query using semantic constructs which are learned
from part of speech tags of the query terms. And they use semantic summary,

which is the set of semantic constructs used for the term annotation by respecting
their order, to abstract the query content. This term annotation is also used to
segment the query into keyword phrases. Semantic summaries are then used to
learn query templates again using an annotated query log. Like the semantic
summaries, query templates are also used to abstract the formal query structure.

Finally query templates and term annotation are combined to give a struc-
tured query. Mapping the structured keyword query to the knowledge base to
get the formal query interpretation (semantic query understanding) is carried
out by extending their previous work [17] - Expressive and flexible access to web-
extracted data: a keyword-based structured query language.

In this other work, they used two domain related data sources, a knowledge
base and document corpus; they indexed them offline for efficient search. A dis-
ambiguation graph is then constructed by extracting knowledge base items (What
are referred as candidate entities in this work). The extraction takes into account
the fact that selected knowledge base items should form semantically coherent
query and also represent the user’s keyword query (that is, it should represent
the users "intention" well). The disambiguation graph is a fully connected t-
partite (for t conjuncts) graph with partitions. Each partition (sub query) is
list of knowledge base items for each keyword phrases in the structured query.
All partitions are fully connected by respecting nested boundaries (There are no
edges from a partition to another partition, if one of the partitions is another
nested level).

Therefore a possible formal interpretation of the query is a path that spans all
the partitions. To find the best or top-k interpretations a score is computed for
each node (syntax similarity) and each edge (Knowledge base support). There-
fore, a spanning path will get it’s score from this two values and hence rank of
a formal interpretation. This work, specially [17] is very similar to our problem,
however they are different because their target includes giving answer to queries
and on top of that we follow a different approach to tackle the challenge in gen-
eral. Moreover, unlike [17], in this work we have removed assumptions as it is
described in Chapter 1

In their work, [11] Understanding UserâĂŹs Query Intent with Wikipedia,
they aimed at identifying the intent of a given query in three specific domains,

using the Wikipedia knowledge base. It’s shown that they have built an intent
identifier which has the generalization ability to other domains, however. They
first build a Wikipedia link graph in which each entry denotes a link relation
either within concept articles or between articles and categories. Then they ob-
tain a measure of how probable each concept in the link graph belonging to the
defined intent, through a random walk algorithm on the built Wikipedia graph.
For those search queries which are not covered by Wikipedia concepts, they ap-
plied the technique proposed by [5], This technique (Explicit semantic analysis)
utilizes Wikipedia for feature generation for the task of computing semantic re-
latedness. This is done by first issuing a search query for a search engine to enrich
the features of the query with the top-K returned search result snippets. A list
of relevant Wikipedia concepts are obtained by ESA for every sentence, where
a sentence is created by segmenting the title and description of these top-K re-
sults. Finally they used summarized max-min normalized rank score of retrieved
concepts of all the sentences, and then the prediction is made according to the
sum of the intent probabilities for the top M highest-scoring concepts, and hence
ranked query intents. This is also a more similar problem with that of the entity
linking problem in a sense that it seeks for mapping primarily, which is still, so
to speak, a subset of our problem.

3.3 Relationship explanation

Most popular search engines like Google, Bing, Yahoo! provide related entities
for entity based keyword queries. That is given an entity (Eg. Person, Location,
Organization) as a query, in addition to returning documents as a result, these
search engines provide another section which gives related entities with the one
searched for. In relationship explanation then the purpose is to give some ex-
planation on the relationship between the entity searched for and the suggested
related entities. This is done for each related entity independently with the
searched entity. And because of this the focus of the problem will be limited to
pair of entities only.

One state-of-the-art work is [4] REX: Explaining relationships between entity
pairs. The goal of REX is explaining the relationship between two entities. Given

two entities, one provided by the user searching for an entity, and the second
provided by a system which returns a set of entities considered to be related to
the entity that the user is looking for. This work only focus on a pair of entities,
and explains why the later (related) entity is considered to be related. REX is
different from our work, in two ways that it first considers only two entities, and
second its purpose is only to explain a relationship between two entities which
makes the problem some how narrow because the related entities are close, since
they are already considered to be related. Unlike REX, our work targets not only
two entities, rather an arbitrary number of entities which might even be totally
un-related to each other.

Chapter 4

Methodology

4.1 Overview

Our proposed model to the general problem of mapping keywords to real world
entities and relationships of the knowledge base is designed by decomposing into
three sub-components. The complete framework is shown in Figure 4.1. The
input of this model are a set of keywords, and the discussion of how we obtain
the keywords is left out because the problem is orthogonal to ours. Existing
studies [6, 24] or off the shelf products can be used for this purpose. We therefore
directly move to the three constituents where the model is composed of.

1. Disambiguation: We are given a set of keywords, entity and relationship
mentions. For each of the entity mentions, this step answers to what clearly
known real world entity do they refer to. For example, an entity mention
Java, in some given query may refer to the programming language Java, the
island Java, or the coffee Java. Using the disambiguation model we wish to
associate this keyword to the most likely entity from some knowledge base,
according to the intent of the query where this keyword is specified in.
However, due to the inherent irremovable ambiguity of natural languages
the top-τ candidate entities are picked up instead of attempting to pick
exactly one.

In order to carry out this, a graph based approach adopted from [8] is used.
The graph has a good property which allows it to capture local compatibility

14

Figure 4.1: The Complete Framework

Size m, n-gram
Keywords Disambiguator

Top-τ
Candidate

Entities

Candidate
Sub-graph
Generator

Top-τ Candidate
Sub-graphs

Output
Sub-graph
Extractor

Top-k Output
Sub-graphs

(based on string similarity) of an entity mention with its candidate entity
and semantic relatedness between the candidate entities of different entity
mentions. By relying more on the semantic relationship, we produce top-τ
results.

2. Candidate sub-graph generation: In the second step, we need our sys-
tem to generate a candidate connected sub-graph for each tie of entities. In
fact, we don’t consider all possible ties for it is not feasible, and the candi-
date sub-graph generation by itself is an expensive operation. Nonetheless
only the ties between the top-τ candidate entities of each entity mention
are considered.

In this approach, the knowledge base is explored until a candidate sub-graph
that strongly interconnects the given entities is generated. For the explo-
ration purpose a balanced expansion heuristic [10] strategy is employed. In
this work, expansion is made from the expanded set of an entity with the
minimum cardinality.

3. Output sub-graph extraction: Once a candidate sub-graph is generated,
in step three we aim at extracting the most interesting relationship between
the entities in the candidate sub-graph. Formal discussion on the measure
of interestingness is presented on Section 4.4. Such process will give us a
set of informative output sub-graphs.

In order to produce these output sub-graphs, two basic iterations are used.
Essentially these iterations are used in order to assign some interestingness
score for all non entity nodes. The first round will indicate nodes local in-
terestingness. That is interestingness w.r.t each entity node independently.
The second is used to evaluate the nodes global interestingness, i.e w.r.t all
the entity nodes together. In a nutshell, we use the interestingness measure,
to pick nodes that should be included in an output sub-graph

Finally a ranking scheme is employed on the resulting set of output sub-graphs
based on nodes interestingness value on each sub-graph.

Table 4.1: Basic Symbols Used
Symbol Description
Q User query
N System query as set of n-gram keywords
QF A user query with full query type
QP A user query with partial query type
EM keywords with keyword type entity mention
RM keywords with keywords type relationship mention
em An n-gram entity mention keyword
E(em) A set of candidate entities of entity mention em
e Candidate entity e ∈ E(em)of an entity mention em
rm An n-gram relationship mention keyword
GC Candidate sub-graph
Edge(GC) Edge set of the graph GC
V(GC) Vertex set of the graph GC
GR Referent graph
CR(em, e) Compatible relation scoring function between an entity

mention em ∈ EM and an entity e ∈ E(em)
SR(e, e′) Semantic relation scoring function between an entity e ∈

E(em) and an entity e′ ∈ E(e′m) where em 6= e′m
GO A Set of output sub-graphs
GKB The multigraph knowledge base

4.2 Disambiguation

Given a set of entity mentions the first challenge is disambiguating them. In
order to carry out this task, [8] a graph based approach is adopted. The so called
“Referent Graph" is used so as to disambiguate each ambiguous entity mention
keyword and map them to clearly known entities. The definition of the referent
graph which is tailored to this particular problem is given below.

Definition 4.2.1 (Referent Graph) A Referent Graph is a weighted graph
GR = 〈V,E,W〉 , with a set of vertices V, a set of Edges E, and a weight function
W of the edges. A vertex vi ∈ V is either an entity mention or entity. And an
edge εi ∈ E is either a compatible relation (entity mapping) CR(em, e) between
an entity mention em and an entity e. e ∈ E(em) or a semantic relation SR(e, e′)

between two entities e. e ∈ E(em), and e′. e′ ∈ E(em′) such that em 6= em′. The

Figure 4.2: Referent graph for the running example

weight function W will compute weights according to the type of edge (compatible
or semantic) it takes.

Consider the following example, “Comedy Film, starring Jackie Chan and Chris
Tucker". This will be the running example from this point on. N = { Comedy,
starring, Jackie Chan, Chris Tucker}. Figure 4.2 shows the referent graph for this
example.

When ever we want to address an entity on a graph we use the term entity
node.

Among the good properties of the Referent graph, the major ones are, it cap-
tures (1) local compatibility between a mention and an entity, and (2) global
interdependence structure between different entity mappings (bold edges in Fig-

ure 4.2).
In [8], unlike our case which extract entity mentions from a query, they did

the extraction from a document which will provide local context. We simply used
string similarity measures to replace the local compatibility measure they have
used. String similarities are used, because we assume that the user has at least
some clue about what he/she is looking for. However, our approach on the dis-
ambiguation is strongly dependent on the global interdependence. That is to say,
low string similarities might be preferred because of high global interdependence.
The Jaro-Winkler similarity metric is used to obtain CR.

CR(em, e) = 1− JaroWinkler(em, e) (4.1)

where JaroWinkler is a function that computes the Jaro-Winkler distance as:

JaroWinkler(em, e) =

0, if M = 0

1
3
(M
|em| + M

|e| + M−T
M

), otherwise

where M is the number of matched characters, and T is half of the number of
transpositions.

The global interdependence is a way to capture semantically related candidate
entities, and hence semantic relatedness (SR) measure. This is motivated by the
fact that, the mapping of a particular entity mention em to a certain candidate
entity e ∈ E(em) will increase or decrease the likelihood of the mapping of another
entity mention em′ to a certain candidate entity e′ ∈ E(em′) where em 6= em′ .
Consider Table 4.2, the illustration given for the running example.

The intuition behind is that, for example, without loss of generality, if we map
the entity “Jackie Chan" (e1m_1) to the entity mention “Jackie Chan" (em_1), that
will increase the likelihood of mapping the candidate entity “Chris Tucker" (e1m_2)
to the entity mention “Chris Tucker" (em_2). This is due to the strong semantic
relatedness between e1m_1 and e1m_2 (Look at Figure 4.2). On the other hand the
likelihood of mapping the remaining candidate entities (eim_2 ∈ E(em_2) \ e1m_2)
will decrease, for there is no semantic relation with “Jackie Chan" (e1m_1).

Table 4.2: Entity Disambiguation Illustration
Entity Mention Candidate Entity Likely hood indicatorId Name Id Name

em_1 Jackie
Chan

e1m_1 Jackie Chan → (Mapped)

em_1 Jackie
Chan

e2m_1 Jackie Chan
Hiu-ki

em_2 Chris
Tucker

e1m_2 Chris Tucker ↑ (Increased due to
mapping)

em_2 Chris
Tucker

e2m_2 Christopher
Tucker

↓ (decreased due to
mapping)

em_2 Chris
Tucker

e3m_2 Christopher
K. Tucker

↓ (decreased due to
mapping)

em_3 Comedy
Films

e1m_3 Comedy ↑ (Increased due to
mapping & prev in-
crease & decrease)

em_3 Comedy
Films

e2m_3 Romantic
Comedy

↓ (decreased due to
mapping & prev in-
crease & decrease

By the same token, the likely hood of mapping the candidate entity “Comedy"
(e1m_3) to the entity mention “Comedy Films" (em_3) will increase. And this
is because of two facts. One because of the initial mapping for the first entity
mention (em_1) and second the propagated increase of likely hood to the candidate
entity (e1m_2) of the second entity mention (em_2). In other words, since the
entity (e1m_3) has a strong semantic relation to the already picked entities (e1m_1

and e1m_2) than the other entity (e2m_3), it is more likely that its mapping is
valid. Apparently, for the last entity, the likely hood decreased because of its
weak semantic relation. The abstraction of the disambiguation model is given in
Algorithm 1.

We use the same approach as in [9] to compute semantic relatedness measure.
And it is given as follows:

SR(e, e′) = 1− log(max(|Le|, |Le′ |))− log(|Le ∩ Le′|)
log(|GKB|)− log(min(|Le|, |Le′|))

(4.2)

where e and e′ are the two entities of interest; Le and Le′ are the sets of all entities
that link to e and e′ in the knowledge base respectively, and GKB is the entire
knowledge base. The study of [15] shows that this is an effective and low-cost
approach.

The underlying graph, referent graph, used to compute the above two scores
is constructed according to the following procedures.

• For each entity mention of the query, retrieve candidate entities from the
given knowledge base. Retrieval is done with simple fuzzy string matching
against entity names and aliases.

• For each entity mention em create a link from them to all the corresponding
candidate entities ei ∈ E(em) generated in the previous step, and weight
the edges according to CR function.

• For each pair of candidate entities 〈e, e′〉 where e ∈ E(em) and e′ ∈ E(em′),
such that em 6= em′ add a weighted edge according to the SR function, if
the measure is not zero, otherwise add no edge for this particular pair.

After the graph is constructed, the nodes in the graph will get importance
score as described in the following section.

4.2.1 Nodes importance scoring

Following the above procedure will give us an edge weighted graph. In order
to give importance values for the candidate entities a random walk with restart
strategy is employed. Unlike [9], which gives initial evidence according to the
entity mentions relative importance to the document from which they are ex-
tracted, in this work an equal initial score is given to all the entity mentions.
This is because, there is no knowledge of the relative importance of each entity
mentions of the query. Rather they are assumed to be equally important.

Apparently, the transition matrix for the random walk can be obtained from
the weighted referent graph. And as discussed earlier the staring vector, in-
dicating the initial importance, is initialized by distributing an equal starting
probability to all the entity mentions and zero for the candidate entities.

Algorithm 1 Disambiguation Model
Require: EM . All the entity mention keywords
Require: τ . User parameter τ
Require: r . Restart probability
Ensure: τE . Top-τ entities
1: procedure disambiguateEntities(EM, τ, r)
2: for em ∈ EM do
3: E(em)← generateCandidateEntities(em);
4: end for
5: for e ∈ E(em) do
6: W(em, e)← CR(em, e);
7: end for
8: for e ∈ E(em) do
9: for e′ ∈ E(e′m) ∧ em 6= e′m do

10: W(e, e′)← SR(e, e′);
11: end for
12: end for
13: . a random walk with restart on W with restart probability r
14: impV ector ← RandomWalk(W, r);
15: τE← enumAllTopτ(EM,E,W, impV ector, τ);
16: return τE
17: end procedure

Let ii be the initial importance vector and n be the number of entity mentions,
then

ii =

0

0

.

.

.

1/n

1/n

1/n

(4.3)

The zero’s are the initial importance scores for all of the candidate entities
and 1/n is the initial importance of the n entity mentions of the query.

let W be the transition matrix of the weighted referent graph. Formally, the
final importance score for each of the candidate entities is obtained by propagating

the initial importance using the transition matrix as follows:

iit+1 = W× iit (4.4)

The super scripts are the indicators of the time that the importance score is
obtained.

However the above model has a limitation in the case of nodes that don’t
propagate importance score. That is, propagated scores upto that node will be
trapped and there will be no propagation from that node. So to avoid this,
a restart mechanism is allowed by redistributing part of the importance score,
restart probability (r), to the initial importance vector. Then Equation 4.4 is
reformulated as

iit+1 = r × ii0 + (1− r)×W× iit (4.5)

That is the random walk will be done by respecting the weight (transition)
matrix with probability proportional to r or it will be restarted with probability
proportional to 1 − r. Still there is a problem with this modeling too, that is
for a large set of nodes it is computationally expensive. And it is obvious that
the number of nodes is very large. Hence, the above equation can be solved in a
closed form as:

ii = (1− r)(I − r ×W)−1 × ii0 (4.6)

where I is the identity matrix. And at this stage, ii is the vector which
indicates the final importance score of all the candidate entities on the referent
graph. Therefore each candidate entity will be given a rank according to their
scoring that is based on ii. Table 4.3 shows the ranking of candidate entities for
each entity mention based on this score.

However, top ranking candidate entities aren’t just taken. This is because of
the fact that the top candidate entities might not be semantically related. The
detail of this case is presented in the following sub Section 4.2.2.

Finally we wish to find entities which maximize this importance score and
semantically related to other entities. The following sub Section 4.2.2 will also

Table 4.3: Importance score of candidate entities
Entity Mention Candidate Entity Importance score

Comedy Films Comedy film 0.17134
Romantic comedy 0.14366

Jackie Chan Jackie Chan 0.24403
Jackie Chan Hiu-ki 0.00152

Chris Tucker Chris Tucker 0.25096
Christopher Tucker 0.00094
Christopher K. Tucker 0.00081

deal with this notion.

4.2.2 Top-τ Path selection

Finding the top-τ entities which maximizes importance score and semantically
related to other entities is the same as finding high scoring semantic paths (or
cycles). Which is a path along the semantic edges that maximizes the aggregate
weights of its edges and nodes.

A straight forward way is simply to take the top-τ candidate entities of each
mention. However that will not guarantee us to have semantically coherent enti-
ties in the final output. This is due to the fact that we are not always guaranteed
for the top-τ entities of each entity mention to be semantically related. For ex-
ample, as depicted in Figure 4.2, two of the candidates of “Chris Tucker" are
not semantically related to any of the candidate entities of the other mentions.
Therefore they should be avoided from being part of the top-τ list, or at least we
should minimize probabilities of including them. Thus we followed an approach
which enumerates all (ENUMALL) the semantic edges, referred as semantic path.

The ENUMALL approach might suffer from efficiency because of the large
candidate entity space. However, a pruning strategy is employed in order to stay
in time bound. Those candidate entities which fall bellow a certain CR value are
pruned.

ENUMALL works by picking exactly one entity node from each entity men-
tion’s set of candidate entities that are connected to the candidate entities in at
least on of the other sets. For the referent graph in Figure 4.2, all the possible

Figure 4.3: All semantic paths enumeration for the referent graph in figure 2

semantic path enumerations according to ENUMALL are shown in Figure 4.3
(a) and (b). By doing this we favor semantic relations more than compatible
relations.

Since our purpose is just ranking, we use sum as an aggregate function. Thus
top-τ scoring nodes will be returned from those paths that maximize the aggregate
score on the edges and the nodes. One can clearly see that, in this approach
effectiveness is highly probable, in a sense that we can obtain the most likely ties
between entities which are semantically coherent. However it comes at the cost
of efficiency. Nevertheless in order to avoid the efficiency bottleneck, we have
already pruned those candidate entities which fall below a certain threshold of
compatibility relation. In practice this approach works efficiently for range of
threshold values as described in the experimental results section. The pseudo
code for this approach is given in Algorithm 2.

The next goal is to find connected sub-graphs, which captures the most inter-
esting relationships between the disambiguated entities (entity nodes), from the
knowledge base. The remaining two sub-components will handle this as described
in the following sections.

4.3 Candidate Sub-graph Generation

In this step, we aim at retrieving a sub-graph of the knowledge base that strongly
interconnects the entity nodes. This task needs exploring the knowledge base
until a desired sub-graph is extracted. A balanced expansion heuristic technique

Algorithm 2 Top-τ path selection, all possibilities
Require: EM . All entity mentions
Require: E . Function that extract entities of mentions
Require: W . Weight function
Require: impV ector . Importance vector of entities
Require: τ
Ensure: τE . Top-τ entities
1: procedure enumAllTopτ(EM, E, W, impV ector, τ)
2: allPaths← ∅;
3: for em ∈ EM do
4: for e ∈ E(em) do
5: weight← 0;
6: path← ∅;
7: weight+ = impV ector(e);
8: path.add(e);
9: for e′ ∈ E(e′m) do

10: weight+ = W(SR(e, e′));
11: weight+ = impV ector(e′);
12: path.add(e′);
13: path.weight(e, e′, weight);
14: end for
15: end for
16: if path /∈ allPaths then
17: allPaths.add(path);
18: end if
19: end for
20: topτ ← sort(allPaths, τ);
21: return topτ ;
22: end procedure

is employed to carry out this task. This approach is preferred because of its good
performance in practice, as it is corroborated in [10]. In this method, at each step,
expansion is made from an entity node e with the lowest cardinality of expanded
set, that is

e← argmin
e′∈E(em)

|E(e′)| (4.7)

where E(e′) is an expanded set of the entity node e′.
To guide the expansion, a similar strategy as in [12] is adopted and combined

with an additional strategy that is employed to suite the specific knowledge base
used in this work. The adopted strategy is based on co-occurrence statistics that
encodes two distinct scores, which are called Notability for and Popularity score.

Let f = (e, r, e′) be a fact, such that GKB |= f (read as, f is modeled by or
true in GKB). For any fact f mentioned throughout this paper GKB |= f .

Let the structure of any fact f be f = (source, relation, destination). source,
relation, and destination are simply position indicators. Then,

• Instance fact : it is a fact where all of its position are occupied by actual
values from the knowledge base. For example f = (Elvis Presley, is-A,
Singer), the general form is f = (ev, rv, e

′
v)

• Fixed fact : it is a fact where only portion of its position is occupied by
values. For example f = (e, is-A, Singer). The general format is the
same as the previous one, it is different it only has the sub-script v for
those positions where there is a value. For the above example, it will be
f(e, rv, e

′
v).

Consider the following three instance facts f1 = (Elvis Presley, profession,
Singer), f2 = (Elvis Presley, profession, Author), and f3 = (Jackie Chan, profes-
sion, Singer). The desired scores are obtained by changing these facts to fixed
facts as follows. For illustration sake let as fix f1.

First f1 = (Elvis Presley, is-A, e’). This fixing will let us know the Notability
score for Elvis Presley. Intuitively we are asking what is the thing that Elvis
Presley is well notable for. By replacing different values for e′ we will get different
scores, and the one with the highest score is what Elvis Presley is well notable
for. Hence we can say that, f1 will have high notability score than f2, for Elvis
Presley is well notable for being a singer rather than an author.

Second f1 = (e, is-A, Singer). For this case, intuitively we are asking “who
is a popular singer?", such fixing will give us a popularity score. Just as in the
first case, we replace different values for e and obtain who is the most popular
singer. Then, it clearly follows that, f1 will get a higher popularity score than f3,
for Elvis Presley is more popular than Jackie Chan for being a singer.

These two scores are obtained using probability estimations. Following [12],
the estimations are done by using co-occurrence statistics.

Then we compute the notability and popularity score according to Equations
4.8 and 4.9, respectively as follows.

Pr(e′|rv, ev) =
Pr(ev, rv, e

′)

Pr(rv, ev)
≈ foc(ev, e

′)

foc(ev)
(4.8)

Pr(e|rv, e′v) =
Pr(e, rv, e

′
v)

Pr(rv, e′v)
≈ foc(e, e

′
v)

foc(e′v)
(4.9)

where the approximation function foc computes the co-occurrence or occurrence
frequency of its arguments. foc(ev, e′v) computes the co-occurrence frequency of
ev and e′v; foc(e′) computes the occurrence frequency of e′v. For implementation
case, these statistics are computed from documents which are extracted from the
web. 1

The second technique is used to account for specific cases in Freebase. For
example, in Freebase a spouse relationship between any two persons is modeled
as in Figure 4.4. Spouse is not the only relationship modeled this way, there
are multiple instances of these kinds of modelings. According to observations on
the knowledge base, the particular property of the empty intermediary nodes in
this kind of cases is, they usually has no labels, and they are connected to a very
few nodes. For example the middle node in Figure 4.4 is connected to the node
Marriage, which is its type in addition to Person A and B. Often times this kind
of nodes are a direct relationships between two entity nodes, which is an indicator
for a strong relationship. If only the first approach is considered, then the model
will be forced to give zero weights for such kinds of meaningful relationships.
Therefore, the so called incident score IS is added to give a reasonably strong
weight for such cases, and it is given by:

IS(e, nil) = 1/Degree(nil) + IL(l) (4.10)

where nil stands for the unlabeled node and l for the edge label between e and
nil. Degree is a function that computes the out degree of nil; and IL(l) is a
function that computes the information load on this particular edge with label l.
These values tells us how much information is contained on this edge from the

1Google Custom Search Engine is used to achieve this

Figure 4.4: Freebase specific modeling

whole knowledge base point of view, and IL is computed as:

IL(l) = Count(l)/Count(R) (4.11)

where Count(l) is the frequency of edges labeled l, and Count(R) is the total
number of facts in the knowledge base.

Even though this case is used to account for a specific knowledge-base, it is
still valid for any kind of knowledge base. It can be considered as additional
structural information. Some sort of discounting factor can be added to give
more emphasis to the first approach, if needed.

Now we have everything that is needed to explore the knowledge base. There-
fore exploration can commence by randomly starting from one of the entity nodes.

Let P(e) be the set of pending nodes after expanding the entity node e. Then
starting from the second iteration explorations are made from the pending set of
an entity e which maximizes the aggregate score in Equations 4.10 and 4.12.

ep ← argmax
ep′∈P(e)

∑
e′∈E(e)

Pr(e′|ep′) + Pr(ep′|e′) (4.12)

where Pr(e′|ep′) is computed as

Pr(e′|ep′) =
∑
r

(e′, r, ep′) ∈ GE

Pr(e′|r, ep′) (4.13)

and we know how to estimate the probability on the right hand side from Equa-
tions 4.8 and 4.9.

Algorithm 3 Candidate Sub-Graph Generation using BEH
Require: E . Set of entities
Ensure: GC . A candidate sub-graph
1: procedure balancedExpansion(E)
2: GC ← Null;
3: for e ∈ E do
4: E(e)← ∅; . Expanded set of e
5: P(e)← {e}; . Pending Set of e
6: end for
7: buildGraph(GC , Null,P);
8: while GC is not big enough ∨ ∃e′′ ∈ E. E(e′′) = ∅ do
9: e← argmin

ei∈E
|E(ei)|;

10: ep ← argmax
ep′∈P(e)

∑
e′∈E(e) Pr(e

′|ep′) + Pr(ep′ |e′) + IS(e′, ep′);

11: N ← neighbors(ep);
12: E(e)← E(e) ∪ {ep}
13: P(e)← P(e)\{ep};
14: P(e)← P(e) ∪ {en|en ∈ N ∧ en /∈

⋃
e∈E E(e) ∪ P(e)};

15: buildGraph(GC , ep, N);
16: end while
17: return GC ;
18: end procedure

A high level flow of this process is given in Algorithm 3. And its final result
is a weighted, connected candidate sub-graph. Where the weight is the sum of
the weights obtained in Equations 4.10 and 4.12.

The candidate sub-graph is further pruned to get rid of non-entity nodes with
degree one. As it is proven in [4] those are not interesting nodes.

By far we are not making use of relationship keywords in the query. If a query
has both entity mention keywords and relationship mention keywords, we want
to exploit that in order to boost confidence on what we get from the statistics
and incident score based edge weights. Thus, the candidate sub-graph is modified
to include the contribution that comes from relationship keywords. And this will
be addressed during the final step, in the coming Section 4.4.

Figure 4.5: (a) Edge reward, (b) interestingness w.r.t a single entity node and (c)
w.r.t all the entity nodes example

4.4 Output sub-graph extraction

The extraction process commences by adding reward factors to those edges that
are related to the relationship mention keywords, if there are any. The interpreta-
tion is that, those edges which bear the same meaning as the relationship mention
should be favored over other edges. For example, as portrayed in Figure 4.5 (a),
for our running example, it will be meaningful to favor the “Acted-in", over the
“Is-A" edge. This is because, “Acted-in", is more meaningful than “Is-A" w.r.t
the relationship mention rm = starring. Thus a reward factor rf is added to
those meaningful edges as follows.

Let lε be the label for an edge ε ⊆ Edge(GC), taken from an alphabet Σ, where
Edge(GC) is the edge set of GC . And W (ε) be the weight on the edge ε. Then
W (ε) is updated as:

W (ε) = W (ε)× rf (lε, rm) (4.14)

rf (lε, rm) is a function which gives a score that indicates the words sense similarity.
It is computed according to the vector space model and their vector is constructed
by taking the synset and hypernym set 1 of lε and rm.

Even though the edges in the candidate sub-graph interconnects all the entity
nodes, we need not all of them. Obviously it is impossible to make any kind of

1Wordnet is used for this purpose

meaningful interpretations with all these nodes and edges.
The output sub-graph extraction component of our system, which is presented

in this very section, is used to resolve this issue. In order to pick those relevant
nodes which will give us the most interesting relationships, we need a way to
quantify nodes interestingness. Two kinds of scores obtained during two iterations
called:

• Singular Iteration

• Integrated Iteration

are used to achieve this. Let us present the intuition behind these scores before
going into the formal details.

During the first iteration, for each of the nodes in the candidate sub-graph,
we compute the likelihood that they will be on any path starting from each of
the entity nodes independently. The score obtained in this iteration will only tell
us about the interestingness of a node w.r.t each entity node separately, but not
w.r.t the whole entity nodes together. It is straight forward to see a node with
high value of such a score is not always guaranteed to interconnect all the entity
nodes. Figure 4.5 (b) shows one counter example to support this claim.

Assume that nodes 4 and 5 are strongly related to e, that is the edges 〈 e, 4 〉
and 〈 e, 5 〉, perhaps because of high informativeness score assigned to them during
the previous step (candidate sub-graph generation). During the first iteration,
this will give, for a random surfer doing a random walk starting from e, a high
probability of following the path to either node 4 or 5.

Nonetheless, these nodes are not interesting with respect to the whole entity
nodes i.e { e, e’}. Thus, it is more plausible, instead of nodes 4 and 5, to assign
the highest interestingness score to nodes 1 and/or 2 and/or 3. This is a case dealt
during the second iteration. However, prior to its discussion let us first introduce
the notions of an Interconnecting Tree, Intersecting Tree and a Common Node.

Definition 4.4.1 (Interconnecting Tree) For any tree t ⊆ GC, let V(t) be its
vertex set, and for each entity node e. e ∈ V(t); t is an interconnecting tree,
if for any pair of entity nodes 〈e, e′〉 there is a path p′ ⊆ t and there is no entity
node e′′ ∈ V(t) \ {e, e′} such that e′′ ∈ V(p′).

Definition 4.4.2 (Intersecting Tree) An interconnecting tree t is also called
an intersecting tree, if there is at least one intersection point ∀p′ ⊆ t.⋂

p′⊆t

V(p′) \ E 6= ∅

Definition 4.4.3 (Common Node) For any intersecting tree t, a give node
n ∈ V(t) \ E, is called common node, if

n ∈
⋂
p′⊆t

V(p′)

The set of such nodes are represented by Nc

Figure 4.5 (c) shows examples of an [non] interconnecting and [non] intersecting
trees. The sub-tree along the solid lines is both an interconnecting and intersect-
ing tree but the one along the dotted lines is none. On Figure 4.5 (c) node 2 is
the only common node.

The second score is then based on the above notions; the intuition is that
given any node n ∈ V(GC) \E, this score tells us the likelihood that n ∈ Nc. This
alludes to the interestingness of the node from the whole entity nodes point of
view.

We compute these scores using the random surfer model. For the first score it
is computed by doing a random walk with restart (RWR) which starts from each
entity node independently. And for the second score it is computed by doing a
RWR starting from each entity node simultaneously. As studied in different works
like [12, 22, 23] in RWR the restart probability discourages long connectivity paths
in a natural way. In addition, RWRs are well suited to capture the structural
connectivity between nodes. These are the motivations behind the singular and
integrated iterations. The aggregate score will give the final interestingness value
for each non entity node.

4.4.1 Singular Iteration

During the first iteration, we aim at giving interestingness score for all nodes
with respect to each entity node independently. ∀ni ∈ V(GC) \ E ∧ ∀ej ∈ E, we

compute Ie(ni, ej), where Ie(ni, ej) = [0, 1] is an estimation of the interestingness
score of node ni, w.r.t entity node ej.

In order to compute Ie we have used a similar strategy as [22]. Where in our
case we have used a weighted graph based on informativeness, incident and edge
reward scores. LetW be the normalized weight matrix for the weighted candidate
sub-graph GC . For any edge 〈u, v〉|{u, v} ⊆ V(GC), it is normalized according to
the sum of the weights of the outgoing edges of node u.

Let Ij [1 × M] be vector of an interestingness score of all the nodes with
respect to the the entity node ej, and M = |V(GC)|. Where Ij is populated by
propagating a confidence score (interestingness) of reaching each node through
a random walk traversal by starting from an entity node ej. Since we have a
normalized weight matrix W , it is used as a transition matrix.

Initially, nothing is known about the interestingness of each node apart from
the fact that we know the random surfer is waiting to start the walk from the
entity node ej. We can represent this state as an initial vector with all of its
components set to zero except the one that corresponds to the starting entity
node.

I0j =

0

.

.

0

1

0

.

.

0

(4.15)

Therefore, the random walk can be done according to the following recursive
transition.

It+1
j = W × Itj (4.16)

However, this method will not account for discouraging long and loose connec-
tivity paths. According to the studies of [22, 23] Random walk with restarts will
properly deal with this kind of situations. Therefore, in order that we can cap-

ture this, we extend the previous model to let the random walker able to restart
(RWR) the walk. We allow to restart the random walk by distributing a restart
probability, r (r = 0.85 is used), on the initial vector as:

It+1
j = r × I0j + (1− r)×W × Itj (4.17)

That is the random walk will be done by respecting the weight (transition) ma-
trix with probability proportional to r or it will be restarted with probability
proportional to 1− r. It is clear that for a large set of nodes this computation is
expensive, therefore the above equation can be solved in closed form:

Ij = (1− r)(I − rW)−1I0j (4.18)

where I is identity matrix, and Ij is a steady state probability vector indicating
the interestingness of each node with respect to the entity node ej.

4.4.2 Integrated Iteration

As we have stated earlier, in addition to Ie we need a way to capture inter-
estingness w.r.t the whole entity nodes. That is the aim of this iteration. For
each node we will determine it’s interestingness w.r.t the whole entity nodes.
∀ni ∈ V(GC) \ E, we compute IE(ni,E), where IE(ni,E) = [0, 1] is an estimation
of the interestingness score of node ni w.r.t the whole entity nodes in E.

IE is simply computed by combining the Ie as:

IE(n,E) =
∏
e∈E

Ie(n, e) (4.19)

Therefore the output sub-graph extraction model can be formally stated as:

Definition 4.4.4 (Top-K output sub-graph extraction) For a candidate sub-
graph GC, top-K output sub-graph extraction amounts to finding a set of connected
sub-graphs such that the aggregate score function f is maximized:

max f(E,GC) =
∑

n ∈ V(p) \ E
p ⊆ GC

IE(n,E) (4.20)

Subject to:| ∪p⊆GC
V(p) \ E| < b

where b is a node budget (The maximum number of nodes other than entity
nodes).

4.4.3 Extraction

For the extraction algorithm, we have used Dijkstra’s shortest path algorithm in
the following way.

• Sorted all node n ∈ V(GC) \ E according to the interestingness (IE) score.
Let this sorted list be referred as Ω.

• Pick a node n ∈ Ω with the highest score

• Find a shortest path from each of the entity nodes e ∈ E to n within a given
radius.

• Synchronize all the paths with the candidate sub-graph, and build a small
output sub-graph GO.

• If the number of nodes excluding the entity nodes is less than the node
budget remove n from Ω and repeat the whole process starting from step 2.

Algorithm 4 gives a high level description of the extraction process. To carry out
the extraction using any shortest path algorithm, we first need to have a directed
weighted graph. Our candidate sub-graph is already directed sub-graph, and also
weighted. However this is not the kind of weight we are interested in right now.
We therefore use another weighting scheme on the edges. A scheme that accounts
for the scores we have on nodes at this stage. Thus, for each edge e ∈ Edge(GC) a
weight is given by taking the inverse of the interestingness score of the destination
node on e. This is a process which is handled in line 8 during the execution of the
“dijkstraShortestPath" method. This method finds the shortest path between e
and n, within the specified radius, rad on the given candidate sub-graph GC .

An output sub-graph GO weighs the sum of interestingness score of its nodes
n ∈ V(GO) \ E.

Algorithm 4 Output sub-graph extraction
Require: GC candidate sub-graph
Require: E entity nodes
Require: rad Radius
Ensure: GO output sub-graph
1: GO ← NULL;
2: procedure extract(GC,E, rad)
3: Ω← sort(V(GC));
4: while | V(GO) |< b do
5: . pick(Ω) selects a highest scoring node from Ω
6: n← pick(Ω);
7: for e ∈ E do
8: path← dijkstraShortestPath(e, n,GC, rad);
9: build(GO, path);

10: end for
11: remove(Ω, n);
12: end while
13: return GO;
14: end procedure

It is obvious from the justification of Integrated Iteration why we need to pick
from nodes sorted by IE. By doing these we will be able to extract interesting
relationships between any number of entity nodes.

4.5 Ranking

We have ranked output sub-graphs of a given candidate sub-graph by simply
taking the sum of the interestingness of non entity nodes on each output sub-
graph as explained in the previous section. Every time extraction of an output
sub-graph is finished, that is when the sub-graph reached the budget constraint,
another sub-graph construction commences. This will leave us with a set of
output sub-graphs that needs to be ranked according to their weight. This is
merely a sorting operation based on the weights of the output sub-graphs, which
are obtained by summing the nodes interestingness (IE) value.

Nevertheless, the above ranking is only for output sub-graphs generated from
a single candidate sub-graph; that is, its local ranking. Therefore we need a way

to globally rank output sub-graphs obtained from all the candidate sub-graphs.
Though it is simple, the global ranking strategy used in this work proved to

be good. This is corroborated by the quality of results which are presented in the
experiments and results chapter, Chapter 5.

The global ranking works by respecting the ranking during the disambiguation
phase. Remember that in Section 4.2.2 a ranked list of candidate entities are
obtained from the top-τ semantic paths. We assume that this ranking should be
taken into account.

Therefore the global ranking is done as follows:

1. Pick the candidate sub-graph generated for the entity tie in the first rank
of the top-τ ranking.

2. Take the first dk
τ
e output sub-graphs of the local ranking of the candidate

sub-graph under consideration

3. For the remaining k − (dk
τ
e) positions, take the first b

k − (dk
τ
e)

τ − 1
c output

sub-graphs of the candidate sub-graphs generated for entity ties ranking
from 2− τ .

Chapter 5

Experiments and Results

This section provides the experiments carried out and the evaluation results of
the approach followed in this work. The main goal is to show the performance of
the model, in terms of quality and efficiency, according to different experimental
settings.

5.1 Experimental Setting

In order to carry out the experiments and evaluate the performance of the model,
a set of ground truth relationships (sub-graphs) for all the queries are used. These
are manually extracted sub-graphs of the knowledge base. Thus each query will
have a pre-manually-extracted sub-graph, where the the produced results of the
model should adhere to.

There are parameters which we need to take care of during this experiment.
They are:

• Candidate referent entity pruning threshold (α).

• τ , for top-τ candidate entities.

• k, the number of final out sub-graphs

In the following we present the data set used in the experiments and the evaluation
metrics.

39

5.1.1 Data set

• Query: A set of selected queries, totally 80, which are taken from [12] 1 (50
queries) and AOL search engine query log (30 queries) are used. Both sets
are fairly heterogeneous.

• Knowledge-base: Freebase [2] is the selected knowledge-base. It is preferred
because of it’s concept (entities) and fact (relationship) coverage. By the
time that this experiment was being carried out, Freebase has 39,898,859
entities and 1,825,718 ,199 facts. This makes it the largest knowledge base
in terms of concept space. Which is appropriate for this work.

5.1.2 Evaluation Measures

For systems that produce ranked results, Mean reciprocal rank (MRR) is one
of the evaluation techniques which is commonly used in information retrieval.
However, MRR is well suited when there should be one relevant answer in some
position out of the top-K results. But for this work case, there might be more
than one relevant answers. A suitable evaluation technique for such cases is then
either Mean Average Precision (MAP) or Normalized Discounted cumulative gain
(NDCG).

Even though we have these competing metrics for the evaluation of the quality
of the results, due to the following observed facts, during the experiment, which
are,

extracted output sub-graphs may

• miss relationships which are found on the ground truth.

• have additional relationships which are not found on the ground truth.

it is hardly possible to give binary judgment on the results (100% correct or 100%
wrong). They should be quantified in some degree of uncertainty. This makes
NDCG, which is based on graded judgments instead of binary judgments [25], an
ideal choice. And hence the quality of results is evaluated according to NDCG.

From top-k ranked results, a position is graded according to Table 5.1.
1Queries used in this work

Table 5.1: Results quality grading scheme
MissingEdges
TotalEdges

Number of Added Edges Grade Gain

0
≤3

Perfect
10

(3, 6] 9
>6 8

(0, 1
3
]

≤3
Excellent

7
(3, 6] 6
>6 5

(1
3
, 2
3
]

≤3
Good

4
(3, 6] 3
>6 2

(2
3
, 1) Any Fair 1

1 Any Bad 0

Once the gain is obtained, for a given query q, following [25], the NDCG is
calculated as

NDCGq =
DCGq

IDCGq

Where

DCGq =
k∑
j=1

2gain(q,j)−1

log2(1 + j)

gain(q,j) is the gain obtained for result j of query q, and it is normalized by the
ideal discounted gain (IDCGq) to give the NDCGq. Intuitively the IDCGq is
obtained by taking the ideal ordering, in decreasing order, of results gain for the
particular query.

Let gain′ be a version of the gain function which preserves the ordering of the
grading by the gain function. Then

IDCGq =
k∑
j=1

2gain
′(q,j)−1

log2(1 + j)

Suppose the grading for a particular query be:

gain = 9, 4, 0, 7, 3, 0, 6, 1, 0, 0

then
gain′ = 9, 7, 6, 4, 3, 1, 0, 0, 0, 0

For a set of queries Q, the final NDCG will be given by the following equation:

NDCG =
1

|Q|

|Q|∑
q=1

NDCGq

5.2 Time Performance evaluation

The performance of our model in terms of time is evaluated for each sub compo-
nent of the model and hence for the complete model. Since the time performance
is significantly affected by the number of entity nodes and α, the evaluation com-
prises combination of different values for this two parameters. In addition this
evaluation is performed both on a disk resident and memory based graph.

5.3 Results

This section will present the results of the experiments carried out for this work.
It shows how sensitive the model is to parameters, and also shows effectiveness
and efficiency results.

As shown in Figure 5.1, the quality of the result is not significantly affected
by the parameters. This proves that this model is stable.

The efficiency of the model for both disk resident and memory based graphs
is also presented in Figure 5.2. For both experiments the analysis is made for
every sub-component of the model. This is to show that which operation is the
most expensive one in terms of time.

In addition, Figure 5.3 gives efficiency analysis for different values of τ and
α. Still there is no great deal of increase in time because of the change in τ .
The only thing affecting the time is alpha. This is natural, because as the values
of α increased, the model is forced to take only very similar (string similarity)
candidate entities.

From the efficiency experimental results, it is obvious to observe that the
expensive computation is incurred during the disambiguation process. This is

due to the fact that we need to compute semantic relatedness for every tie of
candidate entities of different mentions. This means, as the number of candidate
entities grow so is the computational cost. Therefore, the parameter α, a syntactic
similarity (on CR) threshold, plays an essential role in deciding the number of
candidate entities. Those candidate entities which fall below a certain threshold
are pruned away.

One problem with pruning is the case for name variants of entities. There
are different ways of addressing a certain entity in the world. This will be a
serious problem when our consideration is only syntactic similarity. For exam-
ple, if a given query contains an entity mention “USA", one of the matching, if
not the correct, candidate entities “United States of America" might fall bellow
the specified threshold. Apparently because of a very low syntactic similarity.
Therefore, in order to cope with these kinds of situations, we have considered set
of aliases for each of the candidate entities of each entity mention. A study [27]
has shown that aliases are very important for entity disambiguation when there
is no context; and it is a very important input in this task. Let AL(e) be the
set of aliases for an entity e ∈ E(em); the syntactic similarity between the entity
mention em and entity e is given by taking the max syntactic similarity between
the entity mention and each of the aliases of the candidate entity or the name of
the candidate entity itself. It is formally given as:

CR(em, e)← max synt(em, items(e))

where items(e) = AL(e) ∪ e and synt is an equivalent computation as Equation
4.1.

In practice the size of a candidate sub-graph is relatively small. Particularly
after pruning non-entity degree one nodes. Therefore, the computation during
the two sub components “CSG", and “OSE" of the whole system is relatively
efficient, below 5 seconds for all kinds of parameter settings.

Figure 5.1: Quality evaluation for τ = 1, 2, 3, α = 0.5,0.6,0.7,0.8,0.9 and fixed
number of entities = 3.

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

τ=
1

τ=
2

τ=
3

0.5 0.6 0.7 0.8 0.9
Alpha

N
D

C
G

Figure 5.2: Time performance evaluation for fixed α = 0.7 and τ = 2.

Disk Resident Graph

Memory Based Graph

0

10

20

30

40

0

10

20

30

40

2 3 4 5 6
Number of Entities in a Query

T
im

e
in

 S
ec

Module

DIS

CSG

OSE

FULL

Figure 5.3: Time performance evaluation for τ=1,2,3 , α = 0.2,0.5,0.7,0.9 and
fixed number of entities = 3.

0

10

20

30

0

10

20

30

0

10

20

30

τ=
1

τ=
2

τ=
3

0.25 0.50 0.75 1.00
Alpha

T
im

e
in

 S
ec

Module

DIS

CSG

OSE

FULL

Chapter 6

Conclusion and Future Work

In these work a model is proposed to map keyword queries to graph queries. It
is obvious that keywords are convenient for users to formulate their queries and
forward them to machines. This is because keywords

• are based on natural languages, where users are familiar with

• can easily lead to more advanced searches on different topics by merely
starting from a very narrow clue

Even though keywords are preferred by users, they are usually ambiguous and
over specified. On top of that, it is different when trying to address keywords
simply for a document retrieval and interpreting or understanding them. The
fact that they are over specified makes it harder to tell the intention of keyword
queries, or what the user has in mind. Thus given these ambiguous keywords,
in this work, an extended approach from an existing work is implemented to
disambiguate them. This is a graph based approach that uses the so called
“referent graph". In order to anticipate the intention of the queries and map
the keywords to clearly known entities the syntactic and semantic information
encoded in this graph are exploited well.

Further more, once keywords are disambiguated techniques which analyze the
relationship between the disambiguated entities are also demonstrated. These
phases are also based on graph, which is a snippet of the knowledge base. By ex-
tracting a local sub-graph from the knowledge-base, which strongly interconnects

47

the disambiguated entities, we analyzed the relationship between them and give
top-k output sub-graphs as a final result.

The performance, in terms of quality and time, of the model is also presented
for different setting of the model’s parameters. As it is described in the experi-
ments and results section, the model has a good performance. Though the time
performance is not extremely satisfactory, still it is a good performance. The
drawback in time performance is most probably due to the case that a graph-
based approach is used to tackle the problem.

However, the performance in terms of quality is satisfactory. Most state-of-
the-art works in this area reports very close records.

Doing further study on how we can improve the time performance and even
achieving greater quality of results are goals for a future work. In addition doing
a comparative work with state-of-the-art studies is also plan for future work.

APPENDIX A

Sample output sub-graphs of the model
In the following example queries, represented as n-gram keywords, entity men-

tions are separated by ‘−’, and relationship mentions are put after a ‘;’.
Example 1: Q = Max Born− Enrico Fermi− Paul Dirac
Example 2: Q = Clue Dungeons & Dragons−Cluedo−Dungeons & Dragons−

Gary Gygax

Example 3: Q = Clint Eastwood−Helen Hunt− Edie Falco
Example 4: Q = Google− Y ouTube;Acquisition

49

Figure 1: Example 1: ground truth query graph

Paul Dirac

Enrico Fermi

Max Born

Physicist
Nobel Prize Winner

Is-AProfession

profession Is-A

profession Is-A

Figure 2: Example 1: output sub-graph, rank 1st

Paul Dirac

Enrico FermiMax Born

Scientist
Dirac Fermion

Things named after this
Profession

profession profession
Things name after this

Dirac Sea

Name Sake

Things named after this

Is-A

Is-A

Figure 3: Example 1: output sub-graph, rank 2nd

Enrico Fermi

Paul Dirac

Max Born

Physicist

Profession

profession

profession

Enrico Fermi Nuclear
Generating Station

Name Sake

Things named after this

Is-A

Is-A

Dirac Sea

Things named after this

Is-A

Figure 4: Example 1: output sub-graph, rank 3rd

Enrico Fermi

Paul Dirac
Max Born

Nobel Prize Winner

Is-A

Is-A
Is-A

Fermi–Dirac statistics

KWTopic Things named after this

Is-A

Dirac
Fermion

Things named after this

Things named after this

Things named after this

Is-A

Is-A

Figure 5: Example 2: ground truth query graph
Clue Dungeons &

Dragons
Dungeons &

Dragons

Cluedo

Games Designed

Derived From

Derived From

Gary Gygax

Figure 6: Example 2: output sub-graph, rank 1st

Clue Dungeons &
Dragons

Dungeons &
Dragons

TSR, Inc

Games Designed

Derived From

Publisher
Gary Gygax

Organizations Founded

Figure 7: Example 2: output sub-graph, rank 2nd

Dungeons & Dragons Clue Dungeons
& Dragons

Written Work

Games Designed

Derived From

Gary Gygax
Game

Mythus Magick

Is-A

Works WrittenIs-A

Is-A Is-A

Figure 8: Example 2: output sub-graph, rank 3rd

Dungeons & Dragons Clue Dungeons
& Dragons

Written Work

Games Designed

Derived From

Gary Gygax Book

Mythus Magick

Is-A

Works Written Is-A

Is-A

Is-A

Figure 9: Example 3: ground truth query graph

Clint Eastwood

Helen Hunt

Edie Falco

Actor Award Nominee Award Winner

Is-AIs-AProfession

IsAIs-AProfession

Is-AIs-AProfession

Figure 10: Example 3: output sub-graph, rank 1st

Clint Eastwood

Helen Hunt
Edie Falco

TV Actor

United States of
America

Film Producer

IsACountry of Nationality
Is-A

Is-ACountry of Nationality

Is-A
Country of Nationality

Female

Is-A
Is-A

Is-A

Figure 11: Example 3: output sub-graph, rank 2nd

Clint Eastwood

Helen HuntEdie Falco

Film Director

Film Actor
Musical Artist

IsA
Is-A

Is-A

Is-A
Is-A

Is-A
Is-A

Is-A

Figure 12: Example 3: output sub-graph, rank 3rd

Clint Eastwood

Helen HuntEdie Falco

Award Winner

Actor
Award Nominee

Is-AProfession
Is-A

Is-AProfession
Is-A

Proession
Is-A

Tv Director
Musician

Figure 13: Example 4: ground truth query graph

Google

Organizations Acquired

YouTube

Acquired by

Figure 14: Example 4: output sub-graph, rank 1st

Google

Website Owner

Is-A

Super Media

Is-A

Publicly Listed
Company

Legal StructureLegal Structure

Figure 15: Example 4: output sub-graph, rank 2nd

Google

Website Owner

Is-A

YouTube

Is-A

Acquired byOrganizations Acquired

ParentChild

Figure 16: Example 4: output sub-graph, rank 3rd

Google

Website Owner

Is-A

YouTube

Is-A

Venture Funded Company

Is-AIs-A

APPENDIX B

Queries used for the experiment

A. MING Queries

1. ADAM SMITH - GEORG WILHELM FRIEDRICH HEGEL

2. ADAM SMITH - JOHANN GOTTLIEB FICHTE - KARL WILHELM
FRIEDRICH SCHLEGEL

3. ALBERT EINSTEIN - EDMUND HUSSERL

4. ALBERT EINSTEIN - FRIEDRICH NIETZSCHE

5. ALBERT EINSTEIN - WOLFGANG PAULI

6. ARTHUR SCHOPENHAUER - KARL MARX

7. ARTHUR SCHOPENHAUER - MORITZ SCHLICK - LUDWIGWITTGEN-
STEIN

8. BERTRAND RUSSELL - ALBERT EINSTEIN

9. CLINT EASTWOOD - HELEN HUNT - EDIE FALCO

10. DEMI MOORE - ASHTON KUTCHER - BRUCE WILLIS

11. EDWIN HUBBLE - ALBERT EINSTEIN

12. ERNEST RUTHERFORD - JOHANNES KEPLER

57

13. ERNST MACH - EDMUND HUSSERL - ADAM SMITH

14. GEORGE CLOONEY - LIAM NEESON - JAKE GYLLENHAAL

15. GEORG WILHELM FRIEDRICH HEGEL - HEINRICH HERTZ

16. GINA GERSHON - MICHAEL DOUGLAS - BRITTANY MURPHY

17. GOTTLOB FREGE - BERNARD BOLZANO

18. HARRISON FORD - ROBERT REDFORD - SALLY FIELD

19. HIDEKI YUKAWA - MAX PLANCK

20. ISAAC NEWTON - EDMOND HALLEY

21. ISAAC NEWTON - JAMES CLERK MAXWELL - WERNER HEISEN-
BERG

22. JAMES CLERK MAXWELL - HIDEKI YUKAWA

23. JEANNE TRIPPLEHORN - JENNIFER ANISTON - DIANE LANE

24. JESSICA ALBA - LEONARDO DICAPRIO - BILLY CRYSTAL

25. JODIE FOSTER - TERI HATCHER - CHRISTINA RICCI

26. JOHANN AUGUSTUS EBERHARD - FRIEDRICH NIETZSCHE

27. JOHANN GOTTFRIED HERDER - PLATO - GOTTFRIED LEIBNIZ

28. KARL MARX - JEAN-PAUL SARTRE - LUDWIG WITTGENSTEIN

29. KEVIN SPACEY - HALLE BERRY - JULIA ROBERTS

30. LIV TYLER - DENNIS QUAID - TERI HATCHER

31. LUDWIG BOLTZMANN - RICHARD FEYNMAN

32. MAXHORKHEIMER - ARTHUR SCHOPENHAUER - HEINRICH HERTZ

33. MAX HORKHEIMER - BLAISE PASCAL - BERNARD BOLZANO

34. MAX PLANCK - JAMES CLERK MAXWELL - NIELS BOHR

35. MAX PLANCK - WERNER HEISENBERG - ENRICO FERMI

36. MAX WEBER - GEORG WILHELM FRIEDRICH HEGEL - ERNST
MACH

37. MICHAEL DOUGLAS - BILLY BOB THORNTON - KIM DELANEY

38. NIELS BOHR - ERNEST RUTHERFORD - MAX BORN

39. NIELS BOHR - MICHAEL FARADAY - MAX BORN

40. PAM GRIER - MATT DAMON - SHARON STONE

41. PAUL DIRAC - ENRICO FERMI - MAX BORN

42. PLATO - BLAISE PASCAL - GOTTLOB FREGE

43. PLATO - FRIEDRICH NIETZSCHE - BERTRAND RUSSELL

44. RUDOLF CARNAP - THOMAS ABBT - MAX HORKHEIMER

45. SANDRA BULLOCK - JENNIFER ANISTON - KEVIN SPACEY

46. SARAHMICHELLE GELLAR - SALMAHAYEK - VIGGOMORTENSEN

47. SIGOURNEY WEAVER - WINONA RYDER - MICHAEL KEATON

48. STEPHEN HAWKING - JOHANNES KEPLER

49. TOM SIZEMORE - AL PACINO - JENNIFER GARNER

50. UMA THURMAN - JAKE GYLLENHAAL - JENNIFER GARNER

B. AOL Queries

1. ALICE WALKER - EVERYDAY USE

2. BILL COSBY - THE COSBY SHOW

3. STEPHENIE MEYER - TWILIGHT

4. ANSON WILLIAMS - HAPPY DAYS - POTSIE

5. GOOGLE - YOUTUBE; ACQUISITION

6. AN OFFICER AND A GENTLEMAN - AWARD WINNER

7. AN OFFICER AND A GENTLEMAN - LOUIS GOSSETT, JR

8. BEETHOVEN - IMMORTAL BELOVED

9. GOO GOO DOLLS - BLACK BALLOON

10. BLACKBOARD OF MY HEART - HANK THOMPSON

11. CHICAGO BULLS - MICHAEL JORDAN

12. CRIMINAL MINDS - SHEMAR MOORE

13. DAN BROWN - THE DA VINCI CODE - TOM HANKS

14. DREW BARRYMORE - PRODUCER

15. DWYANE WADE - GARY PAYTON

16. GEORGE BUSH - LAURA BUSH

17. GRETCHEN MOL - THE NOTORIOUS BETTIE PAGE

18. YOUR MAN - JOSH TURNER

19. YOU’VE GOT A WAY - SHANIA TWAIN; BY

20. CLUE DUNGEONS & DRAGONS - CLUEDO - DUNGEONS & DRAG-
ONS - GARY GYGAX

21. SECRETARY OF STATE - WILLIAM F. GALVIN

22. TIM BERNERS-LEE - WORLD WIDE WEB - MACWWW - WORLD
WIDE WEB CONSORTIUM

23. SANTA CLARA - YAHOO! - DEL.ICIO.US

24. TABLET COMPUTER - IPAD - APPLE INC.

25. DAVID STEWARD - WORLD WIDE TECHNOLOGY; CHAIRMAN

26. MICHAEL J FOX - PARKINSON;FOUNDATION

27. X-MEN - FILM - ROGUE - WOLVERINE

28. CAMILLA BELLE - ACTOR

29. ROMEO AND JULIET - WILLIAM SHAKESPEARE; BY

30. MILEY CYRUS - TISH CYRUS - BILLY RAY CYRUS - SINGER - SONG-
WRITER - ACTOR

References

[1] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R.,

and Ives, Z. Dbpedia: a nucleus for a web of open data. In Proceedings of
the 6th international The semantic web and 2nd Asian conference on Asian
semantic web conference (Berlin, Heidelberg, 2007), ISWC’07/ASWC’07,
Springer-Verlag, pp. 722–735. 1

[2] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor,

J. Freebase: a collaboratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data (2008), ACM, pp. 1247–1250. 1, 40

[3] Faloutsos, C., McCurley, K. S., and Tomkins, A. Fast discovery of
connection subgraphs. In Proceedings of the tenth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining (New York, NY,
USA, 2004), KDD ’04, ACM, pp. 118–127. 2

[4] Fang, L., Sarma, A. D., Yu, C., and Bohannon, P. Rex: explaining
relationships between entity pairs. Proc. VLDB Endow. 5, 3 (Nov. 2011),
241–252. 12, 30

[5] Gabrilovich, E., and Markovitch, S. Computing semantic relatedness
using wikipedia-based explicit semantic analysis. In Proceedings of the 20th
international joint conference on Artifical intelligence (San Francisco, CA,
USA, 2007), IJCAI’07, Morgan Kaufmann Publishers Inc., pp. 1606–1611.
12

62

[6] Guo, J., Xu, G., Cheng, X., and Li, H. Named entity recognition in
query. In Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval (New York, NY, USA,
2009), SIGIR ’09, ACM, pp. 267–274. 14

[7] Han, X., and Sun, L. A generative entity-mention model for linking en-
tities with knowledge base. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technolo-
gies - Volume 1 (Stroudsburg, PA, USA, 2011), HLT ’11, Association for
Computational Linguistics, pp. 945–954. 2, 9

[8] Han, X., Sun, L., and Zhao, J. Collective entity linking in web text:
a graph-based method. In Proceedings of the 34th international ACM SI-
GIR conference on Research and development in Information Retrieval (New
York, NY, USA, 2011), SIGIR ’11, ACM, pp. 765–774. 2, 8, 14, 17, 19

[9] Han, X., Sun, L., and Zhao, J. Collective entity linking in web text:
a graph-based method. In Proceedings of the 34th international ACM SI-
GIR conference on Research and development in Information Retrieval (New
York, NY, USA, 2011), SIGIR ’11, ACM, pp. 765–774. 20, 21

[10] He, H., Wang, H., Yang, J., and Yu, P. S. Blinks: ranked keyword
searches on graphs. In Proceedings of the 2007 ACM SIGMOD international
conference on Management of data (New York, NY, USA, 2007), SIGMOD
’07, ACM, pp. 305–316. 16, 26

[11] Hu, J., Wang, G., Lochovsky, F., Sun, J.-t., and Chen, Z. Un-
derstanding user’s query intent with wikipedia. In Proceedings of the 18th
international conference on World wide web (New York, NY, USA, 2009),
WWW ’09, ACM, pp. 471–480. 11

[12] Kasneci, G., Elbassuoni, S., and Weikum, G. Ming: mining infor-
mative entity relationship subgraphs. In Proceedings of the 18th ACM con-
ference on Information and knowledge management (New York, NY, USA,
2009), CIKM ’09, ACM, pp. 1653–1656. 2, 26, 27, 33, 40

[13] Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F. M., and

Weikum, G. Star: Steiner-tree approximation in relationship graphs. In
Proceedings of the 2009 IEEE International Conference on Data Engineering
(Washington, DC, USA, 2009), ICDE ’09, IEEE Computer Society, pp. 868–
879. 2

[14] Khan, A., Wu, Y., Aggarwal, C. C., and Yan, X. Nema: fast graph
search with label similarity. In Proceedings of the 39th international con-
ference on Very Large Data Bases (2013), PVLDB’13, VLDB Endowment,
pp. 181–192. 2

[15] Milne, D., and Witten, I. H. An effective, low-cost measure of semantic
relatedness obtained from Wikipedia links. In Proceedings of the first AAAI
Workshop on Wikipedia and Artificial Intelligence (2008). 21

[16] Pound, J., Hudek, A. K., Ilyas, I. F., and Weddell, G. Interpreting
keyword queries over web knowledge bases. In Proceedings of the 21st ACM
international conference on Information and knowledge management (New
York, NY, USA, 2012), CIKM ’12, ACM, pp. 305–314. 10

[17] Pound, J., Ilyas, I. F., and Weddell, G. Expressive and flexible access
to web-extracted data: a keyword-based structured query language. In Pro-
ceedings of the 2010 ACM SIGMOD International Conference on Manage-
ment of data (New York, NY, USA, 2010), SIGMOD ’10, ACM, pp. 423–434.
2, 11

[18] Ramakrishnan, C., Milnor, W. H., Perry, M., and Sheth, A. P.

Discovering informative connection subgraphs in multi-relational graphs.
SIGKDD Explor. Newsl. 7, 2 (Dec. 2005), 56–63. 2

[19] Shen, W., Wang, J., Luo, P., and Wang, M. Linden: linking named
entities with knowledge base via semantic knowledge. In Proceedings of the
21st international conference on World Wide Web (New York, NY, USA,
2012), WWW ’12, ACM, pp. 449–458. 2, 9

[20] Suchanek, F. M., Kasneci, G., and Weikum, G. YAGO: A Core of
Semantic Knowledge Unifying WordNet and Wikipedia. 1, 10

[21] Suchanek, F. M., Kasneci, G., and Weikum, G. Yago: A large ontol-
ogy from wikipedia and wordnet. Web Semant. 6, 3 (Sept. 2008), 203–217.
1, 10

[22] Tong, H., and Faloutsos, C. Center-piece subgraphs: problem definition
and fast solutions. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining (New York, NY, USA,
2006), KDD ’06, ACM, pp. 404–413. 2, 33, 34

[23] Tong, H., Faloutsos, C., and Pan, J.-Y. Fast random walk with restart
and its applications. In Proceedings of the Sixth International Conference on
Data Mining (Washington, DC, USA, 2006), ICDM ’06, IEEE Computer
Society, pp. 613–622. 33, 34

[24] Vivaldi, J., and RodrÃŋguez, H. Finding domain terms using
wikipedia. 14

[25] Wang, Y., Wang, L., Li, Y., He, D., Liu, T.-Y., and Chen, W. A
theoretical analysis of ndcg type ranking measures. CoRR abs/1304.6480
(2013). 40, 41

[26] Wu, W., Li, H., Wang, H., and Zhu, K. Q. Probase: a probabilistic
taxonomy for text understanding. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data (New York, NY, USA,
2012), SIGMOD ’12, ACM, pp. 481–492. 1

[27] Zheng, Z., Si, X., Li, F., Chang, E., and Zhu, X. Entity disambiguation
with freebase. In The 2012 IEEE/WIC/ACM International Conference on
Web Intelligence (WI’2012) (2012). 2, 43

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Motivating Example

	2 Problem
	2.1 Problem Definition
	2.2 Auxiliary Definitions

	3 Literature Review
	3.1 Entity Linking
	3.2 Keyword Interpretation
	3.3 Relationship explanation

	4 Methodology
	4.1 Overview
	4.2 Disambiguation
	4.2.1 Nodes importance scoring
	4.2.2 Top- Path selection

	4.3 Candidate Sub-graph Generation
	4.4 Output sub-graph extraction
	4.4.1 Singular Iteration
	4.4.2 Integrated Iteration
	4.4.3 Extraction

	4.5 Ranking

	5 Experiments and Results
	5.1 Experimental Setting
	5.1.1 Data set
	5.1.2 Evaluation Measures

	5.2 Time Performance evaluation
	5.3 Results

	6 Conclusion and Future Work
	APPENDIX A
	APPENDIX B
	References

