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Abstract. Machine learning algorithms perform differently in settings
with varying levels of training set mislabeling noise. Therefore, the choice
of a good algorithm for a particular learning problem is crucial. In this
paper, we introduce the “Sigmoid Rule” Framework focusing on the de-
scription of classifier behavior in noisy settings. The framework uses an
existing model of the expected performance of learning algorithms as a
sigmoid function of the signal-to-noise ratio in the training instances. We
study the parameters of the above sigmoid function using five different
classifiers, namely, Naive Bayes, kNN, SVM, a decision tree classifier,
and a rule-based classifier. Our study leads to the definition of intuitive
criteria based on the sigmoid parameters that can be used to compare
the behavior of learning algorithms in the presence of varying levels of
noise. Furthermore, we show that there exists a connection between these
parameters and the characteristics of the underlying dataset, hinting at
how the inherent properties of a dataset affect learning. The framework
is applicable to concept drift scenaria, including modeling user behavior
over time, and mining of noisy data series, as in sensor networks.
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1 Introduction

Transforming vast amounts of collected — possibly noisy — data into useful
information, through such processes as clustering and classification, is a really
interesting research topic. The machine learning and data mining communities
have extensively studied the behavior of classifiers — which is the focus of this
work — in different settings (e.g., [13,20,8,9]), however the effect of noise on the
classification task is still an interesting and open problem. The importance of
studying noisy data settings is augmented by the fact that noise is very common
in a variety of large scale data sources, such as sensor networks and the Web.
Thus, there rises a need for a unified framework studying the behavior of learning
algorithms in the presence of noise, regardless of the specifics of each algorithm.

In this work, we study the effect of training set mislabeling noise3 on a clas-
sification task. This type of noise is common in cases of concept drift, where a

3 for the rest of this paper we will use the term noise to refer to this type of noise,
unless otherwise indicated.
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target concept shifts over time, rendering previous training instances obsolete.
Essentially, in the case of concept drift, feature noise causes the labels of previ-
ous training instances to be obsolete and, thus, equivalent to mislabeling noise.
Drifting concepts appear in a variety of settings in the real world, such as the
state of a free market or the traits of the most viewed movie. Giannakopou-
los and Palpanas [10] have shown that the performance4 of a classifier in the
presence of noise can be effectively approximated by a sigmoid function, which
relates the signal-to-noise ratio in the training set to the expected performance
of the classifier. We term this approach the “Sigmoid Rule”.

In our work, we examine how much added benefit we can get out of the
sigmoid rule model, by studying and analyzing the parameters of the sigmoid in
order to detect the influence of each parameter on the learner’s behavior. Based
on the most prominent parameters, we define the dimensions characterizing the
algorithm behavior, which can be used to construct criteria for the comparison
of different learning algorithms. We term this set of dimensions the “Sigmoid
Rule” Framework (SRF). We also study, using SRF, how dataset attributes (i.e.,
the number of classes, features and instances and the fractal dimensionality [6])
correlate to the expected performance of classifiers in varying noise settings.

In summary, we make the following contributions. We define a set of intu-
itive criteria based on the SRF that can be used to compare the behavior of
learning algorithms in the presence of noise. This set of criteria provides both
quantitative and qualitative support for learner selection in different settings. We
demonstrate that there exists a connection between the SRF dimensions and the
characteristics of the underlying dataset, using both a correlation study and re-
gression modeling. In both cases we discovered statistically significant relations
between SRF dimensions and dataset characteristics. Our results are based on
an extensive experimental evaluation, using 10 synthetic and 14 real datasets
originating from diverse domains. The heterogeneity of the dataset collection
validates the general applicability of the SRF.

2 Background and Related Work

Given the variety of existing learning algorithms, researchers are often inter-
ested in obtaining the best algorithm for their particular tasks. This algorithm-
selection is considered part of the meta-learning domain [11]. According to the
No-Free-Lunch theorems (NFL) described in [22] and proven in [23], [21], there
is no overall best classification algorithm. Nevertheless, NFL theorems, which
compare the learning algorithms over diverse datasets, do not limit us when we
focus on a particular dataset. As mentioned in [1], the results of NFL theorems
hint at comparing different classification algorithms on the basis of dataset char-
acteristics. Concerning the measures of performance that help distinguish among
learners, in [1] the authors compared algorithms on a large number of datasets
(100), using measures of performance that take into consideration the distribu-
tion of the classes within the dataset, thus using the characteristics of datasets.

4 In this paper, by performance of an algorithm, we mean classification accuracy.
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The Area Under the receiver operating Curve (AUC) is another measure used
to assess machine learning algorithms and to divide them into groups of classi-
fiers which have statistically significant difference in performance [2]. In all the
above studies, the analysis of performance has been applied on datasets without
noise, while we study the behavior of classification algorithms in noisy settings.
Our present study is based on the work of G. Giannakopoulos and T. Palpanas
[10] on concept drift, which illustrated that a sigmoid function can efficiently
describe performance in the presence of varying levels of training set mislabeling
noise. In this work, we analytically study the sigmoid function to determine a
set of parameters that can be used to support learner selection in different noisy
classification settings.

The behavior of machine learning classifiers in the presence of noise was also
considered in [14]. The artificial datasets used for classification were created
on the basis of predefined linear and nonlinear regression models, and noise was
injected in the features, instead of the class labels as in our case. Noisy models of
non-markovian processes using reinforcement learning algorithms and Temporal
Difference methods are analyzed in [18]. In [4], the authors examine multiple-
instance induction of rules for different noise models. There are also theoretical
studies on regression algorithms for noisy data [19] and works on denoising, like
[17], where a wavelet-based noise removal technique was shown to increase the
efficiency of four considered machine learners. In both noise-related studies [19],
[17] attribute noise was considered. However, we study class-related noise and
do not consider specific noise models, which is a different problem. Class-related
noise is mostly related to concept drift, as was also discussed in the introduction.
In an early influential work, the problem of concept attainment in the presence
of noise was indicated and studied in the STAGGER system [16]. To the best of
our knowledge, there has been no work related to the selection of a classifier in
a concept drift setting, based on the level of noise and other qualitative criteria,
which will be reported below.

3 The Sigmoid Rule Framework

In order to describe the performance of a classifier, the “sigmoid rule” of [10]
considers a function which relates signal-to-noise ratio of the training set to the
expected performance. This function is called the characteristic transfer function
(CTF) of a learning algorithm. In this work we will call it also the sigmoid
function of an algorithm. The function is of the form

f(Z) = m+ (M −m)
1

1 + b · exp(−c(Z − d))

where m ≤M ; b, c > 0; Z = log(1+S)− log(1+N); S is the amount of “signal”
or true data, while N is the amount of “noisy” or distorted data; hence, Z is
the signal-to-noise ratio. As was shown in [10] the sigmoid function effectively
approximates the performance of a classifier in noisy settings.
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The behavior of different machine learning algorithms in the presence of noise
can be compared on several axes of comparison, based on the sigmoid function
parameters. Related to performance we can use (a) the minimal performance
m; (b) the maximal performance M ; (c) the width of the performance range
ralg = M − m, that defines the width of the interval in which the algorithm
performance varies. Related to the sensitivity of performance to the change of
the signal-to-noise ratio we want to know (a) within which range of noise levels
there is a significant change in performance when changing the noise; (b) how
we can tell apart algorithms that improve their performance even when the
signal-to-noise levels are low over those which only improve in high ranges of
signal-to-noise ratio; (c) how we can measure the stability of performance of an
algorithm against varying noise; (d) at what noise level an algorithm reaches
its average performance. To address these requirements we perform an analytic
study of the sigmoid CTF of an algorithm. This analysis helps devise measurable
dimensions that can answer our questions.

The domain of the sigmoid is in the general case Z ∈ (−∞,+∞). The range
of values is (m,M). Based on the first three derivatives, we determine the point
Zinf = d+ 1

c log b, which is the point of inflection (curvature sign change point).
In the case of the sigmoid function, this point is also the centre of symmetry.
Furthermore, Zinf indicates the shift of the sigmoid with respect to the origin

of the axes. The zeros of the third order derivative are Z
(3)
1,2 = d − 1

c log 2±
√

3
b ,

which can be used to estimate the slope of the sigmoid curve. Figure 1 illustrates
the sigmoid curve and its points of interest.
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Fig. 1. Sigmoid function and points of interest.

In the following section, we formulate and discuss dimensions that describe
the behavior of algorithms, based on our axes of comparison.

3.1 Sigmoid Rule Framework (SRF) Dimensions

We define several SRF dimensions based on the sigmoid properties, in addition to
m,M, ralg defined in Section 3. We define as active noise range a range [Z∗, Z

∗]
where the change of noise induces a measurable change in the performance. To
calculate [Z∗, Z

∗], let us assume that there is a good-enough performance for a
given task, approaching M for a given algorithm. We know that f(Z) ∈ (m,M)
and we say that the performance is good enough if f(Z) = M − (M − m) ∗
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p, p = 0.055. We define the size of the signal-to-noise interval in which f(Z) ∈
[m + (M − m) ∗ p,M − (M − m) ∗ p] to be the learning improvement of the
algorithm. Then, using the inverse function f−1(y) we calculate the points Z∗

(corr. Z∗) which is the bottom (corr. top) point in Figure 1 for a given p. We
term the distance dalg = Z∗ −Z∗ as the width of the active area of the machine
learning classifier (see Figure 1). Then,

ralg

dalg
describes the learning performance

improvement over signal-to-noise ratio change; we term this measure the slope
indicator, as it is indicative of the slope of the CTF.

In the following paragraphs we describe how the analysis of the CTF allows
to compare learning algorithm performance in the presence of noise.

3.2 Comparing Algorithms

Given the performance dimensions described above, we can compare algorithms
as follows. For performance we can use: m,M, ralg. Algorithms not affected by
the presence or absence of noise will have a minimal ralg value. In a setting
with a randomly changing level of noise this parameter is related to the possible
variance in performance. Related to the sensitivity of performance to the change
of the signal-to-noise ratio we can use: (a) the active noise range [Z∗, Z

∗]. The
width of the active area of the algorithm dalg = Z∗−Z∗, which is related to the
speed of changing performance for a given ralg in the domain of noise. A high
dalg value indicates that an algorithm varies its performance in a broad range of
signal-to-noise ratios, implying less stability of performance in an environment
with heavily varying degrees of noise. We say that the algorithm operates when
the level of noise in the data is within the active noise range of the algorithm;
(b) the lower bound Z∗ of the active noise range, which suggests which algo-
rithm operates earlier in noisy environment and which can reach its maximal
performance fast; (c) the point of inflection Zinf , that shows the signal-to-noise
ratio for which an algorithm gives the average performance. Zinf can be used to
choose the algorithm that reaches its average performance under more noise.

A parameter related to both performance and sensitivity is the slope indica-
tor

ralg

dalg
. It can be used to determine whether reducing the noise in a dataset is

expected to have a significant impact on the performance. An algorithm with a
high value of

ralg

dalg
, implies that reducing noise would be very beneficial. Further-

more, using the same dimension one can choose more stable algorithms, when the
variance of noise is known. In this case, one may choose the algorithm with the
lowest value of

ralg

dalg
, in order to limit the corresponding variance in performance.

Based on the above discussion, we consider the algorithms with higher max-
imal performance M , larger width of performance range ralg, higher slope indi-
cator

ralg

dalg
and shorter width of the active area of the algorithm dalg to behave

better: we expect to get high performance from an algorithm if the level of noise
in the dataset is very low, and low performance if the level of noise in the dataset

5 The value 0.05 can be any value close to 0, describing a normalized measure of
distance from optimal performance.
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is very high. Decision makers can easily formulate different criteria, based on the
proposed dimensions and particular settings.

4 Experimental Evaluation

In the following paragraphs, we describe the experimental setup, the datasets
and the results of our experiments.

In our study, we used the following machine learning algorithms, implemented
in Weka 3.6.3 [12]: (a) IBk — K-nearest neighbor classifier; (b) Naive Bayes clas-
sifier; (c) SMO — support vector classifier (cf. [15]); (d) NbTree — a decision tree
with naive Bayes classifiers at the leaves; (e) JRip — a RIPPER [5] rule learner
implementation. We have chosen representative algorithms from different fami-
lies of classification approaches, covering very popular classification schemes [24].

We used a total of 24 datasets for our experiments.6 Fourteen of them are real,
and ten are synthetic. All the datasets were divided into groups according to the
number of classes, attributes (features) and instances in the dataset as is shown
on Figure 2. There are 12 possible groups that include all combinations of the
parameters. Two datasets from each group were employed for the experiments.

Classes 

low high 

<7 ≥7 

Attributes 

low high 

<10 ≥10 

medium 

Instances 

low high 

<50
0 ≥5000 

50
0≤

x<
50

00
 

Fig. 2. Datasets grouping labels.

We created artificial datasets in the cases were real datasets with a certain
set of characteristics were not available. We produced datasets with known in-
trinsic dimensionality. The distribution of dataset characteristics is illustrated
in Figure 3. The traits of the datasets illustrated are the number of classes,
the number of attributes, the number of instances and the estimated intrinsic
(fractal) dimension.

The ten artificial datasets we used were built using the following procedure.
Having randomly sampled the number of classes, features and instances, we
sample the parameters of each feature distribution. We assume that the fea-
tures follow the Gaussian distribution with mean value (µ) from the interval
[−100, 100] and standard deviation(σ) from the interval [0.1, 30]. The µ and σ
intervals allow overlapping features across classes.

Noise was induced as follows. We created stratified training sets, equally
sized to the stratified test sets. To induce noise, we created noisy versions of
the training sets by mislabeling instances. Using different levels ln of noise, ln =
0, 0.05, ..., 0.95 7, a training set with ln noise is a set where there is a ln probability

6 Most of the real datasets come from the UCI Machine learning repository [7], and
one from [10]. For a detailed list with references check the following anonymous
online resource: http://tinyurl.com/3g4fmsf.

7 We note that high levels of noise such as 95% are often observed in the presence
of concept drift, e.g., when learning computer-user browsing habits in a network
environment with a single IP, and several different users sharing it.

http://tinyurl.com/3g4fmsf
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Fig. 3. Distribution of real (triangles) and artificial (circles) dataset characteristics.

that a training instance will be assigned a different label than their true one.
Hence, we obtained 20 dataset versions with varying noise levels.

4.1 Using SRF

We performed experiments of “noisy” classification using the generated datasets,
performing 10-fold cross validation per algorithm, and calculated the average
performance for varying noise levels. Given the 20 levels of signal-to-noise ratio
and the corresponding algorithm performance, (i.e., classification accuracy) we
estimated the parameters of the sigmoid. The search in the parameter space
is performed by a genetic algorithm, estimating an approximate good set of
parameters as was proposed in [10]. The quality of estimation is checked using
the Kolmogorov-Smirnov test. The results obtained are statistically significant.

A sample of true and sigmoid-estimated performance graphs for varying levels
of noise can be seen in Figure 4. In our experiments, the parameters of the
sigmoid were estimated offline, but SRF can be applied in an online scenario, as
well, using a training period.

Fig. 4. Sigmoid CTF of SMO (left) and IBk (right) for “Wine” dataset. Green solid
line: True Measurements, Dashed red line: estimated sigmoid.
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Figure 5 illustrates the means of the SRF parameters per algorithm, over all
24 datasets. As an example of interpretation of the figure using SRF, the plots
indicate that (for the studied range of datasets) SMO is expected to improve
its performance faster than all other algorithms, when the signal-to-noise ratio
increases. This conclusion is based on the slope indicator (

ralg

dalg
) values. Also,

IBk has a smaller potential for improvement of performance (but also smaller
potential for loss) than SMO when noise levels change, given that the width of
the performance range ralg is higher for SMO. This difference can also be seen
in Figure 4, where the distance between minimum and maximum performance
values is bigger for the SMO case (see Figure 4(left)).
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We stress that parameter estimation does not require previous knowledge of
the noise levels, but it is dataset dependent. In the special case of a classifier
selection process, having an estimate of the noise level in the dataset helps to
reach a decision through the use of SRF.

4.2 Statistical Analysis

We now study the connection between the dataset characteristics and the sig-
moid parameters (using the same 24 datasets), irrespective of the choice of the
algorithm. We consider the results obtained from all the algorithms as different
samples of SRF parameters for a particular dataset. We use regression analy-
sis to observe the cumulative effect of the dataset characteristics on a single
parameter, and we use correlation analysis to detect any connection between
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each (dataset characteristic, sigmoid parameter) pair. We examine the connec-
tions between dataset characteristics and the sigmoid parameters both individ-
ually, and all together, in order to draw the complete picture.

Regression Analysis We wanted to examine how the number of classes (x1),
number of features (x2), number of instances (x3), and intrinsic dimensional-
ity8 (as fractal correlation dimension [3]) (x4) of a dataset influence the CTF
parameters.

We applied a leave-one-out process, where one dataset is left out from train-
ing and used for testing on every run. We used in turn m, M , ralg, dalg, and
ralg

dalg
as dependent variables. The results of model fitting and prediction of SRF

dimensions are reported in Table 1, where average errors between observed and
predicted SRF dimensions are shown. For each SRF dimensions chosen, we have
observed 5 values (since 5 machine learning algorithms were used), and having
estimated them for 24 datasets, we end up with 120 predictions for a single SRF
dimension. We calculated four types of errors: (1) MSE — mean square error;
(2) MAE — mean absolute error; (3) RMSE — relative mean square error and
(4) RMAE — relative mean absolute error. The last column of Table 1 shows
the average of the adjusted R2 statistic for models that where estimated for
all the SRF dimensions (average on the 24 datasets). Figure 6 illustrates how
our models fit the test data, showing that in most cases the true values of the
sigmoid parameters for each dataset (illustrated by circles that correspond to
5 algorithms for each test dataset i, i = 1, 2, ..., 24) are within the 95% confi-
dence level zone around the estimated values. This finding further supports the
connection between the dataset parameters and SRF dimensions. According to
the results, the chosen parameters of the datasets can be used to predict the
parameters of the sigmoid of the algorithms.

Parameters
Error measures

average(R2
a)MSE MAE RMSE RMAE

m 0.11 0.09 148.92 29.17 0.54
M 0.35 0.30 0.51 0.41 0.88
ralg 0.32 0.27 0.71 0.46 0.85
dalg 1.98 1.41 0.97 0.68 0.67
ralg
dalg

0.37 0.27 4.83 1.46 0.55

Table 1. Prediction error of linear regression models.

Correlation analysis We used three different correlation coefficients — Pear-
son correlation for linear correlation, Spearman’s rho and Kendall’s tau for mono-
tonic correlation — to analyze the connection between the parameters of the
datasets and the CTF parameters (cf. Table 2). We qualitatively interpret the
strength of the correlation as follows: [0.0; 0.1)→No Correlation, [0.1; 0.3)→Low
Correlation, [0.3; 0.5)→Medium Correlation, [0.5; 1]→Strong Correlation.

8 The authors would like to thank Christos Faloutsos for kindly providing the code
for the fractal dimensionality estimation.



10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Dataset

-0.1

0.1

0.2

0.3

0.4

0.5

Value
m

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Dataset

0.5

1.0

1.5

2.0

Value
M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Dataset

0.5

1.0

1.5

Value

ralg

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Dataset

5

10

Value

dalg

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Dataset

-0.5

0.5

1.0

1.5

Value

ralg�dalg

Fig. 6. Real and estimated values of the sigmoid parameters. Real values: Black rect-
angles, Estimated values: circles, Gray zone: 95% prediction conf. interval.

Pearson’s corr.

Parameter
m M ralg dalg

ralg

dalg

x1 -0.03 -0.26 -0.21 0.13 -0.29

x2 -0.07 -0.31 - 0.23 0.13 -0.21

x3 0.14 0.08 -0.01 -0.12 0.12

x4 0.04 -0.16 -0.16 0.13 -0.09

Spearman’s rank corr.

m M ralg dalg
ralg

dalg

0.02 -0.26 -0.25 0.31 -0.34

0.03 -0.26 -0.24 0.14 -0.20

-0.05 0.03 0.02 -0.21 0.18

-0.03 -0.20 -0.18 0.06 -0.11

Kendall’s τ rank corr.

m M ralg dalg
ralg

dalg

0.01 -0.17 -0.18 0.22 -0.24

0.02 -0.18 -0.16 0.10 -0.14

-0.05 0.01 0.01 -0.14 0.12

-0.03 - 0.12 -0.11 0.04 -0.07

Table 2. Correlation between dataset parameters and SRF parameters. Colored cells:

statistically significant correlation (p − value < 0.05: underlined bold, p − value < 0.1: italics-

bold). Green (dark) : medium correlation, gray (light) : low correlation.

Summarizing the results from all the correlation coefficients (refer to Ta-
ble 2), some interesting conclusions can be drawn. First, the number of classes
(x1) is inversely correlated to

ralg

dalg
, ralg and M . Thus, the higher the number of

classes is, the lower the sensitivity to noise variation (check on
ralg

dalg
); the lower

the number of classes, the higher the impact of reducing noise on performance
(check ralg and M). These conclusions are also supported by the direct corre-
lation between the number of classes and the width of the active area of the
algorithm dalg. We also note the complete lack of significant correlation between
the minimum performance m and all of the SRF dimensions: given enough noise
an algorithm always performs badly. Thus, the number of classes significantly in-
fluences the behavior of an algorithm, regardless of the family of the algorithm.
Second, the number of features (x2) provides a minor reduction of sensitivity
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to noise variation (resulting from low correlation to dalg). This conclusion is
also supported by the negative influence on

ralg

dalg
, ralg. We also note that the

number of features affects the maximal performance M , which shows (rather
contrary to intuition) that more features may negatively affect performance in a
noise-free scenario. This is most probably related to features that are not essen-
tially related to the labeling process, thus inducing feature noise. Third, there
is a correlation between the number of instances (x3) and

ralg

dalg
. This shows that

larger datasets (providing more instances) reduce sensitivity to noise variation.
Last, fractal dimensionality (x4) of a dataset has low, but statistically significant
negative influence on M and on ralg. Fractal dimensionality is indicative of the
“complexity” of the dataset. Thus, if the dataset is complex (high x4) machine
learning is difficult even at low noise levels. We note that low ralg may be prefer-
able in cases where the algorithm should be stable even for low signal-to-noise
ratios.

The correlation analysis demonstrates the connection between dataset char-
acteristics and SRF dimensions. Consequently, the SRF can be used to reveal
a-priori the properties of an algorithm with respect to a dataset of certain char-
acteristics. This allows an expert to select a good algorithm for a given setting,
based on the requirements of that settings. Such requirements may, e.g., relate to
the stability of an algorithm in varying levels of noise and the expected maximum
performance in non-noisy datasets.

5 Conclusions

Machine learning algorithms are often used in noisy environments. Therefore,
it is important to know a-priori the properties of an algorithm with respect to
a dataset of certain characteristics. In this work, we investigate whether some
simple dataset properties (namely, number of classes, number of features, number
of instances and fractal dimensionality) can help in the above direction.

We propose the “Sigmoid Rule” Framework, which describes a set of dimen-
sions that may be used by a decision maker to choose a good classifier, or to
estimate SRF dimensions, based on a range of dataset characteristics. Our ap-
proach is applicable to user modeling tasks, when the user changes behavior
over time, and to any concept drift problems for data series mining. We showed
that the parameters related to the behavior of learners correlate with dataset
characteristics, and the range of their variation may be predicted using regres-
sion models. Therefore, SRF is a useful meta-learning framework, applicable to
a wide range of settings that include noise. However, using these SRF mod-
els for parameter prediction does not provide enough precision to be used for
performance estimation.

As part of our ongoing work, we examine whether the “Sigmoid Rule” also
stands in the case of sequential classification. Preliminary experimental results
on the “Climate” UCI dataset (taking into account its temporal aspect) indicate
that, indeed, the “Sigmoid Rule” and therefore SRF are directly applicable, and
can be used as a means to represent the behavior of an HMM-based classifier
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in the presence of noise. This finding may open the way to a broader use of the
SRF, including sequential learners.
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