Data Reduction in Data Warehouses

Themistoklis Palpanas

ARBOH

Department of Computer Science
University of Toronto
Technical Report CSRG-476

© Copyright by Themistoklis Palpanas 2003

ii

Data Reduction in Data Warehouses

Themistoklis Palpanas

Doctor of Philosophy
Department of Computer Science

University of Toronto 2003

Abstract

Much research has been devoted to the efficient computation of relational aggregations. In
this thesis we consider the inverse problem, that of deriving (approximately) the original
data from the aggregates.

We motivate this problem in the context of two specific application areas, approximate
query answering and data analysis. We propose a framework based on the notion of in-
formation entropy that enables us to estimate the original values in a data set, given only
aggregated information about it. We then show how approximate queries on the data from
which the aggregates were derived can be performed using our framework. We also describe
an alternate use of the proposed framework that enables us to identify values that deviate
from the underlying data distribution, suitable for data mining purposes.

We present a detailed performance study of the algorithms using both real and synthetic
data, highlighting the benefits of our approach as well as the efficiency of the proposed
solutions.

Subsequently, we consider the above problem in a space constrained environment, where
only a subset of the required aggregates can be stored. More specifically, we wish to select
a set of aggregates of interest, subject to a constraint on the total space occupied by these
aggregates. The objective is to maximize the total benefit, which is a function of the number
and importance of the queries that we can estimate given the selected aggregates.

For this problem, which as we show is NP-hard, there are no known polynomial approx-

iii

imation schemes, and we propose several algorithms for solving it. We explore the use of
greedy and randomized techniques as well as clustering based approaches. The solutions
presented herein are generic and can be applied to other problem domains as well.

We explore the properties and special characteristics of the above techniques with an
experimental evaluation. Our results illustrate the behavior of the algorithms under dif-
ferent settings, and highlight the benefits of each approach. Based on our analysis, we
present worst case scenarios for the algorithms. This offers insight into the operation of the

algorithms, and provides a practical guide for selecting among the proposed techniques.

v

Contents

1 Introduction

1.1 Approximate Querying and Exploration in Datacubes
1.2 Space Constrained Approximate Querying in Datacubes
1.3 Contributions L
1.4 Outline e e e e

2 Literature Review

2.1 OLAP Technology e
211 Overview e e e e e
2.1.2 The CUBE Operator o v i it i it et
2.2 Data Mining e e
221 Overviewo e e e e
2.2.2 Deviation Detection
2.3 Approximate Query Answering
2.3.1 Overview e e
2.3.2 The Relationship to Data Mining
2.3.3 Approximation in Databases
2.3.4 Approximation in Data Cubes
2.4 Data Mining in Data Cubes
241 Overview e e e e e e e
2.4.2 The General Case
2.4.3 Detecting Deviants In Data Cubes

3 Approximate Querying and Exploration of Data Warehouses

3.1 Contributions o e e e e e e e e e e

T Ot

e o oo

3.2 Outline e e e 24

3.3 Background e 24
3.3.1 Grid Queries 25
3.3.2 Dataset Values as Probability Distributions 26
3.3.3 Maximum Entropy Distributions 26
3.3.4 Properties of Maximum Entropy 28
3.3.5 Computing the Maximum Entropy Solution 28

3.4 Algorithmic Solution oo 29
3.4.1 Descriptionof IPF oo 30
342 AnExample 32
3.4.3 Algorithmic Complexity and Implementation Details 33
3.4.4 Quality Guarantees for the Approximation 34

3.5 Using IPF e 35
3.5.1 Query Answering e e 35
3.5.2 Mining Interesting Patterns 36

3.6 Experimental Evaluation, 38
3.6.1 Description of Experiments 38
3.6.2 Exploring the Properties of the Algorithm 41
3.6.3 Evaluating the Accuracy of Reconstruction 44
3.6.4 Reconstruction with Quality Guarantees 48
3.6.5 Mining Interesting Patterns 54

3.7 Related Work e 58

3.8 Conclusions e e 59

Space Constrained Selection in Data Warehouses 61

4.1 Contributionso e e 61

4.2 Outline e e 62

4.3 Problem Formulation o o oo 62
4.3.1 On the Applicability of the COSS Problem 64

4.4 Algorithms for the COSS Problem 66
4.4.1 Exhaustive Enumeration 0oL 67
4.4.2 Solutions Based on Bond Energy 68

vi

4.4.3 Solutions Based on Greedy Algorithms 71

4.4.4 Other Empirical Approaches 73
4.5 Experimental Evaluation. oo 0L 78
4.5.1 Description of Experiments, 78
4.5.2 Scalability of the Algorithms 79
4.5.3 Evaluating the Quality of the Solutions 80
4.6 Discussiono e e e e 87
4.6.1 Soft Space Constraints 87
4.6.2 On the Optimality of the Greedy Solutions 88
4.6.3 Analysis of the Greedy Algorithms 91
4.6.4 Choosing Among the Alternatives 94
4.7 Related Work L L 96
4.8 Conclusionso Lo e e e 97
Case Study 99
5.1 Description of Experiments 99
5.1.1 Dataset L 99
51.2 Query Workload 100
5.1.3 Error Metric 100
5.1.4 Confidence Intervals 101
5.2 Results. L e e e 101
5.2.1 Properties of Selected Regions 101
5.2.2 Queries on Detailed Values 102
5.2.3 Aggregate Queries oo 106
53 Conclusions e 111
Discussion and Conclusions 113
6.1 Conclusions e e e 113
6.2 Future Work L 115

vii

viii

List of Tables

3.1

3.2

3.3

3.4

3.5

4.1

5.1

5.2

9.3

5.4

9.5

5.6

The statistical properties (min, max, mean, standard deviation, and skew)

for the synthetic datasets used in the experiments.

The statistical properties (min, max, mean, standard deviation, and skew)

for all the real datasets. L.
The error for the various datasets as a function of the parameter §.

The top-4 deviations reported for each of the three synthetic datasets. The

metric used is the difference of the real value from the estimated.

The top-4 deviations reported for the calls datasets. The metric used is the

difference of the real value from the estimated.
Improvement in the GrBenSp solution by SimAn and Tabu.

The statistical properties (min, max, mean, standard deviation, and skew)

for the real dataset census_ 50K. e

The absolute RMSE values for the experiments shown in the graph of Fig-

ure 5.2. These values are the means over the 30 runs of each experiment.

The absolute RMSE values for the experiments shown in the graph of Fig-

ure 5.3. These values are the means over the 30 runs of each experiment.

The absolute RMSE values for the experiments shown in the graph of Fig-

ure 5.4. These values are the means over the 30 runs of each experiment.

The absolute RMSE values for the experiments shown in the graph of Fig-

ure 5.5. These values are the means over the 30 runs of each experiment.

The absolute RMSE values for the experiments shown in the graph of Fig-

ure 5.6. These values are the means over the 30 runs of each experiment.

ix

40

40

41

54

57

85

100

103

104

106

107

108

5.7

5.8

5.9

The absolute RMSE values for the experiments shown in the graph of Fig-
ure 5.7. These values are the means over the 30 runs of each experiment.
The absolute RMSE values for the experiments shown in the graph of Fig-
ure 5.8. These values are the means over the 30 runs of each experiment.
The absolute RMSE values for the experiments shown in the graph of Fig-

ure 5.9. These values are the means over the 30 runs of each experiment.

108

109

111

List of Figures

1.1

21
2.2
2.3
2.4

3.1
3.2
3.3

3.4
3.5

3.6

3.7

Example of a 3-dimensional data cube with salesdata.

Example of a representation of a data cube.
Two different approaches in the physical design of ROLAP servers.
The lattice notation for a data cube with three dimensional attributes. . . .

From data mining to approximate query answering.

Example dimension hierarchies on two dimensional sales data.
The IPF algorithm.
An example of applying the IPF algorithm. Figure (a) shows the whole
dataset, and the portion of it that we wish to estimate. In (b) we have the
subset we focus on, and its two corresponding marginals. The initialization
step is depicted in (c). Figures (d) and (e) show how the algorithm fits the
two marginals one at a time. Lo oL
The algorithm for generating the Gaussian synthetic datasets.
The effect of varying the parameter § on the number of iterations. All
datasets are 4-dimensional. In every case the marginals of the highest or-
der were used.l e
The effect of dataset size on the run-time of the algorithm (time per iteration),
and of dataset dimensionality on the number of iterations. The parameter §
is set to 10% of the median, and we use the marginals of the highest order.
For these experiments we used the uniform datasets.
The effect of the order of the marginals used on the error of reconstruction
and the run-time of the algorithm. The datasets used in these experiments

are uniform100 and gauss_small.o Lo

xi

10
16

33
39

42

43

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

4.1
4.2
4.3
4.4
4.5

The effect of dataset size and dimensionality on error, for uniform datasets.

Three uniform distributions with different mean values are represented in the

The effect of dataset size and dimensionality on error, for Gaussian datasets.
Three Gaussian distributions with different sigma value are represented in
the graphs. Lo
The distribution of the absolute error for the real datasets.
The reconstruction error when a varying number of deviations is used by the
algorithm.o
The actual reconstruction error and an upper bound when a varying number
of deviations is used by the algorithm.,
The percentage of the error reduction when we use the marginals of order
1+ 1 instead of the marginals of order 7, in the estimation process.
The percentage of the increase in the space occupied by the marginals, when
we use the marginals of order ¢ + 1 instead of the marginals of order 7, in the
estimation process. L.
The percentage of the error reduction when, in the estimation process, we
use the marginals of order ¢ and a number of deviations, such that the total
space equals the space needed by the marginals of order ¢+ 1.
INlustration of the original datasets following Gaussian distributions with uni-

form noise added on top. The four largest deviating values are marked in the

Iustration of the two datasets where the four largest deviating values are
marked. The dataset on the top is synthetic (combination of two different
Gaussian distributions with uniform noise added on top), while the one at

the bottom is the calls dataset from AT&T.

An example of the bipartite graph G.
The BondEn algorithm for the solution of the COSS problem.
The greedy algorithm for the solution of the COSS problem.
The SimAn algorithm for the solution of the COSS problem.

The Tabu algorithm for the solution of the COSS problem.

xii

46

47

48

50

51

52

52

53

55

4.6
4.7

4.8

4.9

4.10

4.11

4.12
4.13

4.14

4.15

4.16

4.17

5.1

5.2

Scalability of the algorithms as a function of the number of objects. 79

Comparison of the bond energy family of algorithms. Benefits and space

requirements follow uniform distributions. 80
Quality of the solution of the algorithms, when varying the space constraint. 82

Quality of the solution of the algorithms, when varying the bipartite graph G. 83

Quality of the solution of the algorithms, when varying the number of objects. 84
GrBenSp and Tabu compared to optimal. 86
A linear ordering of n objects for the Knapsack problem. 89
Counter-example that demonstrates the fact that for the COSS problem,

the optimal solution for one space constraint value is not necessarily a sub-
set of the optimal solution for larger space constraint values. The numbers

in parentheses indicate the benefit and required space of the objects and

components respectively. Lo o oL oL 90
Example scenario for GrComp. The numbers in parentheses indicate the
benefit and required space of the objects and components respectively. . . . 92
Example scenario for GrBen. The numbers in parentheses indicate the benefit
and required space of the objects and components respectively. 93
Example scenario for GrSp. The numbers in parentheses indicate the benefit
and required space of the objects and components respectively. 94
Example scenario for GrBenSp. The numbers in parentheses indicate the

benefit and required space of the objects and components respectively. . . . 95

The percentage of the number of tuples in the dataset that are contained in
the selected regions, and the percentage of the number of tuples in the dataset
that overlap. These measures are reported as a function of the percentage of
the dataset space that is occupied by the materialized marginals. 102
The percentage of the error reduction when estimating all the values in the
dataset, and when estimating only the values contained in the selected re-
gions. These measures are reported as a function of the percentage of the
dataset tuples that is covered by the selected regions. We also depict the
corresponding confidence intervals. The absolute RMSE values for the ex-

periments shown in this graph are reported in Table 5.2. 103

xiii

9.3

5.4

9.5

5.6

5.7

The percentage of the error reduction when estimating all the values in the
dataset, as a function of the percentage of the dataset tuples that is covered
by the selected regions. We also depict the corresponding confidence inter-
vals. The absolute RMSE values for the experiments shown in this graph are

reported in Table 5.3.o

The percentage of the error reduction when estimating only the values con-
tained in the selected regions, by using the marginals of order 1 and order 3.
These measures are reported as a function of the percentage of the dataset tu-
ples that is covered by the selected regions. We also depict the corresponding
confidence intervals. The absolute RMSE values for the experiments shown

in this graph are reported in Table 5.4.

The percentage of the error reduction when estimating all the values in the
dataset, by using the marginals of order 1 and order 3. These measures
are reported as a function of the percentage of the dataset tuples that is
covered by the selected regions. We also depict the corresponding confidence
intervals. The absolute RMSE values for the experiments shown in this graph

are reported in Table 5.5.

The percentage of the error reduction when estimating the aggregate value of
subsets of the entire dataset, and subsets of the selected regions only. These
measures are reported as a function of the percentage of the dataset tuples
that is covered by the selected regions. We also depict the corresponding
confidence intervals. The absolute RMSE values for the experiments shown

in this graph are reported in Table 5.6.

The percentage of the error reduction when estimating the aggregate value
of subsets of the entire dataset. These measures are reported as a function of
the percentage of the dataset tuples that is covered by the selected regions.
We also depict the corresponding confidence intervals. The absolute RMSE

values for the experiments shown in this graph are reported in Table 5.7.

xiv

104

105

106

107

109

5.8

5.9

6.1

The percentage of the error reduction when estimating the aggregate value
of subsets of the selected regions only, by using the marginals of order 1
and order 3. These measures are reported as a function of the percentage
of the dataset tuples that is covered by the selected regions. We also depict
the corresponding confidence intervals. The absolute RMSE values for the
experiments shown in this graph are reported in Table 5.8..
The percentage of the error reduction when estimating the aggregate value
of queries over the entire dataset, by using the marginals of order 1 and
order 3. These measures are reported as a function of the percentage of
the dataset tuples that is covered by the selected regions. We also depict
the corresponding confidence intervals. The absolute RMSE values for the

experiments shown in this graph are reported in Table 5.9..

An example of the bipartite graph G that captures the dependencies among

objects and components. L e

XV

110

110

xvi

Chapter 1

Introduction

In the following sections we discuss the motivation for our work, and introduce the specific
problems that we are trying to solve. Then, we present a summary of the contributions we

make in this thesis. Finally, we describe the outline for the rest of this document.

1.1 Approximate Querying and Exploration in Datacubes

In recent years, there has been an increasing interest in warehousing technology and OLAP
applications which view data as having multiple dimensions, with hierarchies defined on
each dimension. Users typically employ OLAP applications for decision making. They
inquire about the values, and analyze the behavior of measure attributes in terms of their
dimensions. Consider for example Figure 1.1(a) showing a typical simplified OLAP cube,
with three dimension attributes (location, jeans, and gender), and hierarchies defined per
dimension. Users, for analysis purposes, commonly inquire about the values of aggregates,
like the total volume of sales of jeans in NY state. Such aggregates can be computed using
the datacube operator [GBLPY96], and queries of this kind can be efficiently supported.
The volume of data stored in OLAP tables is typically huge, on the order of many
gigabytes, or even terabytes. In some cases, users store on disk only a subset of the data
they own. They move the rest of the detailed data to tertiary storage systems, or even take
them off line, while keeping only a small amount of aggregated data that are of interest.
A common example is historical sales data, where only the data of the most recent years
are stored online, and the rest are archived. When older years are archived, possibly data

of finer granularity, such as sales of silvertab Levi’s in New York city, are permanently

)_>\l

5 6
Levi's CK
£ 8 o
2 o0
Hhm'mmgqg,\/@é\ @ér\
1 Ve
5 Queens
NY 2 401050 |5
7 New Y ork
All 3 1545 | 65| 10
6 Toronto
i 4 1540 | 65| 18
Ontario Ottawa
55140| 35| 30
(a) The entire dataset.
All
Levi's CK
3 8
8 T 8 =
8 5 o 3
5555|115 15
Queens|105|| X | X | X | X
NY
New York |135]| X | X | X

(b) Aggregated values for the selected portion of the dataset. That is, the sales of
women’s jeans in New York.

Figure 1.1: Example of a 3-dimensional data cube with sales data.

deleted, and only aggregated values are stored for future reference, for example, total sales
of Levi’s in each state. In other cases, even if the data remain online, they are aggregated
not only to support user queries faster, but also to save space. For example, in several
organizations, such as AT&T, terabytes of data are generated every day. These data are
typically aggregated to save storage space, thus the detailed information that produced the

aggregates is lost.

Given the summarized form of data, users are often interested in inquiring about the
data from which the summarized form was generated. These data either might have expired
from the warehouse, and thus are no longer available, or they might not be available online.
In such cases, generating good estimates for the original data in response to queries is a

pressing concern. Figure 1.1(a) depicts a 3-dimensional data cube, storing the total sales

of different kinds of jeans for men and women, across different cities. In this example,
assume that for the women’s jeans and for the state of NY (i.e., the upper front portion
of the data cube), we only store the aggregated sales for each city and for each kind of
jean as shown in Figure 1.1(b), and that we have deleted all the detailed values. The
users might want to inquire about the number of redtab Levi’s jeans sold in Queens NY (a
point query), or they might request the number of women’s jeans sold in each city of NY
state (a range query). In the latter case, the answer consists of all the individual values
marked as “x” in Figure 1.1(b). We want to be able to answer these queries approximately
using only the stored aggregate values. In this work, we present a technique that addresses

this problem. Similar issues arise in transaction recording systems [JMS95] as well as in

statistical databases [AM92, Mal93].

Even if the original base data exist, the ability to reconstruct the original data from the
summaries is of great value. Computing summaries is essentially a data reduction process
in which great information loss takes place. In order to reconstruct the data, various
assumptions have to be made about the statistical properties of the reduced data. Given
the reconstructed and the original data at hand, we can test how valid our assumptions
about the original data were, just by comparing the two. This is useful in reasoning about
the properties of the underlying data set and could be of great value in data mining. It
can help detect correlations in the data, and identify deviations, that is, values that do not
conform to the underlying model. Such results are of great interest to the analyst, because

they indicate local or global abnormalities.

In this thesis, we propose the use of an information theoretic principle for the recon-
struction of the original data from the summarized forms. Since data in a warehouse are
aggregated as a means of summarization, we examine the problem of reconstructing the

original data from the aggregates.

Our reconstruction technique is based on the well recognized and widely applicable in-
formation theoretic principle of mazimum entropy [KK92]. We present algorithms for the
efficient reconstruction of data from the aggregates. Moreover, using an information theo-
retic formalism, we identify and describe an alternate benefit of the proposed reconstruction
techniques, namely the ability to ‘rank’ each reconstructed value by its potential ‘interest’
to the user, as a means of aiding data analysis. The notion of interest in data mining is

not well formulated and several approaches have been proposed for its formal definition

[ST96a]. Although all the measures of interest are subjective and heavily dependent on the
application, we argue that an information theoretic approach to this problem, besides being

mathematically rigorous, appears conceptually appealing as well.

1.2 Space Constrained Approximate Querying in Datacubes

It is often the case that not all data can be stored, because of their sheer size. In many
cases even the size of the aggregated data is too large, so that portions of it have to be
moved to tertiary storage, or permanently deleted. Then we have to choose which parts of
the data to keep available.

In the discussion of our reconstruction technique in the previous section, we have as-
sumed that we have enough space to materialize all the aggregates needed to reconstruct
each query in our workload. In the case where only a subset of the aggregates can be
materialized due to space constraints, one would be interested in materializing those ag-
gregates that yield the most benefit in reconstructing queries while satisfying the imposed
constraints.

The above situation leads to a space constrained optimization problem. We wish to fill
the given space with the data that will give us the highest benefit. The benefit is determined
by the number and importance of the queries that we can answer based on the stored data.
The view selection problem [HRU96] in the context of data warehouses is an instance of
such an optimization problem, and has been studied extensively in the literature.

In our case, where we want to select the aggregates that help reconstruct the most
important queries, the optimization problem becomes more complicated. As we will discuss
in more detail in Chapter 4, the benefit we get for including items in the solution is associated
to sets of items, and not to individual items. In both the Knapsack and the view selection
problems, the benefit increases with each item that is added to the solution. However, this
is not true for the class of applications that we consider. In this setting there are additional
constraints inherent in the problem, which dictate that when we select a new item to insert
in the solution the added benefit is zero, unless a set of related items are inserted as well.
These constraints make the problem harder, and in Chapter 4, we discuss how they affect
the solution procedure. For the rest of the thesis, we refer to this optimization problem as

the Constrained Set Selection problem.

Since there are no known polynomial approximation algorithms for this problem, we
examine the use of known heuristic techniques, and propose new algorithms based on the
greedy principle, randomization, and clustering (see Chapter 4). We experimentally study
the performance and behavior of the proposed solutions under various conditions. The
experimental evaluation is coupled with a theoretical analysis that serves as a practical

guide for selecting among the techniques proposed herein.

1.3 Contributions

The contributions of this thesis, at a high level, are as follows.

e We propose a method for reconstructing multidimensional values based only on the

aggregate data.

e We present a method to identify and rank deviations in multidimensional datasets

that does not depend on any domain or user-specified parameters.

e We explore the properties and special characteristics of the above methods with an

experimental evaluation, using both synthetic and real datasets.

e We examine the operation of the reconstruction technique under a space constraint,
formulate associated optimization problems, and propose several algorithms for their

solution.

e We evaluate the behavior of the above techniques with an experimental evaluation.

We also provide an analysis of the algorithms that offers insight into their operation.

1.4 Outline

The outline of the thesis is as follows. Chapter 2 introduces the context for this work. In
Chapter 3, we present the reconstruction algorithm. We discuss two particular application
scenarios of the algorithm, and present experimental results evaluating the performance and
the utility of the proposed techniques. In Chapter 4, we formulate optimization problems,
and propose several algorithms for their solution. We evaluate their behavior using experi-

mentation and theoretical analysis. In Chapter 5, we demonstrate the applicability of the

techniques discussed in this thesis in a single case study. Finally, we conclude in Chapter 6,

and propose future research directions.

Chapter 2

Literature Review

During the past few years we have experienced a considerable growth in the amount of
data produced and managed by different organizations worldwide. This growth has led in
many cases to the introduction of multiple database systems within the same organization in
order to deal with different aspects of the data [CCS93]. Nevertheless, the poor data analysis
functionality that traditional database systems offer was the incentive for the advent and
development of data warehouse systems. These systems store consolidated, historical, and
summarized data, and are designed to support complex, mostly ad hoc queries, which may

involve large portions of the stored data.

Typically, data warehouses use multidimensional models in order to effectively repre-
sent the wealth of information they manage [CD97]. The data is organized in dimensions
which describe in a natural way most of the attributes associated with the data of interest.
The dimensions are in turn organized into hierarchies, with data aggregated at each level,
which enhance the functionality of the system. The operations that the system supports
include increasing and decreasing the level of aggregation along any number of dimension
hierarchies, selection and projection across dimensions and hierarchy levels, and defining
various orientations of the multidimensional view of the data. This kind of technology is
referred to as On Line Analytical Processing (OLAP), and we will discuss it further in the

next sections.

Numerous traditional data mining techniques have been discussed in the OLAP con-
text [Han98]. In this chapter, we give some background on OLAP and data mining. We

argue that mining algorithms have to integrate more tightly with the OLAP environment

in order to harness its full power. We review different ways of identifying and extract-
ing knowledge from large collections of data. We examine the notion of interestingness of
data, that is, ways of determining what is interesting to the user and what is not. Subse-
quently, we explore algorithms and techniques that operate on large datasets and find the
interesting portions therein, and we discuss the relationship between data mining and data
approximation techniques.

Note that the following discussion is not intended to be exhaustive, but rather indicative
of the different approaches and the future research directions in the area of data mining in
data warehouses. For a more elaborate discussion refer to a previous study [Pal00]. In this
chapter, we intend to set the context within which our work fits. Studies that are more
specifically related to the problems presented in the next chapters are discussed at the end

of the corresponding chapters.

2.1 OLAP Technology

2.1.1 Overview

The standard logical model for representing the data in a data warehouse is the data cube.
A data cube is defined as the union of a set of aggregates derived from data stored in a
relational table. The data cube offers a multidimensional view of all the data, which are
represented as a set of numeric measures (or facts), and organized in several dimensions
of interest [CD97]. The numeric measures are the values of the data we are interested in,
and the ones on which the analysis will be performed. The dimensions are attributes of
the data. They provide the context for the measures, and are organized in hierarchies of
multiple levels. The measures are aggregated at each hierarchy level for each dimension to
offer a more general view of the base data. Figure 2.1 depicts an example of a data cube.
In this example the measures can be quantities such as total sales, revenue, and inventory.

The physical design of the above data model is different for Multidimensional- and
Relational-OLAP servers (MOLAP and ROLAP respectively). MOLAP servers directly
support a multidimensional view of the data, achieved through a multidimensional storage
engine. This approach results in more natural ways of data representation, but requires
special care when storing data since data sets in high dimensions tend to be sparse. On the

other hand, ROLAP servers take advantage of the existing relational database technology.

Dimensions: Product, City, Date
w Hierarchical summarization paths

B s
N Industry Country Year
b Juice [‘
= Cola |z
g Milk [Category State Quarter
&« Cream |n ‘
Toothpaste |1 Product City onth Week
Soap |10 M\/
123 45 67 Date

Date

Figure 2.1: Example of a representation of a data cube.

The database consists of a fact table, storing all the measures, and dimensional tables
around it. Having one table per dimension leads to a star schema, and by normalizing the

dimension tables we get a snowflake schema (Figure 2.2).

Order ProdNo
OrderNo ProdName
OrderDate ProdDescr
Fact table Category
Customer OrderNo ' CategoryDesc
CustomerNo SalespersonlD g“olgﬂce
CustomerName W Date
CustomerAddress > | frodo
City DateKey ateKe:
CityName <— Date
Salesperson Quanmy onth
TotalPrice ear
SalespersonID e
SalespesonName / 1?}/
City CityName
Quota ~state
Country

(a) Star Schema

Order Category

ProdN

OrderNo roc-o ategoryName
ProdName s

OrderDate| ProdDescr ategoryDescr

Fact table
5 Category
Customer OrderNo UnitPrice
CustomerNo SalespersoniD QOH
CustomerName CustomerNo
CustomerAddress » | DateKey Date Month ~ Year

X CityName
Cit LiatylName
= ProdNo -] —‘ngtCKC Month <“
Quantity © Year

Salesperson Month

SalespersonlD TotalPrice .

SalespesonName / C"_y State

City CityName |:|
Quota State

(b) Snowflake Schema

Figure 2.2: Two different approaches in the physical design of ROLAP servers.

2.1.2 The CUBFE Operator

The problem of formalizing the computation of a data cube is discussed by Gray et al.

[GBLPY6]. This study focuses on relational database systems, and addresses the need

for an additional operator. The authors propose the data cube or CUBE operator, that
computes the 0—,1—,... N— dimensional aggregates of a dataset with N aggregation at-
tributes. This is a generalization of the SQL aggregation functions and the GROUP BY
operator. The CUBE operator may be simulated by a union of 2¥ GROUP BYs for N ag-
gregation attributes. These GROUP BY's are depicted using the lattice notation [HRU96]
(Figure 2.3), where each node (also called a cuboid) represents a GROUP BY. Nevertheless,

@ Level O

o‘@'o Level 2

@ Level 3

Figure 2.3: The lattice notation for a data cube with three dimensional attributes.

this approach is rather cumbersome and harder to write than using the CUBE operator.
Furthermore, the final query would result in a large number of data scans and sorts, which
is obviously inefficient. The CUBE operator allows the user to move between different
levels of aggregation of the data by removing or adding aggregation attributes. Going up
the levels is called a roll-up, while the opposite operation, going down the levels, is termed
a drill-down. The aggregation functions can be classified into three categories [GBLP96]:
distributive, which can be computed separately for disjoint subsets of the dataset and the
partial results merged (e.g., count, sum, min, max); algebraic, which can be expressed using
some of the distributive function (e.g., average); and holistic, which can only be computed

for the whole dataset (e.g., median, rank).

Several algorithms have been proposed for the efficient computation of the data cube
[AAD*96] [RS97] [ZDN97], and various indexing schemes for OLAP databases have been
presented in the literature [SS94] [Sar97] [RKR97]. The problem of maintaining a data
cube after we have computed it is also an interesting research question [MQM97] [KR99]
[LSPC00] [PSCP02].

10

2.2 Data Mining

2.2.1 Overview

The framework that describes all the necessary steps involved in the process of knowledge
extraction from databases is referred to as Knowledge Discovery in Databases (KDD). KDD
is the process of identifying valid, novel, potentially useful, and ultimately understandable
structures in data [Fay98]. In the above definition, data is the set of facts in the database,
and structure refers to either a parsimonious description of a subset of the data, or a
model representing the source that generated the data. The KDD process is comprised of
many steps which involve data preparation, search for structures, knowledge evaluation,
refinement, and consolidation with the existing expert knowledge. The term data mining
refers to only one of the above steps. It is the step in the KDD process that, under acceptable
computational efficiency limitations and selective evaluation criteria, enumerates structures
over the data.

Mining association rules is one form of data mining that has attracted a lot of attention
during recent years, and has motivated a great deal of work in the database community. It
is essentially the search for dependencies which hold among items in a large dataset. The
problem was first formulated by Agrawal et al. [AIS93] [AS94]. Several variations of the
above algorithms try to minimize the required I/O operations [PCY95] [SON95] [Toi96]
[BMUT97]. The association rule mining algorithms were also extended to take into account
the hierarchies that are present on items [SA95], as well as the order in which the items
appear in the dataset [AS95] [SA96].

Knowledge discovery involves solving the problem of data analysis by identifying in-
teresting patterns in huge collections of data. Nevertheless, discovery systems generate a
wealth of patterns, most of which are of no interest to the user [FPSM91]. Therefore, a mea-
sure that captures the amount of information that a discovered pattern conveys is essential,
and in most cases this measure is defined by the user [ST96¢] [KMR194] [PT98] [LHC97].
To this effect, some systems provide an interactive data mining framework, where the user
is an active participant in the process [ST96b] [TUAT98] [NLHP98]. Other studies present
more automated ways of identifying the unexpected patterns in a dataset that require little
or no human intervention [ST96¢] [CSD98] [JMO0].

For a more complete discussion of data mining techniques, the interested reader should

11

refer to surveys of the area [CHY96] [HKO00].

2.2.2 Deviation Detection

An interesting category of unexpected patterns are the deviants or outliers. An outlier is
“an observation that appears to deviate markedly from other members of the sample in
which it occurs” [BL94]. This fact may raise suspicions that the specific observation was
generated by a different mechanism than the rest of the data. This mechanism may be
an erroneous procedure of data measurement and collection, or an inherent variability in
the domain of the data under inspection. Nevertheless, in both cases such observations are
interesting, and the analyst would like to know about them.

There is extensive literature in the statistics community regarding outlier detection
[BL94]. Yet, this work is not directly applicable to databases since it pre-supposes that the
user knows the distribution which generated the data. Based on this knowledge, statistical
tests can examine the probability that the given distribution produced the data point under
consideration, and accordingly accept it or reject it. The problem is that, in the context of
databases, the distributions that produced the data are unknown, and extremely hard to
estimate. Moreover, when dealing with large collections of data we need efficient algorithms
that are fast and scale linearly or near-linearly with the dataset size. Thus, other methods
for outlier detection are necessary. In the following paragraphs, we will discuss some of the

techniques used in the database community.

Detecting Deviants In Databases

The problem of finding outliers in large, multidimensional datasets is studied by Knorr
and Ng [KN98]. They introduce the notion of distance-based outliers DB(p, D) which are
defined as follows. An object O in a dataset T is a DB(p, D)-outlier if at least a fraction p of
the objects in 7' lie further than distance D from O. The above definition is a generalization
of the notion of outliers supported by statistical outlier tests for standard distributions. The
advantage is that this approach does not require any prior knowledge of the underlying data
distribution, but rather uses the intuitive explanation that an outlier is an observation that
is sufficiently far from most other observations in the database. However, it does not provide
a ranking for the outliers, which would be useful in some cases.

The study describes three algorithms that require the user to specify the parameters p

12

and D. Note that a suitable value for D can only be determined through experimentation.
The first algorithm is a simple nested loop algorithm, whose complexity is linear in the
number of dimensions d, but quadratic in the size of the dataset N. The second algorithm
operates on in-memory datasets, providing complexity linear in N, but exponential in d.
The third algorithm works with disk-resident datasets, and guarantees no more than three
passes over the entire database. Nevertheless, the complexity still grows exponentially with
the dimensionality, which renders this approach viable only on low dimensional datasets.
In subsequent work [KN99], the algorithms are extended to discover outliers in lower
dimensionality subspaces of the data as well. The definition of outliers is augmented by the
characterizations strong and weak. An outlier O in the attribute space Ap is strong if there

are no outliers in any subspace B C Ap. Otherwise O is termed a weak outlier.

Another algorithm for efficiently identifying outliers in large datasets is described by
Ramaswamy et al. [RRS00]. In this study, outliers are the n data points whose distance
from their k-th nearest neighbor D* is the largest, across all data points in the dataset.
The parameters k and n are user defined.

The algorithm works as follows. First, using a clustering algorithm, it partitions the
dataset in clusters, and computes lower and upper bounds on D* for the points in each
cluster. Then, based on this information, only the clusters that can contain outliers are
retained. In the final step, the outliers are computed from the points that belong in the
remaining clusters. The use of a multi-dimensional index structure (R-tree in this case)

allows efficient pruning of the search space, and makes the approach scalable.

One of the problems with the approaches mentioned above is that they fail to detect
the outliers in cases where the data have different densities in different parts of the dataset.
A method that can identify outliers based on the density of data points is presented by
Breunig et al. [BKNS00]. This approach does not assign labels to data points, that is,
“outlier” or “not outlier”. It rather computes for each point the degree of being an outlier,
which is called the Local Outlier Factor (LOF). The computation of the LOF value for a
point z is based on the the density p, of points around z, and the density p,» of points
around z’, where 7’ is a point in the set of the k-nearest neighbors of z. Then, the smaller

pz is when compared to p, (for all k-nearest neighbors), the larger the LOF value is for

13

point z. Outliers are termed the points with the highest LOF values.

Arning et al. [AAR96] describe a technique which identifies ezceptions (set of tuples)
among the tuples of a large database. In a database with a set of items I, an exception set
I; is the subset of items that contributes the most to the dissimilarity of I. The goal is to
find the exception set I; with the smallest cardinality.

The proposed algorithm uses a dissimilarity function D(I,;) that measures the degree of
relevance of the items in I. It may be any function that returns a low value if the elements
in I, are similar to each other, and a high value otherwise. An example of such a function
for numerical data is the variance. Obviously, the challenge is to devise a function that
will effectively capture the notion of similarity, and at the same time be computationally
efficient. Nevertheless, it is not obvious what the choice of function D(-) should be in
various domains, and which class of functions can capture local phenomena as opposed to
global. This point is important, since in the latter case we will end up identifying merely

the extreme points of the dataset.

2.3 Approximate Query Answering

2.3.1 Overview

The rapid growth in the size of databases outpaces the technological advances in disk access
[GS00]. This results in degradation of performance. One of the ways to remedy this situation
is data reduction. Data reduction techniques are analogous to lossy compression schemes.
They try to summarize huge collections of data using only small amounts of storage space.
The summaries are supposed to capture the intricacies of the dataset, and be able to provide
estimates of the actual data. In approximate answering, we are willing to sacrifice some of
the accuracy for the sake of faster response times and reduced storage requirements.

In this section, we examine the relationship between summarization and data mining.
Then, we review some of the work relevant to approximate query answering. The focus will
be on histogram techniques, which have attracted a lot of attention and are widely used. A

more extensive discussion of the summarization and approximation methods available can

be found elsewhere [BDF97].

14

2.3.2 The Relationship to Data Mining

Before attempting to establish the connection between data mining and data reduction,
it would be useful to answer another question first: is data summarization related to ap-
proximate query answering? The answer to this question is affirmative. Indeed, there are
a number of summarization techniques that can also be used to produce estimates of the
actual data [BDF197]. However, we do not argue that every data reduction method can be
used for approximate query answering. For the rest of this discussion, we will consider the

methods that belong to the intersection.

The role of data mining is to discover general patterns that describe the data. (We will
ignore the fact that sometimes we are only interested in a small subset of those patterns.)
These patterns may have the form of rules, or some model. Each of the generated patterns
represents a subset of the raw data. Therefore, this procedure of identifying representative
patterns in the data may be viewed as a means to achieve data summarization [FPSM91]
[Man99].

Apparently, it is not clear what falls in each category, and under which conditions some
method may be characterized as a data mining, or data summarization method, or both.
Nevertheless, we argue that in some circumstances we can use a technique to achieve both
the goals of knowledge extraction and data reduction (or data estimation). An example that
illustrates the above point is depicted in Figure 2.4. In this example, a two-dimensional
dataset exhibits a correlation between the two attributes. We may use a data mining
technique to identify this pattern and produce a corresponding model (Figure 2.4(b)). Then,
the derived model can be regarded as a concise summary of all the data points in the dataset
(Figure 2.4(c)), allowing us to save space by storing only the model of the data. Finally,
the same model can be used for approximate query answering (Figure 2.4(d)), that is, to
estimate the value of one attribute given the value of the other in the absence of the real

data.

2.3.3 Approximation in Databases

Histograms approximate the data in one or more attributes of a relation by grouping at-
tribute values into buckets, and approximating the real attribute values (or frequencies) in

the data based on summary statistics maintained in each bucket. The mathematical formu-

15

The original data. Data mining step:
fit a model to the
data.

(a) (b)

A

Summarization step: Approximation step:
keep only the model. answer queries using
the model.

(c) (d)

Figure 2.4: From data mining to approximate query answering.

lation of the problem is as follows. Let D be the (finite) domain of an attribute X in relation
R, and the value set V C D be the set of values of X actually present in R. We write V as
V ={v;: 1 <i < M}, where v; < v; for i < j. The set V can be represented as an M-long
vector V. We will refer to any sequence of contiguous elements of V' as a segment. We want
to construct a summary vector H by selecting B < M non-overlapping segments (buckets)
that together include every element in V. We also provide a reconstruction function R(-)
that approximates vector V (of length M) from vector H (of length B < M), and an error
function E(-) that measures the distance between V and R(H). The challenge is to find

the vector H of length B which minimizes E(H), given the initial vector V.

Several types of histograms have been suggested in the literature. Among those are the
equi-width and equi-depth histograms. Equi-width histograms choose bucket boundaries in
such a way that all bucket ranges are equal, and equi-depth ones guarantee that the total
number of tuples mapped to each bucket is (nearly) the same for all buckets. More recently,
new types of histograms proved to perform better [PTHS96b]. These are: mazdiff, which
places the B—1 bucket boundaries between the v; values with the B—1 maximum differences;

v-optimal, that minimizes the variance of the values in each bucket; and compressed, which

16

dedicates an entire bucket to each one of the K highest values in V, and organizes the
remaining B — K buckets so that each of them has nearly the same total sum of values.
Note that all of the above approaches do not directly address the problem of minimizing
E(H), but rather provide approximations. Jagadish et al. [JKM198] describe an algorithm
that finds the optimal solution in time quadratic in M and linear in B. This is achieved
using a dynamic programming algorithm that recursively finds for each segment the optimal
split point (i.e., the point that minimizes the overall E(H)). The same algorithm can be

augmented to provide quality guarantees on the maximum error of the estimations.

A subsequent study [JKM99] uses the above algorithm for deviation detection in time
series. The main idea comes from the information theoretic principle of representation
length. Deviants are termed the points whose removal from the sequence causes the largest
reduction in the representation cost of the series.

The algorithm employs histograms for the representation of the time series V. Then,
the problem is to find the points that once removed will decrease E(H) the most. Note
that, when we remove a data point from V, we decrease the number of buckets by one
to account for the separate storage required for it. It turns out that the above dynamic
programming algorithm can be adapted to solve this problem, albeit, in time quadratic in
the size of the dataset. The advantage of this approach is that it can effectively capture
deviant points in local contexts, that is, in relation to their neighbours, as well as from
the global perspective. It is also interesting to note that the above technique (storing the
deviant points in separate buckets) leads to more accurate histograms for the same storage

space.

Matias et al. [MVW98] propose the use of a multiresolution wavelet decomposition
technique to approximate a data distribution. The (Haar) wavelet transform takes as input
asignal X = {z1,...,z,}, and computes the averages and pairwise differences of all the pairs
(224, x2;+1). Then, it recursively replaces each pair of points with their average value, and
keeps the differences (along with the index of the point position) which are the coefficients
of the transformed signal. In order to get the signal back, we only need the very last point
value (where the recursion stopped), and the resulting coefficients. It turns out that we can

disregard any coefficients with sufficiently small magnitude at the cost of incurring a small

17

€error.

For a given storage space, the algorithm has to decide which m coefficients to keep for
the representation of the original data. The study describes a set of greedy heuristics for this
task. The complexity of the algorithm is linear in |D| (since the transformation requires
padding all points in D — V with zeroes). This is approximately the cost of answering
queries as well (assuming m << |D|). The experimental evaluation shows that this method
performs better than mazdiff histograms in the general case. However, a more extensive

comparison among the different approaches is necessary.

Faloutsos et al. [FJS97b] investigate a problem relevant to the histogram techniques.
Histograms can be viewed as a summarized representation of the data. This study describes
a method for estimating the original detailed data from the stored summary. Obviously,
the problem is under-specified. One way of making up for the missing equations is to
assume uniformity of values. However, the study shows that this assumption leads to
poor estimates of the real values. Instead, the authors propose the technique of linear
reqularization which essentially tends to smooth the distributions it approximates. In other
words, adjacent values in the solution will only have a small difference. Experiments show
that this is a valid assumption for many datasets and results in better estimates. The
algorithm has complexity linear in the size of the dataset. However, it does not scale up to

many dimensions.

2.3.4 Approximation in Data Cubes

The problem of providing approximate answers for data cube structures has not been ad-
dressed sufficiently yet. The two methods outlined in the following paragraphs are merely
extensions of previous approaches to many dimensions.

Poosala and Ganti [PG99] propose the use of the MHIST multidimensional histograms
[PI97], which are the multidimensional version of mazdiff. The MHIST histogram starts
by considering the whole data space as a single bucket. Then, it splits along the dimension
whose 1-dimensional aggregate distribution contains the two adjacent points with maximum
difference. The algorithm exploits the lattice structure of a data cube, and constructs
histograms for only a subset of the cuboids (the rest are approximated using the computed

histograms). The solution is based on a greedy heuristic, and runs in time exponential in

18

the number of attributes in the data cube.

The wavelet transform, which extends naturally to many dimensions, is explored by
Vitter et al. [VWI98]. When considering multiple dimensions, the wavelet transform is
applied on each dimension in a sequential manner (i.e., one dimension at a time). The
complexity of the algorithm is quasi-linear in the total number of cells of the data cube,
and there is an additional cost for answering queries, which depends on the cardinality of
the dimensions involved in the query. This approach was also extended to accommodate
sparse data cubes [VW99], and incremental updates to the model [MVWOQ0].

The experimental results of the above two methods are not comparable, because different
error measures are used in the studies. Once again, extensive studies should be performed

in order to evaluate the different approaches.

A recent study [LPH02] focuses on the problem of finding succinct summaries of a data
cube. The idea behind this approach is to leverage the regularities that exist among the
values in the data cube, in order to compute a summarized form for it. The premise is that
this summary preserves all the information in the original data cube, and that it reveals
the semantics in the cube. That is, it exposes trends that hold over the data at different
granularities, and along different dimensions.

The study describes algorithms that compute the summary of a data cube. This sum-
mary has the desirable properties that it maintains the cube semantics and lattice structure.
The experimental evaluation of this approach, over synthetic and real datasets, shows that

it can offer significant reductions in the space required for storing the data cube.

2.4 Data Mining in Data Cubes

2.4.1 Overview

The OLAP paradigm was introduced as an efficient and effective means to do data explo-
ration [CCS93]. The premise was that the multidimensional view of the data along with
the flexibility of the data cube operator would constitute a viable solution for the deci-
sion support problem. However, the sheer size of data cubes renders the task of intelligent
analysis (i.e., anything more than just selecting subsets of the data cube, and applying the

drill-down and roll-up operations) formidable. This fact merely transformed the problem

19

of having to study a wealth of information from bottom layer databases to decision support
OLAP cubes. Hence, the need is now becoming apparent for intelligent analysis of data
cubes as well.

Data mining is the research area that has the potential to address the above need. Nu-
merous techniques have already been proposed for knowledge extraction, and many lessons
have been learnt during this process. Nevertheless, there is still very little work done in the

specific area of data mining in data cubes.

2.4.2 The General Case

The intersection of data mining and OLAP is extensively discussed by Han [Han97]. The
author describes the DBMiner application which integrates OLAP technology with data
mining techniques. Algorithms for performing characterization, classification, clustering,
and association rule mining are embedded in the OLAP sub-system of DBMiner.

Such a system is useful [ZXH98], and a wide range of applications can benefit from it.
Nevertheless, one would expect that all the preprocessing steps and the specialized structure
of data cubes could be employed in a more integrated way. That is, we should be able to
identify patterns in the data that could not possibly be discovered from the same data in
raw format (i.e., not organized in a data cube). In the next section, we discuss an approach

that follows this path.

2.4.3 Detecting Deviants In Data Cubes

Sarawagi et al. [SAM98] investigate the problem of identifying outliers in data cubes. The
current practice in OLAP systems is to facilitate hypothesis-driven exploration of data
cubes, where the analyst tries to find interesting information by simply using the data cube
operators. This study proposes instead the discovery-driven exploration paradigm. In this
environment, it is the system that recommends to the user potentially interesting paths of
exploration in the data cube.

The algorithm mines the data for exceptions, and summarizes the results at different
levels of the hierarchy. Exceptions are termed the cell values (of any aggregation level)
that differ significantly from the anticipated value calculated using a model that takes into
account all the aggregates in which the value participates. The model used in this study is

similar to table analysis methods used in the statistics community.

20

Experiments with real datasets exhibit the flexibility of the algorithm in identifying
outliers. Furthermore, the algorithm is transformed so that it can be incorporated in the
computation of the datacube. This is crucial, since the complexity of the algorithm is pro-
hibitive otherwise. Even then, the overhead introduced by the computation of the model is
significant (up to more than 100%). Note that this approach requires that the whole dat-
acube be computed, which is not a common practice, especially for large datasets. Moreover,

the algorithm cannot update the model as new data arrive.

A subsequent study [Sar99] describes a method that produces an informed explanation
for drops or increases that are observed in the data. More specifically, the DIFF operator
is introduced, which explores the reasons for which a certain aggregated quantity is lower
or higher in one cell compared to another. The reasons are expressed in the form of other
cell values, belonging to aggregation levels of finer detail, that are most responsible for
the difference under investigation. The challenge here is to not simply report all (or even
the largest) changes in the detailed data, but rather provide a concise explanation. The
former approach would either produce too many results or account for a small portion of
the difference, while the latter has a high information content because it summarizes rows
describing similar changes.

The problem is formulated in information theoretic terms as follows. A sender has a
cube Cj and wants to transmit it to a receiver who already knows about cube C,. In
addition, the receiver has a summary A of N values, that describes the differences of the
cubes. Then, the objective is to find the A (i.e., determine which N tuples to choose) which
minimizes the amount of additional information that the receiver has to get in order to
reconstruct Cp without errors. The solution is based on a dynamic programming algorithm.

Equally interesting to the DIFF operator is the RELAX operator [SS01], which can be
thought of as the opposite of DIFF. The goal is to start from a problem case at a detailed
level, and then have the system generalize to the broader context in which the problem
occurs. The RELAX operator uses similar techniques as DIFF, but it offers a more flexible

and general framework.

The problem of exploring large multidimensional datasets is studied by Sarawagi [Sar00].

This work proposes an automatic method for guiding a user analyst in the exploration of a

21

data cube. The system keeps track of the parts of the data cube that the user has visited,
and suggests new exploration paths that will lead to the most surprising, unvisited, parts
of the data.

The algorithm is based on the principle of Maximum Entropy, and suggests to the user
to visit this part of the data for which the knowledge she already has is the most erroneous.
In order to reduce the complexity of the algorithm, it considers only one new dimension at
every step, which may lead to sub-optimal paths of exploration. Nevertheless, this technique

offers an effective way of quickly navigating in the interesting parts of a massive dataset.

22

Chapter 3

Approximate Querying and

Exploration of Data Warehouses

We now focus on data warehouses, and, more specifically, on data cubes. The volume
of data stored in OLAP tables is typically huge, often on the order of multiple terabytes
to petabytes. It is common practice to aggregate data in order to save storage space,
a procedure during which the detailed information that produced the aggregates may be
lost. Nevertheless, users are often interested in inquiring about the data from which the
summarized form was generated. In this chapter, we present a reconstruction technique
that produces estimates for the detailed values based solely on the aggregated information.
We also evaluate the use of the same technique for identifying values of interest to a user

analyst.

3.1 Contributions

The contributions we make in this chapter are as follows.

e We propose a method for reconstructing multidimensional values from aggregate data.

In the OLAP environment our technique uses the already computed aggregated values.

e We describe an extension to the above method, in which we are able to provide
quality guarantees (error bounds) for the reconstruction. Moreover, the quality of
the reconstructed information can be controlled by the user, achieving any degree of

desired accuracy at the cost of using more space.

23

e We present a method to identify and rank deviations in multidimensional datasets,
that is, values that do not follow in general the underlying data distribution. These
values are of particular interest to an analyst since they indicate local or global ab-
normalities. The power of the method we propose is that it does not depend on any
a priori or domain knowledge for the problem at hand, and it also does not require

any parameter settings or calibrations.

e The properties and special characteristics of the above methods are explored with an

experimental evaluation, using both synthetic and real datasets.

3.2 Outline

The outline of the rest of this chapter is as follows. In Section 3.3, we present some back-
ground material necessary for the rest of the chapter and Section 3.4 presents the recon-
struction algorithm. Section 3.5 discusses the two particular application scenarios of the
algorithm, and associated optimization problems. In Section 3.6, we present experimental
results evaluating the performance and the utility of the proposed algorithms. Section 3.7

reviews related work, and finally we present our conclusions in Section 3.8.

3.3 Background

Consider a relation schema R = (A4, Ag, ..., A,,Y) and r an instance of R. Aq,..., A, are
dimension attributes and Y is a measure attribute. Attribute Y could represent volume
of sales, dollar amount, number of calls, etc. Usually, each dimension of a datacube is
associated with a set of hierarchically-related attribute values. A combination of attribute
values from the leaves of the hierarchy specify a single data value in the dataset. Any
combination of attribute values in which at least one comes from a non-leaf level of its
hierarchy specifies a (hyper-rectangular) set of data values.

Following the above framework, attributes A;,1 < ¢ < n include dimension attributes
and hierarchies possibly defined on them. For example, for the simplified OLAP table
depicted in Figure 3.1(a) the schema is R(STATE, CITY, BRAND, PRODUCT, SALES).
Values of attribute CITY are hierarchically grouped into values of STATE, and values of
attribute PRODUCT are hierarchically grouped into values of BRAND.

24

)_>\l

5 6
Levi's CK
3 8
8t g3
H@NEME#Q
1
5 Queenis 401 10|50 |5
NY 2
7 New York 15| 45| 65| 10
All 3
6 Toronto 15]40 65 18
i 4
Ontario Ottawa 55140 | 35| 30

(a) The entire dataset.

55 | 55 115 15|

Queens| 105
New York | 135

NY

(b) Aggregated values for the upper half of the dataset.

Figure 3.1: Example dimension hierarchies on two dimensional sales data.

3.3.1 Grid Queries

With a schema of n attributes, assume that h attributes define hierarchies on the remaining
d = n — h attributes. We can enumerate the nodes of hierarchy 7,1 < 7 < d starting from
the leaves of the hierarchy and working towards the root node, such that h; = j denotes
the jth node of hierarchy i. Viewing the table of Figure 3.1(a) with its dimensions and
hierarchies as a multidimensional grid, following Jagadish et al. [JLS99], we refer to the
d-dimensional vector (hi,...,hq) as a grid query. When a grid query specifies a single data
value in the dataset, we refer to it as a point query. Otherwise, we call it a range query.
For example, the grid query (1,2) is a point query asking for the sales of silvertab Levi’s in
Queens, while the grid query (5,7) is a range query referring to the entire upper half of the
dataset. Grid queries are the most common queries in warehouse environments [JLS99].
For the rest of this thesis, we restrict our attention to range grid queries, and we will
refer to them simply as queries. The reason we are interested in this special class of queries
is that it significantly reduces the space of possible queries, which can be prohibitively large.
The value of the above assumption will become apparent in Chapter 4, where the number

of queries is part of the optimization problem.

25

It is important to note that whenever we refer to the term “query” in this chapter we
refer to the region of the dataset that the query defines. For example, when we estimate
or answer a query, it means that we provide approximate answers for each one of the data
values that fall inside the region specified by the query. Then, by answering a range grid
query using our techniques, we can also answer any other query asking for a subset of the

answer we computed.

3.3.2 Dataset Values as Probability Distributions

A basic observation about any instance r of R is that it can be viewed as a discrete n
dimensional probability distribution, P,(A1,... Ay). This can be accomplished by normal-
izing the value Y on each row of r by the sum of all Y values. The analogy between r
and P, can be extended further. We can derive from r all the distributions of P, where we
have eliminated any of the attributes participating in P, by summing over them. We call
this class of distributions marginal distributions or simply marginals. More formally, the
marginal distribution of a set of random variables is the distribution obtained by summing
the joint distribution over all values of the other variables.

Consider for example the following query:

SELECT Ay, A, ..., A, 1,sum(Y)

FROM r

GROUPBY A, Ay, ..., Ap_1.
The outcome of this query is one of the n marginal distributions of P, of order (number of
attributes) n — 1. All we need to do, is normalize sum(Y") by the sum of all Y values.

Reasoning similarly, one can draw an analogy between all the group-by’s on r and all
the marginal distributions of P,.. Thus, we can view the problem of reconstructing r from
its aggregates as analogous to the problem of reconstructing an n-dimensional probability
distribution from a number of its marginal distributions. Based on this analogy, in the
rest of this thesis, we use the terms group-by on instance r and marginal distribution of P,

interchangeably.

3.3.3 Maximum Entropy Distributions

For the following discussion, we will need the notion of entropy, which is defined with respect

to a random variable Z as follows. If variable Z takes on the values (z1,z22,...,2,) with

26

probabilities (p1,p2,-..,pn), then the entropy of variable Z, H(Z), is
H(Z) = H(p1,p2,---,Pn) = Y _ pilogp;.
i=1

Let P(A4,...,A;) be an n dimensional discrete probability distribution, to be estimated
from a number of its marginals. With n variables, there are 2" — 2 marginals (excluding
the grand total and the base data) of P in total. Moreover, there are (};) marginals with
k variables (equivalently of order k). Let S be an arbitrary subset of the powerset of

X ={A44,...,A,}. The problem of mazimum entropy estimation of P is defined as follows:

Problem 3.1 [The Maximum Entropy Estimation Problem] Find P such that it
mazimizes the entropy H(P) of P, over all probability distributions that satisfy the following
conditions:

- every element in P(X) has a non-negative value,

- > P(X)=1, and

- Vi€ S5, Y jeqs—q P() = P(i),

where P(j) is a marginal distribution of P.

The maximum entropy estimation of P is a model fitting technique. It has a unique
solution [KK92], and it finds the model with the ‘least’ information or fewest assumptions
given the specified constraints, which are the marginal distributions in our case. The method
appears ideal for this estimation problem as it is designed for lack of data rather than
an excess thereof. The overriding principle in maximum entropy is that when nothing is
known the distribution should be as uniform as possible, and the participating attributes
independent. The constraints specify the regions where the estimated distribution should
be minimally non-uniform, as well as the attribute correlations that should exist in the

estimated distribution.

In the definition of the maximum entropy estimation problem (Problem 3.1), the only
constraints that serve as input to the problem are the given marginals, to which the solution
should conform. In the general case, these constraints can take other forms as well. For
example, instead of using just the sums of the detailed values (i.e., the marginals), we could
also use any of the higher order moments, such as variance and skew. In this work, we

restrict our attention to the use of marginals only, because these are readily available in a

27

data cube structure.

The only exception to the above restriction is in order to take into consideration the
values of particular elements of the sample space, for which the exact real values are known.
Then, there is no need to produce estimates for these elements. We discuss cases where the

above situation is applicable in Sections 3.4.4 and 6.2.

3.3.4 Properties of Maximum Entropy

Let P(X) be an n-dimensional probability distribution, and M; be the set of all marginals
of order i, 1 <4 <n—1of P(X). We denote by P;, 1 <i <n — 1 the maximum entropy
approximation to P using only the marginals in M; as constraints. Then the following

theorems hold.

Theorem 3.1 [Kul68] Let C be the set of all n-dimensional probability distributions that
have the same marginals as those in M;, and assume that all distributions in C are equally
probable to be the true distribution P. Then, the distribution p = P; € C minimizes the
expected distance among p and P' € C, where the distance function is defined as:

D(p,P') = Zp) log P,);)) (3.1)

The measure D is known in the literature as the relative entropy [CT91] and measures
the similarity of two probability distributions. More precisely D is a measure of the effort
required to describe distribution P’ based on the knowledge of distribution p. We can show

that by minimizing D(p, P') we also minimize the x? test between p and P’ [Kul68].

Theorem 3.2 [Kul68] Let P;,1 < i < n—1 be the mazimum entropy estimation of P using

only marginals of order i. Then the following inequality holds:

D(P,,P) > D(Py,P)...> D(P,_1,P). (3.2)

Theorem 3.2 states that a better estimation of P can be performed by using marginals
of order 7 + 1 than marginals of order 4, for 1 <7 <n — 1.
3.3.5 Computing the Maximum Entropy Solution

Problem 3.1 is a constraint optimization problem that is not amenable to a general closed

form solution. The problem is in general under-constrained, that is, there are more unknown

28

variables than equations. The standard technique for solving this maximization problem
is the method of Lagrange Multipliers [Ber82]. This method requires the formation of
equations based on the optimization objectives and the constraints imposed, and solve
a rather complex system. In its one dimensional (single variable) version, this problem
is amenable to an efficient solution [FJS97a]. However, the efficient solution of the one
dimensional case does not generalize to multiple dimensions. Moreover, in order to solve
this problem in the multidimensional case, a different system of equations has to be derived
each time, depending on the specified constraints (marginal distributions available). This
is not very appealing for automation. Ideally, we are after an algorithmic approach that
can operate directly on the specified constraints and derive the estimation with no human

intervention.

3.4 Algorithmic Solution

In this section, we propose the use of an algorithmic approach for the solution of the
maximum entropy estimation problem (Problem 3.1). The technique is called Iterative
Proportional Fitting (IPF), and was introduced by Deming and Stephan [DS40]. It is an
iterative algorithm that converges to the maximum entropy solution. IPF has the following

properties [BFHT75].

1. Tt always converges monotonically to the required unique maximum entropy estima-

tion, given a number of marginals.

2. A stopping rule may be used that ensures accuracy to any desired degree in the

solution (i.e., in the asymptotic estimates).
3. The estimates depend only on the given set of marginals;

4. convergence, as well as the speed of convergence, are not directly affected by the

starting values.

5. In some cases, convergence to the exact estimates is achieved after only a single

iterative cycle!.

'A complete discussion of this topic may be found elsewhere [BFH75].

29

6. It does not require the values of the marginals (or equivalently of the dataset) to be

normalized in order to form a probability distribution.

3.4.1 Description of IPF

Let (A1, Ag,..., Ay, Y) be a relational instance. We specify a multidimensional region of
interest [dy,,d1,] X ... X [d4,,dq,], defined by a d-dimensional grid query @ = (h1,...,hq).
Let S be the set containing all the marginals required for the reconstruction of @), and k
be the cardinality of S. To illustrate the above with an example, we use the dataset of
Figure 3.1(a). The highlighted box in the figure defines a range query; the two marginals
based on which we will estimate this query are the row and column aggregates shown in
Figure 3.1(b).

Let P;(j),1 <i < k,j € S, be one of the 7 marginals of P. Note that by j we refer to
a particular marginal. On each P;(j), the aggregation has been computed on all attributes
not present in the marginal j.

We denote as Y4, 4,..4,, the value of attribute Y for the specific combination of the
A; attributes (d of those are specified by the grid query and the remaining n — d from the
hierarchy). We denote as f’zg? Ao A the estimate of the value of Y4, 4,.. 4, during the ¢-th
iteration of the algorithm. IPF starts the reconstruction by initializing a d-dimensional
grid, G, of size d;, — d;, + 1 per dimension ¢, to one. We refer to each element of the
d-dimensional grid as a cell. In addition, it computes the £ marginals in S for the initialized
grid G. Let IAJZ-(t) (4), denote the marginals computed from G in the ¢-th iteration of the
algorithm. Denote P?(5), the marginals after the initialization.

At each iteration, IPF loops over the k marginals 7 € S, and all grid cells, [; €

[di,,d1.],...,ln € [dq,,dq,], and adjusts the values of the grid cells according to the formula
o (t+1 (1 P;(5)
YlSlQ...),ld = Y(z) : — (3.3)

l1l2...lg P(t) (])

where 1 <17 < k.

This procedure is guaranteed to converge to the maximum entropy estimation of P given
the specified collection of marginals. The estimates converge in a monotonic fashion, which
allows the application of a stopping rule. Commonly, we choose to terminate the iterations

when the change in each individual estimate becomes smaller than some user specified §

30

value. For all the experiments presented in this chapter (except when we evaluate the effect
of parameter § on the algorithm) we set ¢ to 10% of the median of the values designated
by . We chose the median because it is not affected by any extreme values, and it can
be efficiently computed [MRL99] and stored in the DBMS. In addition, as we show in the
experimental section, the algorithm is not very sensitive to the value of 4, making the

specific choice less important. A skeleton of the IPF algorithm is given in Figure 3.2.

Objective: Compute the maximum entropy estimates YAI As...A, Of a given
d-dimensional dataset Y4, 4,...4,-

Input: A set of k marginals P;(j),s = 1,...,k and a stopping threshold 4.

Output: The maximum entropy estimates ?Al A Ay

1 let step t:=0;

2 initialize YAI Ay Ags
3 do {

4 fori:=1tok {

) Vi, € [dls,dle],...,lde [ddsadde]
6 vt) PG

hiondy = Yhilada BO ()
7 for m:=1 to k {
8 update Py (4) based on Ylgjl)ld,
9 }
10 tt+;
11}
12 let maxChange::max{‘YIL(‘?A%__AEI — 17,51??4’2)...,4(1 1,

over all l; € [d1,,d1,],-..,lq € [da,,dq.];

13 } while maxChange> d;

Figure 3.2: The IPF algorithm.

An important issue is which marginals to choose in order to use them for the estimation
process. Clearly, different sets of marginals will yield different estimates. This will, in turn,
result in different estimation errors. Another, equally important, consideration factor, is
the space required to store the marginals. If the gain in the approximation accuracy is
negligible when using marginals of a high order, then we may as well restrict ourselves to a
cheaper alternative that has almost the same benefit.

At this point we know, based on Theorem 3.2, that when we use marginals of the same

31

order for the estimation procedure, then the higher the order of the marginals is, the more
accurate the estimation becomes. Nevertheless, what we would really need is a measure of
the relative benefit of using different sets of marginals. Note, that we should be allowed
to choose marginals from different orders as well. This measure would serve as a means of
comparison among the available choices of marginals, by taking into account both the space
required to store each alternative, and the estimation accuracy that it achieves. Ideally, we

would like to be able to compute this measure based only on the marginals.

Unfortunately, no measure with the desired properties is known. It turns out that in
order to evaluate the available choices we have to turn our attention to the detailed data
that produced the marginals, and try out the different alternatives [BWO00]. In the absence
of such a measure that can effectively quantify the relative merit of using alternative sets
of marginals, for the rest of this thesis we restrict our attention to marginals of the same
order. In Chapter 6, we discuss further some of the issues that arise when we have to make

a choice among different sets of marginals.

3.4.2 An Example

We explain the operation of the algorithm with an example. For illustration purposes, we
discuss an example in two dimensions, involving attributes A; and As. The generalization

to higher dimensions is straightforward.

Assume that we have the dataset depicted in Figure 3.3(a), and we want to focus on
the highlighted subset. Figure 3.3(b) shows the particular subset along with its marginals.
The IPF algorithm starts by initializing the estimates ¥, = 1,1; = 2,...,4;lp = 1,...,4
(Figure 3.3(c)). Then, in the subsequent steps, it fits the marginals one by one. First,

. . (1 (0 A
it fits P;(A1) using the formula Ylgli = Ylglg p?’g(,qlf)’wl € [2,...,4],l € [1,...,4] and

we obtain the table of Figure 3.3(d). Then, it fits marginal P»(A3) using the formula
Ylﬁi = fflglg PI?IS?Z)) Vi, € [2,...,4],l2 € [1,...,4]. The result is depicted in Figure 3.3(e),
and this is the final set of estimates. Indeed, if we run one more iteration of the algorithm
the elementary cell estimates will not change. Therefore, the condition at the end of the

main loop of the algorithm will be satisfied, and the procedure will terminate.

32

123m
1 2 3

2] 19| 28\ 20] 233 4 PAY)

1
2027 38| 43| 32| 35 2| 27| 38| 43|32 140
3 2531 201 28] 25 3| 25| 31| 40|28 124
4 28T 35 37 30l 36 4| 26| 35/ 37|30| 128
5| 27| 38| 43| 81| 4L PAAy)| 78 104] 120] 90 |
(€Y (b)

1 2 3 4 B 1 2 3 4 Aa)
21111 a 2 [35.00] 35.00] 35.00] 35.00| 140
31111 a 3 | 31.00| 31.00| 31.00| 31.00|| 124
a4l 1111 4 4 | 32.00| 32.00| 32.00| 32.00| 128

) 3] 3] 3]3] P5(A)| 98.00] 98.00] 98.00] 98.00]

(0) (d)

1 2 3 4 PBIA)

2 | 27.86] 37.14] 42.86] 32.14|[140

3 | 2467| 32.90| 37.96| 28.47| 124

4 | 25.47] 33.96] 39.18] 29.39|| 128
Pa) 78 | 104 | 120 | 90 |

(©

Figure 3.3: An example of applying the IPF algorithm. Figure (a) shows the whole dataset,
and the portion of it that we wish to estimate. In (b) we have the subset we focus on, and
its two corresponding marginals. The initialization step is depicted in (c). Figures (d) and
(e) show how the algorithm fits the two marginals one at a time.

3.4.3 Algorithmic Complexity and Implementation Details

The IPF algorithm requires as input the marginals corresponding to a specific query @, and
then iterates over a grid G, which is the same size as the result set of (). We can safely
assume that the marginals fit in main memory, but this may not be true for G.

If the available memory is large enough to hold the grid G then the algorithm only needs
to read from disk the marginals®. All the subsequent operations take place in main memory.
Taking into consideration the large sizes of memory that are commonplace nowadays, we
expect that the algorithm will be able to provide fast answers to a significant number of
queries by operating on memory-resident data.

In the case where G does not fit in memory, the algorithm has an increased I/O cost.

During each iteration it makes k passes over G, where k the number of marginals that we

2As we will show in Section 3.5, this involves just a selection query to the DBMS storing the underlying
data.

33

use for the estimation. After having computed the estimates based on a single marginal
for all the values in G, the algorithm has to make one more disk pass over G in order to
calculate the new estimated marginals. In our implementation, we managed to cut the
number of passes in half by incorporating the update of the estimated marginals with the
computation of the base values, reducing the cost of the algorithm to [kt] passes over G,
where £ is the number of iterations. This called for efficient indexes on the marginals, which
were implemented using hashing techniques. The results that we report in the experimental
section illustrate the worst case scenario, where the dataset does not fit in main memory.
The number of iterations the algorithm performs until convergence is achieved is usually
small. Typically, six or fewer iterations are enough to get an accurate estimate, even for
data sets of large dimensionality. In addition, since the algorithm is guaranteed to converge
to the final estimates in a monotonic fashion, the user can stop the procedure when a
sufficient number of significant digits of the estimates appear to have converged. FEven
though the parameter ¢ (which controls the accuracy of the estimation) is user defined, the
above approach can still result in substantial savings in the computation time, compared to
the case when the stopping criterion is only based on §. An example of such a case is when
the user is interested in a subset of the values that are being estimated, and for which the
desired accuracy has already been achieved. Since this is a user interface issue, we do not

pursue it further in the experimental section.

3.4.4 Quality Guarantees for the Approximation

The reconstruction process is only dependent on the marginals of the base data. This im-
plies a significant reduction in the available information from which the base data will be
estimated. For various applications, being able to provide error bounds for the reconstruc-
tion of individual values is imperative. For this procedure we can safely assume that, at the
time of the computation of the aggregates, the original data are still available.

Let W be the set of grid queries of interest. One approach to provide error bounds for
each query in W would be the following: estimate the values of each query in W, while
the original data are still available, compute the largest difference (between the actual and
the estimated value) for each query in W, and store them separately. This would incur a
storage overhead of O(|W|). More formally, let us denote by Y; the original value of some

cell 7, and with Y; its estimated value. We can use the absolute difference d; = |YZ - Y

34

in order to provide an upper bound for the error. Assuming that a specific grid query
encompasses N cells from the base data, the upper bound can be calculated using the
formula® N - maxi<;<n{d;}. Thus, the total error for the query is not going to be greater
than N times the largest individual cell error.

The above error bound provides an indication of the accuracy of the reconstruction.
Yet, some applications may require tighter quality guarantees. In order to provide such
guarantees, we introduce the following approach: store a number k (user defined) of the
largest estimation errors for each query in W. Given a query in W that involves a number of
the cells whose correct values have been explicitly stored, the reconstruction algorithm uses
these correct values, and thus induces no error for the specific cells. Since we have chosen
to store the cells with the largest errors, the overall error for the query will be dramatically
reduced. If the error bound per query should be specified by the user, we can choose k (the
number of values to store) such that the overall error of reconstruction satisfies the error
bound.

In many cases the number of cells for which the approximation is really poor will be
relatively small. Therefore, the number of values that need to be materialized separately
will be small as well. In the experimental section, we evaluate this argument, and we present
graphs depicting the distribution of errors for the real datasets we used. As will become
evident from the graphs, only a minor percentage of cells exhibit high errors, and thus, can

be efficiently stored, with only a small storage overhead.

3.5 Using IPF

In the following sections, we discuss issues related to the applications of IPF, both for query

answering and knowledge discovery.

3.5.1 Query Answering

Given a d-dimensional grid query @ the algorithm has to determine the order of the
marginals to use for reconstruction as well as the ranges of these marginals pertinent to

Q. In light of Theorem 3.2, marginals of order d — 1 will produce the most accurate esti-

3We assume that the error metric is the Root Mean Square Error. Similar arguments hold if we choose
other error metrics as well.

35

mate. In general, using marginals of order k& with IPF will yield a more accurate estimate
than using marginals of order k—1. In the experimental section, we present graphs exploring
the time and accuracy tradeoffs related to this choice.

Assuming one decides to use the marginals of order k, the exact marginals relevant to
Q@ have to be determined. A simple rewriting of () can produce the (Z) marginals of order
k that should be queried in order to retrieve the values for IPF to operate on. Any grid
query on 7(Ay,...,A,) where A;,... Ay are dimension attributes and Ay ... A, define
hierarchies on them, can be expressed in SQL as:

SELECT Ai, As,... Ag

FROM r

WHERE Ayi1 =aj and ... A, =ap_g,

where the values ay, . .., a, 4 designate the multidimensional range of Q. Let F' = {44,..., Aq}.
Then, the marginals of order d — 1 relevant to the reconstruction of the grid query can be
retrieved by issuing the following SQL query:

SELECT F — A;

FROM r

WHERE Agi1 =aj and ... A, = ap_g,

for 1 < i < d. This will give us all the (dﬁl) = d marginals of order d — 1. Similarly,
the marginals of order d — 2 relevant to the reconstruction of the grid query can be retrieved
by:

SELECT F — {A;, A;}

FROM r

WHERE Ad+1 =aj... An = Qp—d,

for 1 <4< d, i < j < d. Reasoning similarly, we can construct the expressions for
the choice of marginals of any order.
3.5.2 Mining Interesting Patterns

In the case that the base data are available, the proposed reconstruction technique has a

different utility. Maximum entropy reconstruction from a number of marginals is performed

36

based on the assumption that the marginals of interest are pairwise independent. By re-
constructing the data and comparing them with the base data, the validity of the pairwise
independence assumption can be tested. Any data value that violates the pairwise indepen-
dence assumption, will induce a larger reconstruction error than one that does not. This

provides an automatic way to reason about the underlying correlations among attributes.

For example, if the volume of sales of redtab Levi’s jeans in Queens incurs the largest
estimation error among all sales of Levi’s in the cities of NY state, we know that the volume
of sales in Queens represents the strongest violation of the assumption that sales in NY state
are independent of the city. We term such values deviations, because they deviate from the
estimation model. Such values can potentially be of great interest to the analyst since they
record values out of the norm. This property can be utilized during grid query execution,

since we can automatically identify and report values of potential interest to the analyst.

The basis for identifying a specific value as a deviant can be a measure of the distance
between the actual and the estimated value, i.e., the estimation error, such as absolute
difference. However, this metric may not always produce high quality results. An example
of this case would be a dataset with values drawn from a uniform distribution. Then, most
of the values in this dataset would qualify as deviants, which is not correct. In order to
remedy this situation, we can use a formula which normalizes the estimation error of a
value with respect to the standard deviation o of all the estimation errors returned by the

algorithm for the underlying dataset

where with Y; we denote the original value of cell 4, and with Y; its estimation. Then,
we choose a cutting threshold for s, that can effectively differentiate between the normal
perturbations in the dataset and the large deviations. The above technique splits the sorted
set of deviations into two regions: it assigns the statistically large deviations to the first
region, and the rest to the second one. We refer to the boundary point between those two
regions as the cutoff point. A commonly used threshold is s = 2, which will prune 95% of
the approximation errors as trivial, leaving only the largest 5% for consideration (the values
follow from the properties of Normal distributions). The system can subsequently sort those

deviating values, and pick the top-k among them. In the experimental section, we present

37

graphs that visualize the deviations determined by the algorithm, for both synthetic and

real datasets.

3.6 Experimental Evaluation

In the following subsections, we present the experiments we used to evaluate the performance
of the IPF algorithm.

First, we describe the real and synthetic datasets we employed in our evaluation. Then,
we assess the ability of the algorithm to make accurate estimates of some unknown multidi-
mensional distributions. Finally, we test another application of the IPF algorithm, namely

mining interesting patterns and identifying deviations.

3.6.1 Description of Experiments

In order to test the IPF algorithm, we used both synthetic and real datasets. The synthetic

datasets are produced by sampling uniform and Gaussian data distributions.

Uniform: We produced datasets of dimensionalities 2, 3, and 4. For each of the above
datasets of different dimensionality, the values were drawn uniformly from the range
[0,10] (uniform10), [0,100] (uniform100), and [0,1000] (uniform1000). The size of
the datasets varied from 1,000 to 20,000 tuples. The statistical properties of those

datasets are reported in Table 3.1.

Gaussian: We produced datasets of dimensionalities 2, 3, and 4. The values were sampled
from independent Gaussian distributions. For ¢ we chose three different values that
altered the distribution of the values in the data space. In the experiments we refer
to these datasets as gauss_small, gauss_medium, and gauss_large. Once more, the size
of the datasets varied from 1,000 to 20,000 tuples. The statistical properties of those

datasets are reported in Table 3.1.

We also experimented with three Gaussian datasets which had additional random
noise coming from a uniform distribution. The first dataset has small variance, while
the second one has large variance. The third dataset was derived from a mixture of
two multidimensional Gaussian distributions. We refer to these datasets as gauss_flat,

gauss_bell, and gauss_combined respectively. A high level description of how the mix-

38

ture of Gaussian datasets were generated is shown in Figure 3.4. The statistical

Objective: Construct a d—dimensional dataset that follows a mixture of Gaussians

distribution.
Input: A pair of values (u?, of) for each dimension &, and for each of the
Gaussian distributions j that we want to be present in the dataset.
Output: The d—dimensional data values.
1let {z1,...,z4} be the d dimensional attributes;

2 let N be the number of points dropped in the multidimensional grid;
3 for i:=1to N {
4 for j:=1 to number of Gaussians in the dataset {

) for k:=1to d

6 let a:k::gauss(/zf,a’?);

7 increment the value of position (z1,...,z4) in the dataset by one;
8 }

9 }

10 /* we then add some uniform noise on top */

11 for all values in the dataset {

12 withprobability 0.01 add to the value of position (z1,...,z4) a value drawn
uniformly at random from the range [0,mean of dataset];

13}

14 procedure gauss(u, o)

15 let r be a value drawn from a Gaussian distribution with mean y and standard
deviation o;

16 return (7);

Figure 3.4: The algorithm for generating the Gaussian synthetic datasets.

properties of the datasets are reported in Table 3.1.

Real: The first of the real datasets, calls and calls3, are derived from AT&T proprietary
data. They represent aggregated telephone calls in certain regions of North Amer-
ica over time. They are 2- and 3-dimensional, and their size is 10,000 tuples. The

dimension attributes are time, location of the call, and customer type.

Finally, we used census, a dataset from the U.S. Census Bureau, containing informa-
tion about the age, education, command of English and number of children of individ-

uals. It is a 4-dimensional dataset from which we extracted instances of 10,000-50,000

39

dataset min | mazx mean | std.dev. | skew
uniform10 0.0 10.0 5.01 2.88 0.01
uniform100 0.0 | 100.0 | 50.11 28.78 0.01
uniform1000 0.0 | 1000.0 | 501.14 | 287.84 | 0.01
gauss_small 38.0 | 115.0 | 73.46 10.26 0.11
gauss_medium | 4.0 | 100.0 | 42.90 16.24 0.40
gauss_large 0.0 | 104.0 | 15.60 18.34 | 1.65
gauss_flat 9.0 | 76.72 | 28.15 5.80 0.40
gauss_bell 0.0 | 72.14 | 20.72 12.45 | 0.36
gauss_combined | 0.0 | 106.68 | 24.66 13.57 | 0.53

Table 3.1: The statistical properties (min, max, mean, standard deviation, and skew) for
the synthetic datasets used in the experiments.

tuples by uniform random sampling.

Table 3.2 summarizes the statistical properties of the real datasets we used in our

experiments.
dataset min mazx mean std.dev. | skew
calls 1.0 729.00 18.01 37.79 5.37
calls3 0.0 729.00 9.01 9.32 22.77

census_10K | 1000.00 | 196623.00 | 24735.73 | 23449.87 | 3.67
census_20K | 1000.00 | 196623.00 | 24894.82 | 23412.84 | 3.63
census_30K | 1000.00 | 196623.00 | 24751.72 | 23278.56 | 3.66
census_40K | 1000.00 | 196623.00 | 24718.29 | 23211.15 | 3.62
census_50K | 1000.00 | 196623.00 | 24817.64 | 23331.80 | 3.61

Table 3.2: The statistical properties (min, max, mean, standard deviation, and skew) for
all the real datasets.

The error metric that we report in the experiments is the Root Mean Square Error

(RMSE), defined as

N - _ V)2
RMSE = \/ Li=1 % i)

where Y; represents the original values in the dataset, Y; the corresponding estimated values,
and N is the total number of values in our dataset. In the following experiments, we estimate
the values of each dataset and measure the error of the estimation for all N values of the

dataset.

40

Note that all the above datasets also include a measure attribute. Therefore, the total

number of attributes for the datasets we used ranges from 3 to 5.

3.6.2 Exploring the Properties of the Algorithm

In this section, we present experiments concerning the choice of the parameter §, the run-
time of the algorithm, and the property stated in Theorem 3.2, namely the fact that higher
order marginals produce more accurate estimates.

The following experiments examine the effect of the parameter § on the performance of
the algorithm. We ran the algorithm with § varying from 5% to 15% of the median (see

Section 3.4.1) for several synthetic and real datasets. Table 3.3 shows that the error does

0 (% of median) root mean square error
gaussian | uniform | census_10K | census_30K | census_50K
0.001 2.072 227.02 16889.76 18184.32 18564.82
5 2.072 227.09 16892.78 18185.64 18565.95
15 2.072 227.09 16895.72 18187.71 18567.60

Table 3.3: The error for the various datasets as a function of the parameter .

not vary much when the value of § increases. Even if we set ¢ to a very small value (i.e.,
d = 0.001) the benefit we get in the reduction of the error is not significant (results in the
first row of the table). Since the choice of ¢ is not crucial for the error, we would like to
pick a value that results in a small number of iterations for the least possible error. The
graphs in Figure 3.5 depict the number of iterations needed for each value of §, when the
IPF algorithm is applied to the entire dataset. The largest variations in the number of
iterations are observed in the datasets with the highest skew (Figure 3.5(b)). Yet, even for
those datasets, setting § to 10%, which is the setting we used throughout our experiments,
proves to be a good choice. We expect that for most of the datasets this choice will lead to
good performance of the algorithm.

We also performed some experiments to test the effect of dataset size on the convergence
of the algorithm. These experiments indicate that there is no correlation between the dataset
size and the number of iterations that the algorithm needs to perform in order to converge.

Figure 3.6(a) shows how the run-time of the algorithm changes when the dataset size

increases. The graph demonstrates the outcome of experiments for datasets of different

41

5 T T T T
uniform1000 —<—
gauss_large -+-

4 | i

» 3 & S
c AN
S N
g
g
- 2 R ERRREEEEEEES oo —
1 - .
0 1 1 1 1
5 7 9 11 13 15
Delta (% of median)
(a) Iterations vs Delta, synthetic datasets

10 T T T T
census_50K ——
census_30K -+~
census_10K -&--

8 .

%) 6 7

c

ie]

@

I

- 4 1
2 - -
O 1 1 1 1

5 7 9 11 13 15

Delta (% of median)

(b) Iterations vs Delta, census datasets

Figure 3.5: The effect of varying the parameter § on the number of iterations. All datasets
are 4-dimensional. In every case the marginals of the highest order were used.

42

2000 T T T T
4 dimensions <—
3 dimensions -+--
2 dimensions -8--
1500 B
o
[T}
(2]
E
5
'E 1000 R
2
3
£
'_
500 R
0 ’
0 5000 10000 15000 20000
Dataset Size (tuples)
(a) Time vs Dataset Size
8 T
1000 tuples —<—
7k 5000 tuples -+-- |
10000 tuples -8--
20000 tuples -
6 - -
%]
c
o
©
2

0 1
2 3 4
Dataset Dimension

(b) Tterations vs Dataset Dimensionality

Figure 3.6: The effect of dataset size on the run-time of the algorithm (time per iteration),
and of dataset dimensionality on the number of iterations. The parameter ¢ is set to 10%
of the median, and we use the marginals of the highest order. For these experiments we
used the uniform datasets.

43

dimensionalities. As expected, there exists a linear relationship between the size of the
dataset and the run-time of the algorithm. Moreover, when dimensionality increases, the
number of marginals that the algorithm uses increases as well. This explains the steeper
slopes for the curves in Figure 3.6(a) for the higher dimensions. As Figure 3.6(b) depicts, the
number of iterations increases with the dimensionality of the dataset. For these experiments,
we used the marginals of the highest possible order, and set § to 1% of the median in order
to exaggerate the differences.

These results on the scalability of the algorithm demonstrate that this approach can be
effectively used by the analyst in real time, and in an interactive fashion, even for queries
that do not fit in main memory.

Figure 3.7 depicts the experimental verification of Theorem 3.2. We used 4-dimensional
datasets, and measured the error of the estimation when the algorithm operates with
marginals of orders 1 to 3. Figure 3.7(a) is an illustration of the fact that when we use
higher order marginals for the reconstruction of same dataset, the error is diminishing. The
large difference in the errors shown in the graph of Figure 3.7(a) is explained by the fact
that the uniform dataset has much larger variance than the Gaussian one (see Table 3.1).
It is interesting to note here that, for the datasets we used, the relative benefit of employing
marginals of higher order is increasing. The reduction in error is larger in moving from
order 2 to order 3 marginals, than it is for moving from order 1 to order 2 marginals. The
greater accuracy that we are gaining by using marginals of high order comes at the expense
of time (and, of course, space). The run-time of the algorithm increases with the order of

the marginals (Figure 3.7(b)).

3.6.3 Evaluating the Accuracy of Reconstruction

The experiments described in this section investigate the behavior of the algorithm when
reconstructing the detailed values of a dataset.

The graph in Figure 3.8(a) shows how the error changes when the dataset size increases,
for the three uniform distributions. All the datasets have three dimensions. As is evident
from Figure 3.8(a), the error of reconstruction is related to the variance of the underlying
dataset and it increases as the variance increases. By increasing the size of the dataset,
the error increases (but not dramatically) as more values are included in the computation

of the error. The next graph, Figure 3.8(b), depicts how the dataset dimensionality affects

44

30 T

uniform100 —<—
gauss_small -+-

25

20 | E

Root Mean Square Error

10 E

2
Marginals Order

(a) Error vs Marginal Order

2500 T

gauss_small <—
uniform100 -+---

2000 1

1500

1000

Time (msec)

500 - B

O 1
2
Marginals Order

(b) Time vs Marginal Order

Figure 3.7: The effect of the order of the marginals used on the error of reconstruction and
the run-time of the algorithm. The datasets used in these experiments are uniform100 and
gauss_small.

45

400 T T T T
uniform1000 —<—
L uniform100 -+-- |
350 uniform10 -8--
= 300]
<]
|
; a0 | O/k//e/e’e |
I
>
o
2] 200 E
j
<
[}
= 150 E
IS]
o
& 100 | g
50 | E
Hommmmmm Ao t - t ;
0 1 1 3 B B il
0 5000 10000 15000 20000

Dataset Size (tuples)

(a) Error vs Dataset Size, used marginals of order 2

400 T

uniform1000 <—
350 F uniform100 -+-- |
uniform10 -8--

300 - 1

250 ar/v _

200 —

150 —

Root Mean Square Error

100 B

50 | E

Dataset Dimension

(b) Error vs Dataset Dimensionality, used marginals of order 1

Figure 3.8: The effect of dataset size and dimensionality on error, for uniform datasets.
Three uniform distributions with different mean values are represented in the graphs.

46

the accuracy of the estimations. During this experiment, the algorithm was applied to
the marginals of order 1, which is the highest order common to all datasets. It is evident
that the reconstruction error increases with dimensionality; however, the increase seems
correlated to the variance of the underlying dataset, since the increase of the error as the
dimensionality increases is small.

Figure 3.9 depicts the way error changes with respect to dataset size and dimensionality,
in the case of Gaussian datasets. The results we get are similar to those in the experiment

with uniform datasets.

10 . : . ,
gauss_large <—
gauss_medium -+-
gauss_small -8--
8 r i
S
&) .
[e
= 6 | e i
g -
jo
%]
§ D Rt [R Qe al
= 4ar - N
IS]
o
14
2 r i
0 L I 1 1
0 5000 10000 15000 20000

Dataset Size (tuples)

(a) Error vs Dataset Size, 3-dimensional datasets

10 .
gauss_large —<—
gauss_medium -+~
gauss_small -8--
8 -
=
o
=
w
> R
jon
@ B e e h
e
8
= 4]
=
o
[e]
14
2]
0 1

2 3 4
Dataset Dimension

(b) Error vs Dataset Dimensionality, 10000 tuples

Figure 3.9: The effect of dataset size and dimensionality on error, for Gaussian datasets.
Three Gaussian distributions with different sigma value are represented in the graphs.

47

3.6.4 Reconstruction with Quality Guarantees

In the following experiments, we assess the benefit of providing error bounds. The method
we propose (as discussed in Section 3.4.4) explicitly stores a small number of deviating
values, which are subsequently used during the reconstruction phase to diminish the error.

In the first set of experiments, we explore the distribution of the size of the estimation
errors (i.e., the absolute error between the real and the estimated value for an individual

cell). The graph in Figure 3.10(a) depicts the distributions for the datasets calls and calls3

600 ey
500 f-- -
200 F]

300 | i

Absolute Error

200 | .

100 | .

0 Il Il Il R
1 10 100 1000 10000
Rank

(a) calls Datasets.

180000 T T T T

TN census-50K —
160000 |- " T census-30K ---- .
= census-10K -----

140000 [

120000

100000

80000

Absolute Error

60000

40000 -

20000

10000 100000

" il "
1000
Rank

0 n PR | n PR |
1 10 100

(b) census Datasets.

Figure 3.10: The distribution of the absolute error for the real datasets.

after sorting into decreasing size. Both curves indicate that the error sizes follow a skewed

48

distribution, with a fraction of the errors having large values. This fact indicates that
the choice to store the largest estimation errors as extra information is likely to pay off
during reconstruction. Figure 3.10(b) shows the same graph for different sizes of the census
dataset. The results show that, for all the sizes, the distribution of the errors is skewed.

The next experiments evaluate the relative benefit of storing a number of deviating
values per query in order to guarantee a specified reconstruction error bound. Figure 3.11
shows the error of the reconstruction as the number of deviations that are stored increases
from 0 to the size of the dataset. The user may choose between those two ends according
to the application requirements for quality guarantees, and the space restrictions on the
number of extra values that the algorithm will use.

In every case, storing only a very small number of deviations is enough to dramatically
decrease the error. For both real datasets we used, storing only the few largest deviations
decreased the error by two orders of magnitude. As expected, at the other end of the
spectrum, when the deviations for all the values are stored, we can use this information to
achieve a perfect reconstruction.

Note the role that the cutoff point can play in this situation (see Section 3.5.2). In the
graphs, the cutoff point, is marked with a vertical line, and it can be used to determine the
point (and subsequently the number of values to materialize) at which the relative benefit
of storing additional deviating values becomes negligible.

In Figure 3.12, we use a logarithmic scale for the y-axis and a linear scale for the x-axis,
to present the same graphs as before. In addition to the actual reconstruction error, we
plot a theoretical upper-bound for the error, following the discussion in Section 3.4.4. Even
though this bound is not tight, it may still be useful for certain kinds of applications. These
graphs also enforce our argument about the cutoff point. It is clear that the cutoff point
separates the initial region of dramatic decrease of the error from the plateau that follows.
The added benefit of storing extra values from the latter region is quite small.

In the following experiments, we evaluate the tradeoff between the accuracy of the
estimation and the space needed to achieve this accuracy. Figure 3.13 shows the reduction in
the estimation error when we use marginals of successively higher order, and, in Figure 3.14,
we show the increase in the space needed by these marginals. When we use marginals
of higher order, the accuracy of the estimation increases. However, this increase in the

accuracy comes at the expense of space, since the space needed by the marginals of higher

49

25 T T T

calls —
calls cutoff point -o---
20 @ E
S
|
(9]
5 15 —
=}
o
%]
j
8
s 10 E
IS]
o
14
5 - .
0 P | PR | L
1 10 100 1000 10000
Number of Deviations Used in the Reconstruction
(a) calls Dataset.
12000 — — — ™
census_10K —
census_10K cutoff point -¢--
10000 ¢ E
S
o 8000 F E
Q
©
>
jon
@ 6000 [R
e
[
[}
=
S 4000 R
[e]
14
2000]
0 I I T
1 10 100 1000 10000

Number of Deviations Used in the Reconstruction

(b) census_10K Dataset.

Figure 3.11: The reconstruction error when a varying number of deviations is used by the
algorithm.

50

1000 F T T T T T T T T T
calls error bound —
100 calls actual error ---- E
r calls cutoff point -¢--
S
|
g
©
>
o
& 001F .]
[} + -
= L AN
5 0.001 \
o o A
I | i
0.0001 | k
le-05 | .
16-06 L 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Deviations Used in the Reconstruction
(a) calls Dataset.
1le+06 T T T T T T T T T
X census_10K error bound —
: census_10K actual error ----
; census_10K cutoff point -¢--
5 N
v P
o T
©
>
jon
0
c
©
[}
=
IS]
[e]
14
16'05 1 1 1 1 1 1 1 1 1 |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Deviations Used in the Reconstruction

(b) census_10K Dataset.

Figure 3.12: The actual reconstruction error and an upper bound when a varying number
of deviations is used by the algorithm.

51

16
14

12

E uniform100
W gauss_medium
Ocensus_20K

% reduction of RMSE for
[00]

6
4 L
2 | L
SN

1-=2 2->3

Marginals Order

Figure 3.13: The percentage of the error reduction when we use the marginals of order 7+ 1
instead of the marginals of order 7, in the estimation process.

2000
1800
1600 +—
1400 +—
1200 +—

@ uniform100
1000 —— B gauss_medium
so00 — Ocensus_20K

600 —
400 +—
200

% increase of marginals space for

1->2 2->3

Marginals Order

Figure 3.14: The percentage of the increase in the space occupied by the marginals, when
we use the marginals of order ¢ + 1 instead of the marginals of order 7, in the estimation
process.

52

order increases as well. If we compare the graphs illustrated in Figures 3.13 and 3.14, we
observe that in order to improve the estimation accuracy by a small amount, we have to
use disproportionally more space. That is, there is small added benefit for the extra space
needed by the marginals of higher order.

In the above experiments we reduced the estimation error by employing marginals of
higher order. Another way of reducing the estimation error is to explicitly store a number
of the largest deviating values. For the following experiments, we measure the reduction in
the estimation error when we use the marginals of some order %, and a number of deviations.
We ensure that the total space required by both the marginals of order 7 and the stored
deviations, equals the space required by the marginals of order ¢ + 1. In this way, we can
compare the benefit of explicitly storing some deviating values, against using marginals of
higher order, for some fixed space. Figure 3.15 depicts the outcome of these experiments.
We observe that in this case the reduction of the estimation error is considerable, and the

reconstruction of the real values of the datasets is almost perfect.

100

80 -
70 £ -
60 -

B uniform100
50 — 1 |M gauss_medium
40 +—1 || |0census_20K

30 +— -
20+ -
10 +— -

% reduction of RMSE for

Marginals Order

Figure 3.15: The percentage of the error reduction when, in the estimation process, we use
the marginals of order ¢ and a number of deviations, such that the total space equals the
space needed by the marginals of order ¢ + 1.

Evidently, for the same amount of space, it is much more beneficial to store the marginals
of some order ¢ along with a number of the largest deviations, than to store the marginals of
order 7+ 1. Nevertheless, it is not always the case that we can explicitly store the deviating
values. For example, consider the scenario of an online system, where only the marginals of

some measures of interest are materialized, and the detailed values are not stored. Then,

53

we will have to use just the marginals for the estimation process.

3.6.5 Mining Interesting Patterns

We evaluate the ability of the IPF algorithm to mine the underlying general structure of
the data and report any deviations with the following experiments with synthetic and real
datasets. Note that the graphs we present involve datasets in two dimensions only, for

illustration purposes.

Synthetic Datasets

We produced two datasets (namely gauss_flat and gauss_bell) drawn from Gaussian dis-
tributions and then added some uniform noise on top, as described in Figure 3.4. These
datasets are shown in Figure 3.16. The marginals created by the algorithm captured the
general trends of the data, and the algorithm was able to report the values that deviate the
most from the real distribution. The top-4 of these values for each dataset are presented in

Table 3.4. Manual inspection of the results reveals that these are indeed the predominant

gauss_flat gauss_bell gauss_combined

cell diff. cell diff. cell diff.
(50,21) | 47.34 | () | 56.80 | (60,67) | 62.78
(2,59) | 47.27 | () | 44.01 || (48,6) | 58.33
(48,68) | 42.15 || (19,54) | 42.74 || (28,2) | 52.26
(11,93) | 41.24 | () | 36.98 || (23,60) | 36.81

Table 3.4: The top-4 deviations reported for each of the three synthetic datasets. The
metric used is the difference of the real value from the estimated.

deviations in the datasets.

The third synthetic dataset (gauss_combined) we tested is a combination of two multi-
dimensional Gaussian distributions with different mean and sigma values, and some noise
on top (generated as described in Figure 3.4). It is depicted in Figure 3.17(a). Once more,
the algorithm correctly singled out the most significant deviating values (reported in Ta-
ble 3.4). Note that the algorithm does not merely identify global phenomena, e.g., reporting
the maximum value along a dimension. Instead, it takes into account the local neighborhood

in which a particular value appears, and reports any incongruities therein. For example,

54

(b) gauss_bell Dataset

Figure 3.16: Illustration of the original datasets following Gaussian distributions with uni-
form noise added on top. The four largest deviating values are marked in the graphs.

55

(a) gauss_combined Dataset

(b) calls Dataset

Figure 3.17: Illustration of the two datasets where the four largest deviating values are
marked. The dataset on the top is synthetic (combination of two different Gaussian distri-
butions with uniform noise added on top), while the one at the bottom is the calls dataset
from AT&T.

56

consider the deviation number 4 reported by the algorithm, in Figure 3.17(a). This value is
not the maximum value of the dataset (its rank in the dataset is 116-th). Nevertheless, it
is identified by the algorithm as a deviant, because it differs significantly from all the other

values in its neighborhood.

Real Datasets

In the following experiments, we used the algorithm to find the most deviating values in
two of the real datasets, the calls, and the census_.10K dataset.

Figure 3.17(b) depicts the calls dataset along with the top-4 deviating values, which are
also listed in Table 3.5. All the marked values are instances of unusually high volume of
calls. This information is important to the analyst since it indicates exceptional behavior

which can either be fraudulent, or signify special cases in the dataset.

calls
cell diff.
(7,37) | 611.45
(38,24) | 572.39
(7,13) | 506.32
(7,68) | 434.07

Table 3.5: The top-4 deviations reported for the calls datasets. The metric used is the
difference of the real value from the estimated.

The outcome of the second experiment, with census_10K, cannot be graphically depicted,
because the dataset is 5-dimensional. However, it is interesting to report some of the findings
of the algorithm. The dimensional attributes of the dataset are age, command of English,
number of children, and level of education, while income is the measure attribute. As
expected, the above attributes are not independent. For example, the income tends to
increase with age and with the level of education. Nevertheless, there exist values that
do not follow these patterns. Among the top deviations are a middle-aged person with
high level of education who earns less than 20K, a person with a PhD degree who earns
merely 3K, and a 24-year old who earns 200K. These are certainly results that deviate from
the norm, and therefore are interesting. (The reported deviations are among the top-30

returned by the algorithm. The rest of the deviations are not as interesting.)

57

Note that the algorithm is able to identify all the above results as interesting even though

it has no domain knowledge, and it gets no user input.

3.7 Related Work

The principle of maximum entropy [CT91] has been successfully applied in different do-
mains, including linguistics [CR99] [BPP96] and databases [FJS97a]. Faloutsos et al. apply
maximum entropy in addition to other techniques, for one dimensional data reconstruction

[FJS97a). Our work generalizes the work of Faloutsos et al. to multiple dimensions.

There exists a sizeable bibliography in approximate query answering techniques [IP95]
[PTHS96a] [JKM198] [VWI98] [AGPRI9] [SFB99] [BS97] [BW00]. Our approach is fun-
damentally different. Previous work focused on the problem of data reconstruction by
constructing specialized summarized representations (typically histograms) of the data. We
argue, that since there exist data that are already stored in an aggregated form in the
warehouse, it is imperative to examine the quality of reconstruction one can attain from

the aggregates.

The problem of identifying interesting values in a dataset is related to deviation detec-
tion. Arning et al. [AAR96] try to identify the subset of a database that is most dissimilar
to the rest of the data. Other approaches discuss algorithms specialized to metric spaces
that scale to large datasets [KN98] [KN99]. The drawback of these approaches is that the
user is required to come up with the right selection of functions and parameters, which
requires a great deal of effort. Our algorithm does not require such input, making the
whole procedure less cumbersome and more robust. In that sense, our work is closer to the
framework proposed by Sarawagi et al. [SAM98]. They describe an algorithm that mines
the data in a data cube for exceptions. We should note that in certain cases the exceptions
identified by this algorithm are the same as the deviations reported using our technique.
This is because the log-linear models used in the above work produce the same model as
the one derived using the maximum entropy principle, when the input is the same set of
marginals [BFH75]. However, their method is computationally expensive, depends on the

computation of the entire data cube, and cannot accommodate updates.

58

3.8 Conclusions

In this chapter, we considered the problems of using the aggregate information in order to
provide approximate answers to queries and identify interesting values in multidimensional
datasets. Each problem is of particular interest in the field of data analysis and approxi-
mate query answering respectively, especially since the volume of data stored in warehouses
is huge. The techniques we discussed are based on the well recognized and widely appli-
cable information theoretic principle of mazimum entropy. We also proposed an extended
framework that allows the user to choose quality guarantees for the reconstruction process.
Finally, we presented an experimental study using both real and synthetic data, which

explored the properties of the approach.

59

60

Chapter 4

Space Constrained Selection in

Data Warehouses

So far we have assumed that there is enough space to store all the marginals needed to
reconstruct each query in our workload. Now consider the case where we are allowed only a
limited amount of space for storing the marginals. We can compute the space requirements
of the marginals when they are materialized (either by computing them or by applying
estimation techniques [SDNR96]). In this setting, we would like to materialize a subset of
the marginals that satisfies the given space constraint, and at the same time is necessary for
the reconstruction of the most important queries. (The set of aggregates needed to answer
a specific query is determined by the reconstruction algorithm, as presented in Chapter 3.)
The importance, or benefit, of each query can be manually set by the user, or it can be
determined automatically by observing the occurrence frequency of the query in the system
workload [ACNO00] [LL02]. We discuss further this issue in Section 4.3.1.

In this chapter, we formally define the above optimization problem, and propose several
algorithms for its solution. To the best of our knowledge, this is the first attempt to study

solutions for this problem.

4.1 Contributions

The contributions we make in this chapter are as follows.

e We formulate optimization problems concerning the selection of sets of items that

61

under a space constraint yield the highest benefit, where benefits are associated with
sets of items. This kind of optimization problem appears in various domains, and is

very interesting in practice.

e We derive the complexity of these optimization problems, and propose several algo-
rithms for their solution. Since there are no known polynomial-time approximation
algorithms for these problems, we examine the use of known optimization principles
in this context [GMWS81]. Such principles include greedy, randomization, as well as

optimization based on clustering.

e We explore the properties and special characteristics of the above techniques with an
experimental evaluation. Our results illustrate the behavior of the algorithms under

different settings, and highlight the benefits of each approach.

e Based on our analysis, we present lower bounds on the quality of the solutions pro-
duced by the algorithms. This offers insight into the operation of the algorithms, and

provides a practical guide for selecting among the techniques proposed.

4.2 Outline

The outline of the rest of this chapter is as follows. Section 4.3 presents the formulation
of the optimization problem, and Section 4.4 discusses algorithms for their solution. In
Section 4.5, we present experimental results evaluating the performance and the utility
of the proposed algorithms. Section 4.7 reviews the related work, and we conclude in

Section 4.8.

4.3 Problem Formulation

In the following paragraphs, we establish the terminology used in the rest of the chapter,
we present the formal statement of the problem, and we discuss its complexity.

Let components be the marginals that are available for use, and objects be the queries
that can be estimated using the available marginals. When all the components required by
an object are selected in the solution, we say that the object is satisfied. We assume that all

benefit values are positive. Each object is associated with a benefit, which is claimed when

62

the object is satisfied. Each component is associated with a space requirement, which is the
storage space it will occupy when selected. When a component is selected we say that it is

materialized.

Example 4.1 According to the terminology we introduced above, the problem of view selec-
tion for approzimate querying in datacubes can be translated as follows. The queries that
we want to answer are the objects, while the sets of marginals needed by the estimation

algorithm are the components.

We can construct a bipartite graph G(U, V, E), where U is the set of objects, V is the set
of components, and E the edge set of the graph. An edge exists between u € U and v € V
if component v is required by object u. An example of the general form of the bipartite

graph is shown in Figure 4.1.

objects components
Vi
Vo
il V3
Vy
v
Uy 5
Vg
V7
/ V8
U3 Vg
>< Vio
Uy Vi
Vi2
Ug Vi3
v
Ug 14
Vis

Figure 4.1: An example of the bipartite graph G.

Let V[i],1 < ¢ < |V| be a binary vector having a 1 in position 7 if and only if we have
selected component v; for materialization, and s(v;),1 <4 < |V| be a function determining

the space requirements of component v;. Let U[j],1 < j < |U|, be a binary vector having a 1

63

in position j if and only if all the components required by object u; have been materialized.
Each object u; is also associated with a value b(u;), which specifies its benefit, and is
a measure of its importance. Given a constraint W on the total space available for the
components, we are interested in maximizing the total benefit of objects answered, while
satisfying the space constraint. Then, the Constrained Set Selection (C0OSS) optimization

problem can be stated as follows.

Problem 4.1 [The COSS Problem] Mazimize -, U[j]b(u;), subject to the constraint
that 3, V[i]s(v;) < W.

We show below that the integral Knapsack problem [GJ79] reduces to a special case of
the COSS problem. Hence, according to the following lemma, the optimization problem is

NP-Hard.
Theorem 4.1 The COSS problem is NP-Hard.

Proof: We will show that the integral Knapsack problem reduces to COSS’, a special case
of COSS. Hence, COSS’" and subsequently COSS are NP-Hard. In the Knapsack problem,
we are given a space constraint B, and a set D of data items, where item d; has space
requirement s(dy) and benefit b(d;). We wish to select a subset D’ of the items, so as to
maximize the total benefit Y ;cpr b(dy), subject to the constraint Y ,cpr s(dx) < B. Let
COSS’ be an instance of COSS, where each and every object ug in U has unit benefit (i.e.,
b(ug) = 1), and requires one and only one component v from V with space requirement
s(vg). Associate each component vy, with b(dy) objects from U, and let s(vg) = s(d). Then,
the mapping of an item dj, into a component v, concludes the reduction. O

Note that in the special case where all the queries have the same benefit value then the
problem is one of trying to satisfy the largest number of objects possible given the space

constraint.

4.3.1 On the Applicability of the COSS Problem

Observe that the COSS problem is orthogonal to the problem of how to use the information
from the marginals in order to reconstruct the corresponding queries. The query reconstruc-
tion problem takes as input a specific set of marginals and estimates the unknown values
that produced them. In contrast, the COSS problem is one of selecting which of all the

available marginals to materialize in a space constrained environment.

64

Note that the set of marginals which serves as input to the COSS problem, can be
carefully selected to be representative of the query workload. The state of the art commercial
database management systems offer efficient tools that, based on some query workload, can
automatically generate the list of marginals that are most useful in answering the specified
queries [ZCL100] [ACNO00] [LL02]. Then, these marginals are candidates for materialization.
The assumption during this process is that the past workload is indicative of the future
queries that will be posed on the system. Furthermore, queries that are similar to each
other can be indentified [CGN02], and the proposed solution can be generalized to suit
classes of queries, rather than the specific queries present in the input workload. In this
way, the selected marginals will be useful for answering future queries that are different

from, yet similar to, the queries in the past workload.

The COSS problem is also applicable to the domain of pervasive computing that has
recently gained attention in the research community [CFZ01b]. The premise of pervasive
computing is that all the relevant information (at each point in time and space) should be
accessible to any mobile user. The users specify what information is relevant by using a
profile language. This language allows each user to define a number of objects that she
wants to be satisfied by the data components in the cache of the computer. Each object
is associated with a benefit value, and needs a set of the data components in order to be
satisfied. Furthermore, each data component may help satisfy more than one object.

One of the problems in the context of pervasive computing, as considered in profile-
driven data management [CFZ01a), is what data to send to a mobile computer. The choice
of the data to download is crucial, because it determines which of the objects in the profile
can be satisfied locally, and consequently the total benefit that can be achieved.

Note that the same problem arises even when the amount of data is not large, but
when the actual available storage space is limited. Characteristic examples of this scenario
are handheld devices, which have small storage capacity, and for which space allocation
should be done with care. Mobile users in general face an analogous problem in terms of
bandwidth. When the available bandwidth or connection time resources are limited, we
have to choose carefully which bytes to transmit over the link.

We will now describe a simple example of the above scenario. Consider a user visiting

a new city. The profile of such a user could contain the following three statements (each

65

statement specifies an object and the components we need to satisfy the object).
1. Find location, satisfied by map m.
2. Find rental car, satisfied by rental car agency list ¢, and map m.
3. Find restaurant, satisfied by restaurant list r, and map m.

In this example objects 2 and 3 cannot be satisfied if only one of the two required data
components are present in the mobile computer, and therefore the benefit gained is zero.
Also observe that the map component m is useful in satisfying all 3 objects.

More formally, the problem in this environment can be defined as follows. Let V' denote
a finite set of data components that are candidates for transmission to a mobile computer,
and s(v),v € V be the space requirement of data component v. Let the profile of the mobile
user specify a set of objects U, where each object u € U has a benefit b(u), and is associated
with a subset of components from V', i.e., the data components which are necessary in order
to satisfy the object and get the benefit. Assume the space constraint is denoted by W,
the set of selected data components is Vi C V', and the set of objects that can be satisfied

using Vi is Ugey C U. Then we have the Data Recharging optimization problem.
Problem 4.2 Mazimize 3, ¢y, , b(u), given 3¢y s(v) <W.

We observe that the formulation of the above problem is the same as in the COSS
problem (Problem 4.1). Therefore, all the algorithms described in this chapter can be

applied for the solution of the profile-driven data management problem as well.

4.4 Algorithms for the COSS Problem

In the following subsections, we propose several different algorithms for the solution of
the COSS problem. We start by discussing the exhaustive algorithm, and then present
efficient heuristics that can scale up to realistic sizes of the problem. We also explore the
applicability of a randomized algorithm for the problem at hand.

We demonstrate the efficiency of the above algorithms, and compare their performance

with a set of experiments in Section 4.5.

66

4.4.1 Exhaustive Enumeration

There are two reasons we include an exhaustive algorithm in our discussion. First, it will
demonstrate the dramatic difference in execution time between the exhaustive algorithm,
which always identifies the optimal solution, and the heuristics. There are O(2!V!) possible
solutions to be considered, where |U| is the number of objects. When the number of objects
is more than one or two dozen the above approach becomes prohibitively expensive. (An
instance of the problem with just 20 objects was running for more than 10 days on our
machine.) For the applications we have in mind, the number of objects is typically in the

range of several hundreds.

Second, it will serve as a basis for comparison of the quality of the results with the heuris-
tic approaches. Unfortunately, because of the complexity of the problem, this comparison

will only be feasible for very small sizes of the problem.

In order to find the optimal solution, it is not necessary to enumerate and examine every
single possible answer in the solution space explicitly. It is easy to determine for many of
the answers that they are sub-optimal without examining them. Solutions with sufficiently
low cardinality (such that they are much lower than the space constraint) are bound to
be sub-optimal, because we can always add new objects to the solution, thus increasing
the benefit. Similarly, for answers that have already exceeded the space constraint we can
safely prune all the solutions with larger space requirements. Finally, we can also prune
the solutions that we know will never improve on the current best solution. These are
the partial solutions in which, even if we fill up all the remaining space with the currently
smallest objects, while assuming that these objects carry the current maximum benefit, the
total benefit will still be smaller than the highest benefit we have seen so far. We will call
the straight forward exhaustive algorithm Naive, and the one that prunes the search space

NaivePrune.

Note that dynamic programming cannot help find the optimal solution in reasonable
time. Dynamic programming has been applied for the solution of the Knapsack problem,
some instances of which can be solved in pseudo-polynomial time [GJ79]. However, this
technique cannot be applied in our case. The intuition behind this observation is the follow-
ing. Assume that at some point we want to compute the optimal solution for a subset of the

objects (or equivalently components) and for a fraction of the total space allowed. It turns

67

out that there may be more than one optimal solution at this point. Given that the current
solution may affect the later choices of the algorithm, we need to keep track of all of them,
which leads to exponential time (or space). Thus, the dynamic programming algorithm will
not terminate in pseudo-polynomial time (remember that dynamic programming can solve
the Knapsack problem in time polynomial in the size of the input).

What makes the COSS problem difficult is the fact that, in order to satisfy an object,
we need all the corresponding components. Materializing a subset of the components for

some object does not give us part of the object’s benefit.

4.4.2 Solutions Based on Bond Energy

We now present efficient heuristic algorithms based on the Bond Energy Algorithm. [MSWT2],
A high-level description of the algorithm we propose is shown in Figure 4.2.

The algorithm starts by computing a measure of interrelation between each pair of
components {v;,v;} C V. The interrelation measures for all possible pairs of components

are captured in the square matrix A (line 5 of the algorithm):

Ali, j] = > b(uk),
ug | up€V,ep;€E e ;€E
where ey; is an edge between the k-th object and the i-th component and e; is an edge
between the k-th object and the j-th component. This measure is a function of the benefit
of the objects that require both components, v; and v;. The larger the number of objects
and their benefits, the stronger the connection between the pair of components is.

Then, the procedure MakeBlockDiag() permutes the columns of A (or equivalently the
rows since A is symmetric by definition), and transforms it into a semiblock diagonal form.
In this form, large interrelation values tend to be surrounded by large values as well, and
are distinguished from smaller values that form separate groups. This transformation is

expressed by the formula

V| |V
max (Z > Ak (Alk, 1 — 1)+ Alk, 1+ 1]+ A[k — 1,1] + A[k + 1,1])) :
k=11=1

where A[k,0] = A[0,]] = A[|V]| + 1,1] = A[k,|V|+ 1] = 0. The above formula is the

mathematical representation of the bond energy [MSW72]. We are seeking the maximum

68

Objective: Compute a solution (may be sub-optimal) for the COSS problem.
Input: A set U of objects, a set V' of components, a space constraint W, and the bipartite

graph G(U,V, E), where e;; € E denotes that component v; is used by object w;.

Output: A set of components S C V to materialize.

1 procedure SolveCOSS() {

© 00O Ut LN

}

let square matrix A[-] = 0;
let S = 0; /* selected components S C V' */
for 4,5=1 to |V|
A[ij] =interrelation measure between components i and j;
A[-] = MakeBlockDiag(A[]);
S = Split(A[]);
return(S);

10 procedure MakeBlockDiag(A[-]) {

11
12
13
14
15
16
17
18
19
20
21
22 }

let matrix A'[-] be empty;
for i=1to [V|—1{
select one of the remaining columns in A[-];
let fraz = 0; /* maximum increase in bond energy seen so far */
for j=1to i+1 {
place new column in A'[-] in position j;
fmaz = maz(bond energy increase after placing new column in position j, fiaez);

keep the A'[-] corresponding to fmaz;

}

return(A'[-]);

23 procedure Split(A[-]) {

24
25
26
27
28
29
30
31
32
33
34
35}

let frmaz = 0; /* total benefit of best solution seen so far */
for i=1to |V| {

make first column of A[-] last, and first row last;

let j:=1;

let S = 0; /* selected components S C V' */

while (j< |V| A components in S satisfy the space constraint) {
S = S U {component v corresponding to j-th column of A[-]};
Sfmaz = maz(total benefit of objects satisfied by components in S, fraz);

}
}

return(S corresponding t0 finaz);

Figure 4.2: The BondEn algorithm for the solution of the COSS problem.

69

value of this expression over all possible arrangements of the columns of matrix A. In
order to transform matrix A into its new form, we start with an empty matrix in which
we add one new column at a time (Figure 4.2, procedure MakeBlockDiag()). The new
column is added in that position of the new matrix that results in the largest contribution
to the increase of the overall bond energy. Using this stepwise technique we can focus our
attention on the amount of increase of the bond energy after inserting a new column, since
selecting at each step the column with the highest increase leads to the maximum value for

the overall bond energy. Therefore, it suffices at each step to compute the formula

|4 Vi |4
arg max; <p<|y| (Z All,k —1])A[l, k] + ZA[Z, kALK + 1] — ZA[l,k - 1A[l, k + 1]) ,
when the new column is being placed at position k of the matrix. The above procedure is
very fast, avoiding examination of the entire exponential search space, and is still able to

find a near optimal form for A in almost all cases [MSW72].

In the final step, the algorithm splits the set of components V into H and V — H,
where H is the set of components selected for materialization. Essentially, H is the set of
components that can be used to satisfy the largest fraction of high-benefit objects while
restricting the amount of available space. Because of the previous step of the algorithm,
we do not have to examine arbitrary sets of components when constructing H, but rather
neighboring components, i.e., only consecutive columns of A. Just a single split point in
A determines H and V — H. The loop in line 28 makes sure that we will not miss good
solutions for H even if H was originally situated in the centre of A. We will refer to this

algorithm as BondEn (Bond Energy). Its time complexity is O(|V]?).

Note that in the above approach, in order to transform matrix A into a semiblock
diagonal form, we add one column at a time in the matrix position that results in the
largest increase to the overall bond energy. However, the selection of the new column to
add is arbitrary. Instead, we can enhance the technique by introducing a greedy column
selection approach. That is, by choosing at every step among all the available columns (i.e.,
the ones not already placed) the one that leads to the highest bond energy. We will call this
version of the algorithm BondEnGr (Bond Energy Greedy). Obviously, this enhancement
comes at the cost of increased computation time complexity, which now becomes O(|V|*).

We also experimented with two other variations of the algorithm, where we make sure

70

that during the split step (i.e., the last phase of the algorithm), we do not include in H
any components required by objects that are not satisfied. We call the above variations
BondEn-SpAll and BondEnGr-SpAll, which are the extentions of BondEn and BondEnGr

respectively.

4.4.3 Solutions Based on Greedy Algorithms

The greedy algorithms provide very fast alternatives for solving the COSS problem (albeit,
they may provide a sub-optimal solution), and are particularly appealing for very large

instances of the problem. The skeleton of such algorithms is depicted in Figure 4.3. They

Objective: Compute a solution (may be sub-optimal) for the COSS problem.

Input: A set U of objects, a set V' of components, a space constraint W, and the bipartite
graph G(U,V, E), where e;; € E denotes that component v; is used by object w;.

Output: A set of components S C V to materialize.

1 procedure SolveCOSS() {
2 let O = 0; /* selected objects O C U */

3 let S = 0; /* selected components S C V */

4 while (|S| < |V| A components in S satisfy the space constraint){

5 among all the objects {u|u € U Au ¢ O} select u; that satisfies the greedy condition;
6 let O =0 U {u;};

7 let S =SU{vjle;; € ENnv; ¢ S}

8 1}

9

1

return(S);

Figure 4.3: The greedy algorithm for the solution of the COSS problem.

start with an empty solution set, and at each step they add to the solution set those com-
ponents that satisfy the greedy condition. Before discussing the alternatives, we introduce
some new notation that will be necessary for the mathematical formulation. Let S* be
the set of components that the algorithm has selected during the past k iterations, and OF
be the set of objects that are satisfied given the components in S¥. We are interested in
deciding how to update those sets during iteration k + 1. Let CO* = U — OF be the set of
candidate objects for selection during iteration k + 1. Let C; = {vj|e;; € E Av; ¢ S*} be
the set of components, which are not in S*, required for object u; € CO*. The additional

amount of space required by these components is given by the formula f(u) = 3, c¢, s(vj)-

71

As before, we assume that we know the graph G(U,V, E), where U is the set of objects, V'
is the set of components, and FE is the set of edges indicating which components are needed

in order to satisfy each object. The greedy step can take any of the following four forms.

1. Accept to the solution set those components that will satisfy at least one new object,
and that require the least amount of space. More formally, for each object u; € CO¥,
calculate the additional space required for storing the corresponding components,
given by f(u;). Let u; = argmin,, f(u;) be the object that can be satisfied using the
least additional space. Then, O¥+1 = OF U, and S*¥t1 = Sk U C,.

This approach attempts to satisfy as many objects as possible, by selecting at each
step the object with the least additional space requirements. The intuition is that if
there are many objects answered then the total benefit of those objects will be high.
However, this may not be the case if all the satisfied objects happen to have low
benefit values. The time complexity of the above algorithm is O(|U|?), and we will

refer to it as GrSp (Greedy Space).

2. Accept to the solution set those components that will satisfy the new object with the
highest associated benefit. More formally, let u; = arg max,, ccorb(u;) be the object
with the highest benefit among all the candidate objects. Then, Ot = OF Uw;, and
Skt = gk U .

The goal of this alternative is to satisfy as many of the high-benefit objects as possible,
by choosing them according to their benefit values. This approach is likely to fail in
the case where the required components have exceptionally high space requirements.
We will refer to this algorithm as GrBen (Greedy Benefit). This is the cheapest of the

alternatives with time complexity O(|U|?).

3. Accept to the solution set those components that will satisfy a new object, and the
ratio of the object benefit over the space required by the additional selected com-
ponents is minimal. More formally, for each object u; € CO¥, calculate the addi-

tional space required for storing the corresponding components, given by f(u;). Let

U = arg max,, ?‘((Zi)) be the object that has the highest benefit per unit of additional

space required by its components. Then, Ot = O* U, and Skt = Sk U .

This variation of the greedy algorithm attempts to correct for the extreme cases we

72

identified as weaknesses in the previous two alternatives. The choice is now based on
the object benefit per unit of additional required space, which prevents the algorithm
from pursuing extreme solutions. We will refer to this algorithm as GrBenSp (Greedy

Benefit per unit Space). Its time complexity is O(|U|?).

4. Accept in the solution at each iteration an individual component. Select the compo-
nent that fits in the remaining space and yields the maximum B/s ratio, where B is
the total benefit of all the objects that are now satisfied because of the selection of
the new component, and s is the space requirements of the new component. If the
selection of no component causes any new objects to be satisfied then the algorithm

picks the component with the smallest space requirement.

This algorithm explores the applicability of choosing components instead of objects.
We do not expect it to perform well when most of the objects require more than one
component in order to be satisfied. The time complexity of this algorithm is O(|V|?)

and we will refer to it as GrComp (Greedy Component).

4.4.4 Other Empirical Approaches

In what follows, we discuss the use of simulated annealing, a randomized algorithm, and tabu
search, a metaheuristic technique, for solving the COSS problem. The above methods have
been used extensively in the past for solving a variety of problems, including scheduling,
routing, and graph optimization [JAMS89] [IW87] [GL97]. Such algorithms have the ability
to avoid getting stuck in local minima, and, therefore, can explore a larger area in the

solution space than greedy algorithms.

Simulated Annealing

Simulated annealing [KGV83] is a randomized hill climbing algorithm. In the following
discussion we will refer to Figure 4.4, which presents the algorithm. We start with an
initial solution (lines 2 and 3) that may either be arbitrarily chosen, or carefully selected
according to some other algorithm. We choose to use a solution provided by one of the
greedy algorithms we presented earlier as the initial solution. The goal is to find the global
maximum of the objective function.

Lines 7-18 implement the hill climbing procedure. In simulated annealing, apart from

73

Objective: Compute a solution (may be sub-optimal) for the COSS problem.

Input: A set U of objects, a set V' of components, a space constraint W, and the bipartite
graph G(U,V, E), where e;; € E denotes that component v; is used by object u;.

Output: A set of components S C V to materialize.

1 procedure SolveCOSS() {

2 let O = Oy; /* selected objects O C U */

3 let S = Sp; /* selected components S C V, corresponding to O */
4 let T' = Tp; /* temperature of the system */

5 let delta = 0;

6 let finae = 0; /* total benefit of best solution seen so far */
7 while (T > 1){

8 for i=1 to total number of iterations{

9 Opew =GetNewSimAnSolution(O);

10 let delta =(total benefit of Oy)— (total benefit of O);

11 if (delta > 0)

12 O = Onew; /* accept the new solution */

13 if (delta < 0) then with probability e~ “7

14 O = Opnew; /* accept the new solution */

15 fmaz = maz(total benefit of O, fraz);

16 }

17 T = oT; [Fa<l*/

18 }

19 S = marginals needed to answer queries in the O corresponding to fras;
20 return(S);
21 }

22 procedure GetNewSimAnSolution(O) {

23 let S = marginals needed to answer the queries in O; /* S updated whenever O changes */
24 pick an object Oggmit € {U — O} at random, and insert it to O;

25 if (total space needed by S > W)

26 pick an object Oeyict € {O — Ogamit} at random, and remove it from O;
27 if (total space needed by S > W)
28 penalize the total benefit of O proportionally to the benefit per space ratio of Oggmit

and the amount by which W is exceeded;
29 return(0);
30}

Figure 4.4: The SimAn algorithm for the solution of the COSS problem.

74

uphill moves, downhill moves are also allowed under certain circumstances. More specifi-
cally, a downhill move is accepted with probability e~ (detta)/T (line 13), where delta is the
decrease in the objective function from the previous step, and T is a parameter simulat-
ing the temperature of the system. When T is high (in the beginning of the process) the
probability of accepting downhill moves is high. Then, T is slowly decreased (line 17),
and when the system freezes (T' < 1) no further moves are considered, and the algorithm
terminates. The temperature T is reduced according to the formula T,c,, = a1y, Where «
is a parameter controlling the rate of reduction of 7. Note that this process involves two
loops. The inner loop (lines 8-16) searches for solutions while 7" remains fixed. At each
temperature, the simulation must proceed long enough for the system to reach a steady
state or equilibrium. In our implementation, the equilibrium condition is satisfied when a

constant number (depending on the problem size) of iterations have been executed.

The function GetNewSimAnSolution() (lines 22-28) determines what the proposed solu-
tion for the next iteration of the algorithm is going to be. At this stage of the algorithm, the
solution is expressed in terms of the selected objects, rather than the selected components.
(This choice is simply for convenience, and has no effect in our reasoning.) The next solu-
tion is chosen at random among all the neighbours of the current solution. Two solutions
are neighbours if we can derive one from the other by adding a single object to one of the
solutions, possibly followed by a deletion of another object. This last step ensures that the
current solution satisfies the space constraint (lines 25-26). Actually, in some cases we may
have to remove more than one object in order to satisfy the space constraint. Nevertheless,
the requirement that the current solution should satisfy the space constraint at every step
is not strict. In some cases, we allow the new solution to violate the space constraint at the
cost of a small penalty to the total benefit. Then, in subsequent iterations, we once again

enforce the space constraint.

The complexity of the simulated annealing approach is determined by the number of
iterations. The work done in each iteration is minimal, and we can safely consider it as
constant. The number of iterations is controlled by the user, who sets the temperature
parameter, and defines the way temperature is reduced, as well as the criteria for the
equilibrium states. In our experiments, the initial temperature was set to four times the total
benefit of the initial solution, the o parameter controlling the decrease of the temperature

was set to 0.95, and the equilibrium condition involved a number of iterations equal to 1/3

75

of the total number of objects. Varying the above parameters did not have significant effects

on the quality of solution found.

Tabu Search

Tabu search [GL97] is an algorithm for guiding known heuristics to avoid getting stuck in
local optima. A structure called tabu list is used as auxiliary memory by the algorithm.
The tabu list describes a set of moves that are not permitted. This way the algorithm can
avoid revisiting solutions that were previously visited, and thus it is less probable that it
will get stuck in local minima or cycles (i.e., examining the same solutions over and over
again).

The outline of the tabu search algorithm for the COSS problem is shown in Figure 4.5.
The algorithm starts with an initial solution (lines 2 and 3), which in our implementation
is derived using the greedy heuristics we presented earlier. Then, the main loop (lines
6-11) iterates over the proposed solutions in order to pick the best one. The function
GetNewTabuSolution() (lines 15-21) selects the solution (defined in terms of the selected
objects) that will be examined during the next iteration of the algorithm. The new solution
must be a neighbour of the current solution , and can be constructed in a variety of ways.
We choose to use a greedy approach in order to select the new object to add to the solution.
The last step of the function is to make sure that the proposed solution satisfies the space
constraint (lines 18 and 19). However, this requirement is not strict. In some cases, we may
allow a solution to exceed the space limitations, but its benefit value is penalized. Then, in
subsequent iterations, we once again enforce the solution to be within the specified space
constraint.

Note that the changes that lead to the new solution cannot involve any of the objects in
the tabu list Qsqp,- In our implementation, the tabu list keeps track of the recently added
or deleted objects. Nevertheless, this restriction can be overridden when the new solution
is the best obtained so far. When the new solution is available, we update the tabu list
(line 10), and proceed to the next iteration.

Similar to the simulated annealing method, the duration of tabu search is controlled by
the user. When more time is allowed to tabu search to perform more iterations, more of
the solution space is explored. An important difference in the case of tabu search is the

selection of the next solution. It can be as simple as a random change in the current solution

76

Objective: Compute a solution (may be sub-optimal) for the COSS problem.
Input: A set U of objects, a set V' of components, a space constraint W, and the bipartite

graph G(U,V, E), where e;; € E denotes that component v; is used by object u;.

Output: A set of components S C V' to materialize.

1 procedure SolveCOSS() {

13
14}

let O = Oy; /* selected objects O C U */

let S = So; /* selected components S C V, corresponding to O */
let fimaz = 0; /* total benefit of best solution seen so far */

let Oiapy = 0; /* set of tabu objects */

while (search not finished){
Opnew =GetNewTabuSolution(O, Ozapy);
SFmaz = maz(total benefit of Opew, frnae);
0= Onew;
update Oyqpy based on the changes to O;
}
S = components needed to satisfy objects in the O corresponding to fiqz;
return(S);

15 procedure GetNewTabuSolution(O, Oygpy) {

16
17
18
19
20
21

22
23 }

let S = components needed to satisfy objects in O; /* S updated whenever O changes */
pick an object Oggmit € {U — O — Oyqpy } and insert it to O;
if (total space needed by S > W)
pick an object Ocyict € {O — Opamit — Otapbu} and remove it from O;
if (total space needed by S > W)
penalize the total benefit of O proportionally to the benefit per space ratio of Oggmit
and the amount by which W is exceeded;
return(0);

Figure 4.5: The Tabu algorithm for the solution of the COSS problem.

7

(like simulated annealing), or as involved as exhaustive enumeration. Therefore, there is a
tradeoff between the number of iterations the algorithm will execute, and the complexity
of each iteration (i.e., the reasoning power of the procedure for selecting the next solution).

In our experiments, we use a greedy algorithm to select the new solution.

4.5 Experimental Evaluation

In the following sections, we present the experiments we used to evaluate the efficiency and

behavior of the proposed algorithms.

4.5.1 Description of Experiments

For the evaluation of the algorithms, we used synthetic datasets. The number of objects in
the datasets we produced ranges from 10 to 1000. The number of components is in each
case approximately twice the number of objects, and more than half of the components help
satisfy multiple objects. In order to assign benefit values to objects and space requirements
to components, we generated random numbers following uniform, Gaussian, and Zipfian
distributions.

The benefit values drawn from the uniform distribution were between 10 and 100; the u
and o parameters for the Gaussian distribution were 55 and 18 respectively; and the skew
parameter for the Zipfian distribution was set to 1. The space requirements were between 10
and 1000 for the uniform distribution; the ;4 and o parameters for the Gaussian distribution
were 550 and 180 respectively; and the skew parameter for the Zipfian distribution was set
to 1. Note that while the choice of the distribution is relevant in our experiments, the
specific choice of the parameter values is not significant.

In the experiments, we measure the sum of the benefits of the objects that are satisfied
given the components that are selected by the algorithms. We are also interested in the
computation times of the proposed algorithms. Therefore, we report the time requirements
of the proposed solutions as the number of objects increases. In all cases, we report the
benefit of the solutions normalized by the total benefit of all the objects in the problem.
Similarly, the space constraint is normalized by the total space requirements of all the

components in the problem.

78

4.5.2 Scalability of the Algorithms

The first set of experiments examines the efficiency of the algorithms in terms of the time
required to produce the solution. Figure 4.6 shows how the run-times of the algorithms

changes as the number of objects increases. In Figure 4.6(a) we depict the tremendous

100 T T T T T T T T T
NaivePrune ——
BondEnGr -+-
BondEn -8--
80 | E
n 60 - E
=}
o
<
g
E 40 /;7
20 E
,// DTSR |
0 _& i . B T ted B AP Bt I | 1
0 50 100 150 200 250 300 350 400 450 500
Number of Objects
(a) NaivePrune and bond energy algorithms
3000 T T T T T T T T T
BondEnGr —<—
/BondEn —+--
2500 / GrSp -8--
/ GrBenSp -x-
/ GrComp -4~
GrBen -*--
_. 2000 | E
[%]
Q
5
£
£ 1500 | E
(]
£
i
1000]
500 E
L
0 PR S & I Lo I

1
0 100 200 300 400 500 600 700 800 900 1000
Number of Objects

(b) Bond energy and greedy algorithms

Figure 4.6: Scalability of the algorithms as a function of the number of objects.

difference in the computation time needed by the naive approach and the rest of the algo-
rithms. Naive, which is represented by the near vertical line at the very left of the graph, is
able to produce answers in a reasonable time-frame only for problems involving fewer than

20 objects. As shown in Figure 4.6(b) the bond energy algorithms scale more gracefully.

79

Nevertheless, when the problem size becomes large, i.e., more than 600 objects for BondEn
and more than 400 objects for BondEnGr, these algorithms require more than 24 hours to
produce a solution. Only the greedy algorithms are able to scale to thousands of objects in
our examples. The time they required was under 2 minutes in all cases we considered, that

is, in instances of the problem with up to 1000 objects.

4.5.3 Evaluating the Quality of the Solutions

In this set of experiments, we evaluate the quality of the solutions produced by the proposed
algorithms. First, we compare the quality of the solutions produced by the bond energy fam-
ily of algorithms. Figure 4.7 illustrates the benefits for the solutions produced by BondEn,
BondEnGr, BondEn-SpAll, and BondEnGr-SpAll for various values of the space constraint.

The differences among the algorithms are minimal in all cases that we considered. Observe

= 06

E’ _

2 0.5 —

%]

‘g 0.4 H |0 BondEn

o B BondEnGr
o 03 =

® O BondEn-SpAll
2 02 7| |O BondEnGr-SpAll
£

c

(7]

o

0 i

0.1 0.3 05

Space Constraint / Total
Components Space

Figure 4.7: Comparison of the bond energy family of algorithms. Benefits and space re-
quirements follow uniform distributions.

also that the greedy method of constructing the bond energy matrix (BondEnGr) in some
cases improves the quality of the solutions. However, the more involved split procedure
(represented by BondEnGr-SpAll) is only able to achieve a slightly better solution than the
simpler approach (BondEnGr) in one of the experiments (i.e., when the space constraint is
set to 0.1). Since the above algorithms perform without significant differences, for the rest
of the experiments we only demonstrate BondEn, which is the fastest among them.

In the next set of experiments, we compare the quality of the solutions of the bond energy

80

and the greedy algorithms. Figure 4.8 illustrates the normalized total benefit of the solutions
when we vary the space constraint. The three graphs correspond to the cases where the
assigned object benefits and component space requirements follow uniform, Gaussian, and
Zipfian distributions, respectively. In all three cases the graph GG, which connects objects
to components, remains the same. The best performance across all experiments is achieved
by GrBenSp, closely followed by GrSp. The BondEn and GrBen algorithms perform in the
middle range, while GrComp performs the worst. Figure 4.9 depicts the relative ordering
of the algorithms in terms of the quality of the solution they achieve when we vary the
graph G. As we move in the graph from left to right there is an increase in the average
number of objects that are connected to each component (i.e., we increase the degrees of
the component nodes in G). In all three cases the space constraint is 10% of the total space
required by all the components. The relative performance of the algorithms is identical to
the previous set of experiments, with GrBenSp being the best performer, and GrComp the

worst.

The poor performance of GrComp is explained by the nature of the algorithm, which
builds the solution one component at a time, instead of sets of components like the rest of
the algorithms. This choice restricts GrComp, and does not allow it to start accumulating
benefit until all the components related to a specific object are brought in the solution.
This explains the significantly slow rate at which the algorithm improves the solution at

the lower left part of the graph in Figure 4.8(a).

We also conducted a series of experiments where we varied the number of objects.
Figure 4.10 depicts the total benefit achieved by each algorithm. We report the results of
running the algorithms on the same graph G, where the query benefits and the component
space requirements were produced from uniform (Figure 4.10(a)), Gaussian (Figure 4.10(b)),
and Zipfian (Figure 4.10(c)) distributions. The space constraint was in all cases set to half
the total space required by all the components. These experiments show that the relative
ordering in performance for all the algorithms we consider remains the same across various

problem sizes.

In Table 4.1 we report the results of the experiments with SimAn and Tabu. We use
the solution provided by GrBenSp as the base solution, and report the improvement on

this solution achieved by each one of the two algorithms. That is, for SimAn and Tabu, we

81

Benefit / Total Objects Benefit

0 A S I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Space Constraint / Total Components Space

(a) Benefits and space requirements follow uniform distributions

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Benefit / Total Objects Benefit

0.2

0.1

04 TR 1 1 1 1 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Space Constraint / Total Components Space

(b) Benefits and space requirements follow Gaussian distributions

Benefit / Total Objects Benefit

0 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Space Constraint / Total Components Space

(c) Benefits and space requirements follow Zipfian distributions

Figure 4.8: Quality of the solution of the algorithms, when varying the space constraint.

82

03

&
2
o 025
m
g 0.2 1 O GrBenSp
T B Grsp
O 015 1 O BondEn
% O GrBen
Ly 0.1 H W GrComp
g
2 0.05
Q
m

g+ . .

1.1 1.4 2.4

Average degree of components

Figure 4.9: Quality of the solution of the algorithms, when varying the bipartite graph G.

report the ratio

(total benefit of SimAn or Tabu solution) — (total benefit of GrBenSp solution)
total benefit of GrBenSp solution

The initial solution for both SimAn and Tabu is provided by GrBenSp, and this is also the
method used by Tabu to select solutions at each iteration. We experimented with varying
the number of objects and the space constraint. In all the experiments we allowed the
algorithms to run an equal amount of time to the time required by GrBenSp to produce

the solution.

Unlike SimAn, Tabu was able to improve on the initial solution in all the cases tested.
We believe that the reason Tabu outperforms SimAn is because the solution space is too
large, and this makes it extremely difficult for SimAn to move to the correct direction.
Remember that SimAn moves in the solution space by selecting at random one of the
numerous solutions that are neighbors of the current solution. On the other hand, the
Tabu algorithm directs its search in the solution space more effectively, because it employs
a more structured way of taking steps at each iteration. We should note here that when we
turned off the tabu list functionality the performance of the algorithm deteriorated. This
indicates that Tabu is indeed making well-calculated moves, and that the tabu list enables

the algorithm to avoid local minima and explore new areas in the solution space.

83

45000 T T T T T T T T

GrBenSp <— |
40000 '

35000

30000

25000

20000

Total Benefit

15000

10000

5000

0
100 200 300 400 500 600 700 800 900 1000
Number of Objects

(a) Benefits and space requirements follow uniform distributions

35000

30000

25000

20000

Total Benefit

15000

10000

5000

0
100 200 300 400 500 600 700 800 900 1000
Number of Objects

(b) Benefits and space requirements follow Gaussian distributions

35000 T T T T T T T T
GrBenSp —<—

30000

25000

20000

15000

Total Benefit

10000

5000

0 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000
Number of Objects

(c) Benefits and space requirements follow Zipfian distributions

Figure 4.10: Quality of the solution of the algorithms, when varying the number of objects.

84

GrBenSp | SimAn | Tabu

objects | constraint
100 0.5 1 1.012 | 1.012
250 0.5 1 1 1.003
500 0.5 1 1.003 | 1.003

(a) Varying the number of objects

GrBenSp | SimAn | Tabu

objects | constraint
250 0.1 1 1 1.05
250 0.8 1 1 1.002
250 0.5 1 1 1.003

(b) Varying the space constraint

Table 4.1: Improvement in the GrBenSp solution by SimAn and Tabu.

An interesting observation is the fact that both SimAn and Tabu improve the solution
only by a small amount (less than or equal to 5% for the cases we tested). A natural
question then is how close to optimal is the solution provided by GrBenSp in the first place.
Unfortunately, it is not easy to find the optimal solution for the experiments we presented,
because the size of the problem is prohibitively large. Therefore, we conducted a series of
experiments where the number of objects was set to 10, for which we could get the optimal
solution. This allows us to compare the solutions provided by the algorithms to the optimal
solution. The results of these experiments are depicted in Figure 4.11. The graphs show
the benefit of the solutions produced by GrBenSp and Tabu normalized by the benefit of
the optimal solution (which is always 1). In the graph shown in Figure 4.11(a) we vary the
space constraint. In Figure 4.11(b) each point in the graph represents an experiment with
a different graph G connecting objects to components. As we move in the graph from left
to right there is an increase in the average number of objects that are connected to each
component. The left-most point in the graph corresponds to the case where each component
is connected to a single object, and the problem degenerates to the Knapsack problem.

Note that in many settings in both graphs GrBenSp finds a solution very close to opti-
mal. Though, there are also cases where it achieves slightly more than half the benefit of the
optimal. These experiments indicate that the GrBenSp algorithm is in many circumstances

effective at finding near-optimal solutions. This explains the fact that SimAn and Tabu

85

= 12
B
=
d 1
S ; :
E 0.8
@ 06 —x— GrBenSp
E ' —e—Tabu
s 04
]
= 02
1]
c
@ O ;

0.1 0.3 0.5 0.7 09

Space Constraint / Total
Components Space
(a) Varying the space constraint
12
£
g 1
m
c
S o0s ; ‘ f
=
& \ / —%—GrBenSp
— 06 ik
E —s—Tabu
2 04
o]
& 02
c
@
0+ """T
1 1.2 1.5 2 3
Average degree of components

(b) Varying the bipartite graph G

Figure 4.11: GrBenSp and Tabu compared to optimal.

86

could not find much better solutions than the greedy algorithm in our previous experiments
(see Table 4.1). Nevertheless, the graphs show that the Tabu algorithm is able to improve
upon GrBenSp, and find a very good solution in most of the cases where GrBenSp performs

poorly.

4.6 Discussion

In the following paragraphs, we investigate in more detail some properties of the algorithms.
These are properties relevant to the ability of the algorithms to provide high quality solutions
under different circumstances. More specifically, we examine the behavior of the proposed
solutions when the space constraint is not a strict one. That is, when a solution that uses
a little bit more of space is acceptable. Furthermore, we try to quantify the quality of the
solutions in some worst case scenarios, when compared to the optimal solution. This analysis
indicates how poor the performance of the algorithms can become under certain conditions.
Finally, we conclude by summarizing the benefits and drawbacks of each approach, and by

providing a practical guide for selecting among the proposed solutions.

4.6.1 Soft Space Constraints

So far we have made the assumption that the space constraint is a fixed number given in the
input of the COSS problem, and the algorithm that provides the solution is not supposed
to violate this constraint. However, it is not always the case that a strict space constraint is
what we are after. Often, the space constraint is merely an indication or approximation of
the amount of space that is available. In such cases, we may allow the solutions produced
by the algorithms to exceed the space constraint by a small amount. Since we cannot
easily quantify what a suitable small amount would be in each case, it is left to the user to
examine the solutions, and decide whether the increase in benefit justifies the larger space
requirements.

We now describe how we can change the algorithms in order to operate in this envi-
ronment. The goal is to alter the algorithms so that they incrementally produce solutions

which occupy more space and, naturally, have larger total benefit.

Bond Energy: The bond energy algorithms cannot readily provide the new solution,

because they have to rerun the Split procedure (see Figure 4.2), which determines

87

which components should be in the solution. Running the Split procedure each time
we allow more space for the solution is an expensive operation, requiring time O(|V|?).
Each new solution is not necessarily a superset of the previous one, since we select

the components from scratch.

Greedy: It suffices to change the condition in line 4 (see Figure 4.3), which checks whether
the solution satisfies the space constraint. Once we remove this condition, the greedy
algorithms can produce with linear complexity at each iteration a new solution with
increased space requirements. At each step we are only adding new objects or com-
ponents, thus, we get a solution that is a superset of the solution of the previous

iteration.

Simulated Annealing: In this case we only need to remove the conditions in lines 25
and 27 (see Figure 4.4) that check if the current solution requires space more than
the space constraint. Since the process of forming a solution involves a randomization

step, there is no guarantee that the new solution will be a superset of the old one.

Tabu Search: Similar to simulated annealing, the only change is to remove the condi-
tions of lines 18 and 20 (see Figure 4.5). Once again, the solutions produced by the

algorithm are not guaranteed to be supersets of the previous solutions.

In the following section, we focus on the greedy algorithms. More specifically, we exam-
ine the performance of these algorithms (in terms of the quality of solutions) in relation to

the performance of the greedy solution for the Knapsack problem.

4.6.2 On the Optimality of the Greedy Solutions

As we have already discussed, the COSS problem degenerates to the Knapsack problem
when each component satisfies at most one object. In this case, we can consider the set of
components required by each object as a single super-component, and attach to it a space
requirement equal to the sum of the space requirements of the corresponding components.

We can also show that the following theorem holds.

Theorem 4.2 Consider the Knapsack problem with n objects. Let the space constraint W
be equal to the space needed by the i objects, 1 < ¢ < n, with the highest benefit per space

88

ratio. In this case the greedy algorithm that chooses items based on their benefit per space

ratio finds the optimal solution.

Proof: Figure 4.12 illustrates a linear ordering of the n objects according to their benefit

per space values. We name u; the object that has the highest benefit per space ratio,

[[[[[[[|
Space 0 wi Wy Wi W Wis1 Wpa Wy

Figure 4.12: A linear ordering of n objects for the Knapsack problem.

and u, the object that has the lowest. This linear ordering represents the order in which
the greedy algorithm will select objects to insert in the solution. Assume that we set the
space constraint to W = wyg1, which is the total space required by the first k 4+ 1 objects.
Then we solve the Knapsack problem using this space constraint. We know that the greedy
algorithm that chooses items based on their benefit per space ratio is optimal (in benefit)
for the fractional Knapsack problem [CLRS01]. Observe though, that in our case the space
constraint is carefully set so that all the selected objects will fit exactly in the available
space, and none will need to be divided. (Remember that the greedy algorithm will select
the objects from left to right, in the order they appear in Figure 4.12.) Note that the same
is true for all the choices of W = w;, where 1 < i < n. Therefore, the greedy algorithm
that chooses items based on their benefit per space ratio is also optimal for the Knapsack
problem when the space constraint is set to w;, where 1 <14 < n. m|

This theorem is interesting in our context. It says that, when we can relax the space
constraint, we can solve the Knapsack problem using the greedy benefit per space algorithm,
stop after selecting any number of items, and we are guaranteed that the solution we have
is optimal for the amount of space used. Given the above analysis, a question that arises
naturally is whether this optimality property carries over to the C'OSS problem and the
corresponding algorithm GrBenSp.

Unfortunately, the answer is negative. The reason is that unlike Knapsack, in the
COSS problem each component may help satisfy more than one object. The result of these
interdependencies is that a solution that is optimal for some space constraint Wy is not
necessarily a subset of the optimal solution for a space constraint Wy > Wi. Consequently,

there is no linear ordering of the objects in the sense depicted in Figure 4.12. Hence,

89

the optimality property of the greedy algorithm does not hold for the COSS problem.

Theorem 4.3 formally states this observation.

Theorem 4.3 The COSS problem does not have the optimality property. That is, the
optimal solution for some space constraint Wi is not necessarily a subset of the optimal

solution for a space constraint Wy > Wh.

Proof: We prove this theorem using a counter-example. Consider the instance of the

COSS problem depicted in Figure 4.13. We indicate the benefit of each object and the

objects components
(benefit) (space)
Vi
2
U
@) v,
(6)
L
(C)
V3
(4)
Uz
®) v,
(4)
Uy
(C)
Vs
(4)

Figure 4.13: Counter-example that demonstrates the fact that for the COSS problem, the
optimal solution for one space constraint value is not necessarily a subset of the optimal
solution for larger space constraint values. The numbers in parentheses indicate the benefit
and required space of the objects and components respectively.

space requirements for each of the components by the numbers in parentheses below the
names of the objects and components. Assume that the space constraint is W; = 12 units.
Then, the optimal solution for this particular instance of the COSS problem is the set of
objects O1 = {ug,us} with total benefit 17 units. Now let the space constraint be W, = 16
units. In this case, the optimal solution is composed of the set of objects Oz = {u1,ug2,us}
with total benefit 24 units. We observe that the optimal solution O is not a superset of

01, even though the space constraint Wy is greater than Wj. O

90

4.6.3 Analysis of the Greedy Algorithms

In this section, we present theoretical results on the behaviour of the greedy algorithms
when compared to optimal. These results are interesting, because they indicate what the
worst performance of the algorithms might be, and they can help us choose among those
algorithms.

In the following figures, we illustrate examples where the algorithms perform poorly in
terms of quality of the solution. The benefit of each object and the space requirements for
each of the components are indicated by the numbers in parentheses below the names of
the objects and components. In all cases b represents a measure of the objects’ benefit,
while the space constraint is set to W units. We assume that b and W take values from the

domain of positive integers Z+.

Theorem 4.4 In the worst case, the GrComp algorithm provides a solution that is at least

(% — 1)b times worse than the optimal solution, for any b > 0 and W > 3.

Proof: In the instance of the COSS problem depicted in Figure 4.14, GrComp will first
select component v1, because the selection of no component will yield any benefit, and v,
has the minimum space requirements among all the components. Subsequently, it will select
component vy in order to get the benefit from satisfying object ug, for a total benefit of 1.
After that there are no more objects that can be satisfied, since the total space required
by the set of the selected components, i.e., {v1,v2}, is equal to the space constraint W.
On the contrary, the optimal algorithm will select the components {vs, ..., vy o_1} (W/2
components in total), for a total benefit of (¥ — 1)b. Therefore, GrComp can be (% —1)b

times worse than the optimal solution. O

Theorem 4.5 In the worst case, the GrBen algorithm provides a solution that is at least

(W-1)(1- %) times worse than the optimal solution, for any b > 0 and W > 2.

Proof: InFigure 4.15, we give an example for GrBen. In this case the algorithm will accept
object ug in the solution, because it has the highest benefit value among all the objects.
The space required by wug, or equivalently {v1,v2}, is W. Then the algorithm terminates,
since it will have used up all the available space. The benefit for this solution is b. The

optimal solution includes the objects {u1,...,uw_1}, for a total benefit of (W —1)(b — 1).

91

objects components

(benefit) (space)
Vi
@)
Uo
M v,
(W-1)
A&
e
uj
(b) v
v
us
(b) .
Uwyz- 1§
(b) Viwy2+2
e

Figure 4.14: Example scenario for GrComp. The numbers in parentheses indicate the
benefit and required space of the objects and components respectively.

This means that the solution of GrBen can be (W —1)(1 — %) times worse than the optimal

solution. O

Theorem 4.6 In the worst case, the GrSp algorithm provides a solution that is at least

1.33b times worse than the optimal solution, for any b > 0 and in the limit as W — oo.

Proof: For the GrSp algorithm consider the scenario depicted in Figure 4.16. The
algorithm will select the objects {u1, ... ,uw/g}. The components needed to satisfy these
objects have the lowest space requirements, i.e., they occupy space of 2 units per object.
In contrast, all the rest of the objects require space of 3 units each. The selected objects
are W/2 altogether, they yield a total benefit of W/2, and the corresponding components
occupy all the available space W. The optimal solution in this case is comprised of the
objects {up/a11;---,Uw/atowy3—1}- The number of the selected objects is (% — 1), and
their total benefit is (% — 1)b. Thus, GrSp can be %b times worse than optimal.
For sufficiently large values of W the above quantity is approximated by 1.33b. O

Theorem 4.7 In the worst case, the GrBenSp algorithm provides a solution that is at least

1.77 times worse than the optimal solution, in the limit as b — oo.

92

objects components

(benefit) (space)

V1
(W/2)

Uo

(b) Vo
(W/2)
A&
@)

usg

(b-1) Vs
@)

uz

(b-1) .

Uw-1 Q

(b-1) Viv+2

@)

Figure 4.15: Example scenario for GrBen. The numbers in parentheses indicate the benefit
and required space of the objects and components respectively.

Proof: Consider the example illustrated in Figure 4.17, for which we assume that the
space constraint is W = 2b. During the first iteration the GrBenSp algorithm will select
object ug, because it has the largest ratio of benefit per space required by the corresponding
components, which are {v3,vs}. This ratio is 1 for ug, and less than 1 for all the other
objects.

In the next iteration the object u4 is selected. Note that in order to satisfy w4 only
the component vy is needed, since vy was selected in the previous iteration. The object
uy 18 selected because its benefit per space ratio, 5%—‘};2, is higher than the one of ug, which
requires component v9, and has a ratio of %. The other two choices have lower ratios, as

well. The object u1, which requires components {v1,v2}, has a ratio of %, and object us,

. . . 1
which requires components {vs, s}, has a ratio of 3.

In the third iteration the algorithm selects object us, which now only needs component

vg, since v is already selected. Observe that the benefit per space ratio of this choice (%)

is not better than the ration of u; (I’_Tl). However, it is the only viable choice at this point,
because the remaining available space is just b/2.

In summary, the GrBenSp algorithm selects the set of objects {us,us,us}, and the

93

objects components

(benefit) (space)
Vi
1)
uj
e

Vo
@)

Vw-1

@

Uwr2

@

Vw
@)
Vw+1

@

Uw/2+1

(b)

Vw+2

@

Uw/2+2
(b)

A A

Uwy/2+2w/3-2

(b)

Vow/3-1

@

Uwyr2+2w/3-1

(b)

M\

Vow/3

@

Figure 4.16: Example scenario for GrSp. The numbers in parentheses indicate the benefit
and required space of the objects and components respectively.

corresponding components {vs, v4,vs,vg}, which occupy space 2b = W. The total benefit

of this solution is IH’T+8.

The optimal solution for this example consists of the set of objects {u1,us,us}. The

required components occupy all the available space W, and the total benefit of the solution
is 1308,

39b—24
22b+16

Therefore, the solution of GrBenSp can be times worse than optimal. For suffi-

ciently large values of b the above quantity is approximated by 1.77. O
4.6.4 Choosing Among the Alternatives

The experiments demonstrate that the bond energy algorithms perform worse than some

of the greedy approaches. At a first glance this is a rather surprising result, given that the

94

objects components

(benefit) (space)
Vi
(b/4)
Uy
(b-1) v,
(3b/4)
5]
(5b/4-1)
V3
(b/2)
U3
(b) vy
(b/2)
Uy
(2/3(5b/4-1)+1)
V5
(b/2)
Us
Q) Ve
(b/2)

Figure 4.17: Example scenario for GrBenSp. The numbers in parentheses indicate the
benefit and required space of the objects and components respectively.

BondEn algorithms have higher complexity and seem to make choices with greater care.
However, we observe that all the decisions that BondEn makes are based on just pairs of
components, despite the fact that in many cases it is a larger number of components that are
interrelated. This prevents BondEn from capturing the true, more complex, associations
inherent in the problem, narrows the information upon which the algorithm operates, and
leads to poor decisions. Thus, BondEn should not be the algorithm of choice, especially
since it does not scale as well as the greedy algorithms.

The greedy approaches are better than the bond energy algorithms for another reason
as well. They are able to incrementally compute a new solution when the space constraint is
soft (see Section 4.6.1). This is an important factor in the selection of the algorithm, since
it removes the requirement of a hard space constraint, and gives the user the flexibility to
choose among a range of slightly different space requirements which may lead to solutions
with significant variations in the benefit values.

The distinction among the greedy algorithms is quite clear between the best (GrBenSp
and GrSp) and the worst (GrBen and GrComp) performers (see Figures 4.8 and 4.9).

However, it is not clear whether GrBenSp or GrSp is a better choice, since they both have

95

the same time complexity and provide solutions of similar quality.

In order to answer the above question we have to turn our attention to the analysis
presented in Section 4.6.3. This analysis shows that three of the greedy approaches we
examined, including GrSp, may perform arbitrarily poorly under certain circumstances.
The same does not seem to be true for the GrBenSp algorithm. We believe that GrBenSp
is a better choice in this sense, since it avoids making poor decisions that lead to solutions
very far from optimal.

Finally, we should note that Tabu can in many cases improve on the solution provided
by the greedy algorithms. Therefore, it is beneficial to run this algorithm when the time

allows it.

4.7 Related Work

In the problem of view selection for data warehouses [HRU96|, we want, given a space
constraint, to materialize a set of views in order to minimize the response time of queries
to the data warehouse. In this case, however, by selecting one of the views required by
a query we get a fraction of the associated benefit. A subsequent study shows that the
heuristics for the view selection problem do not provide any competitiveness guarantee
against the optimal solution [KM99], and proposes the experimental comparison of the
available algorithms. Many other studies [Gup97, TS97, YKL97, BPT97] deal with the
view selection problem as well.

A similar optimization problem appears in the context of database design under the
name of vertical partitioning [NCWD84, NR89]. In this domain the problem can be stated
as follows. We have a set of applications accessing relations in a database. Each application
accesses a particular set of attributes in the relations. Each attribute requires a certain
amount of space (to store all the values of the attribute in the relation), and may be
used by more than one application. There is a memory hierarchy, where each level in the
hierarchy has a storage capacity and different access times (e.g., main memory, local disk,
network disk). We want to find an allocation of the attributes to the memory hierarchy so
as to minimize the execution time of the applications. Similar to the view selection problem,
partial benefits are credited, which is not appropriate for our case.

The COSS problem is part of a family of optimization problems known as the Weighted

96

Constrained Maximum Value Sub-Hypergraph problem, and the studies show that even
simple instances of the problem do not yield to polynomial time solutions [NY97]. We are
not aware of any algorithms proposed for the COSS problem in that area.

The COSS problem in the form that is presented here has also appeared in the domains
of view selection for approximate querying in datacubes [PKO1], and profile-driven data
management [CFZ01b]. However, the solution of the optimization problem was not studied.
All the algorithms described in this paper can be applied for the solution of the problem in

the above domains.

4.8 Conclusions

Space constrained optimization problems are still significant despite the advances in storage
technologies. The tremendous amount of information produced every day, as well as the
limited capacities of certain mobile devices, confirm the need for efficient solutions to such
optimization problems.

In this chapter we focus on the specific problem of COSS, where benefit values are
associated with sets of items, instead of individual items. This optimization problem ap-
pears in various domains, such as data warehouses and pervasive computing. We derive the
complexity of this problem, and propose several algorithms for its solution.

We present an experimental evaluation of the algorithms that illustrates the relative
performance of the different approaches, and demonstrates the scalability of the greedy
solutions. We also identify cases where some of the greedy algorithms perform poorly, and

experimentally demonstrate that GrBenSp is a practical solution for the COSS problem.

97

98

Chapter 5

Case Study

In this chapter, we demonstrate how the techniques presented in Chapters 3 and 4 can be
combined in a single case study over a real dataset. Namely, we start by considering a
workload of queries, which are the input to the COSS problem, as described in Chapter 4.
The output of the COSS problem is the set of selected queries. These queries specify the
regions of the entire dataset that will be estimated with the maximum accuracy. To this
end, we materialize the highest order marginals that correspond to each one of these regions,
according to the discussion in Chapter 3. Then, in order to be able to answer any other
query that asks for values in the dataset that fall outside the selected regions, we will also
materialize the lowest order marginals (i.e., marginals of order one) for the entire dataset.

Evidently, since we are targeting the set of selected regions in the dataset, we expect to
achieve better accuracy in estimating any query that asks for values inside those regions.
Nevertheless, by storing the marginals of order one for the entire dataset as well, we are able

to answer approximately any query, regardless of which values in the dataset it involves.

5.1 Description of Experiments

5.1.1 Dataset

For all the experiments in the case study described in this chapter we used the census_ 50K
dataset, which is a multidimensional dataset from the U.S. Census Bureau. It contains four
dimension attributes, namely, information about age, education, command of English, and

number of children of individuals. The measure attribute is the income of the individuals.

99

The size of the dataset is 50,000 tuples. Table 5.1 summarizes the statistical properties of
this dataset.

dataset min max mean std.dev. | skew
census_50K | 1000.00 | 196623.00 | 24879.75 | 23316.54 | 3.62

Table 5.1: The statistical properties (min, max, mean, standard deviation, and skew) for
the real dataset census_50K.

5.1.2 Query Workload

In this case study, we use synthetically generated query workloads in order to specify selected
regions in the dataset!. All the regions defined by the queries in the workload are 4-
dimensional hyper-rectangles. The query workloads are generated according to the following
steps. These steps determine 1—dimensional intervals that each correspond to a single side
of the hyper-rectangle.

First, we set the left point of the interval by picking a number uniformly at random in
the domain of the dimension attribute. Then, we draw a number from a Zipfian distribution,
that, when added to the left point of the interval, determines the right end of the interval.
Finally, we make sure that the interval is no longer than 1/3 the cardinality of the dimension

attribute, and that it lies within the domain of the dimension attribute.

5.1.3 Error Metric

The error metric that we report in the experiments is the Root Mean Square Error (RMSE),
which is defined as

R \/ziil (%~ ¥3)?
N 7

where Y; represents the original values in the dataset, Y; the corresponding estimated values,
and N is the total number of values in the dataset.
The error is computed as follows. We wish to estimate all the values in the dataset.

For each value, we check whether it is contained in any of the selected regions, for which

'Previous work [HHK99] has considered more elaborate schemes for generating query workloads. However,
these schemes were specifically developed for testing 2-dimensional indices, and are not expected to affect
the outcome of our experiments.

100

we have stored the marginals of the highest order. If it is contained then we estimate the
value based on these marginals. Otherwise, we estimate the value based on the marginals
of the lowest order, which we have stored for the entire dataset. It may be the case that
some value is contained in more than one selected region, and therefore, can be estimated
based on different sets of marginals. We resolve these situations by choosing to estimate the
value from the selected region containing this value that we encounter first. In Section 5.2
we show that this choice does not play a significant role in our experiments. Note that we

estimate the values, and measure the error of the estimation for all N values of the dataset.

5.1.4 Confidence Intervals

Each of the experiments we report was run 30 times, and each time we used a different seed
for the random number generator. This resulted in different sets of workloads, which in
turn defined different selected regions in the dataset. All the results that we report in the
following section are averages of those 30 runs. For the error metric, we also show in the
graphs the corresponding confidence intervals.

The level of confidence for the values we report in the experiments is o = 0.95, or 95%.
The confidence intervals were calculated as follows. Let u be the mean value of the series
of numbers for which we wish to calculate the confidence interval. Let ¢ be its standard
deviation, and let K be the cardinality of the series of numbers, which in our case is 30.

Then, the confidence interval is defined as

g
£2 (7).,
7 NG
where Z is the value corresponding to an area of (1 —«)/2 from the center of a standardized

normal distribution. For o = 0.95, the value we have picked, Z becomes Z = 1.96 [Kan93|.

5.2 Results

5.2.1 Properties of Selected Regions

In the first set of experiments, depicted in Figure 5.1, we measure the number of tuples
contained in the selected regions (depicted in light color) as a function of the space required

for storing the marginals of the selected regions. The number of tuples in the graph are

101

Otuples from selected
regions
W overlapping tuples

% of dataset tuples

. -
0{ - |

1.2 2.4 3.6 4.8 7.1

% of dataset space

Figure 5.1: The percentage of the number of tuples in the dataset that are contained in the
selected regions, and the percentage of the number of tuples in the dataset that overlap.
These measures are reported as a function of the percentage of the dataset space that is
occupied by the materialized marginals.

reported as a percentage of the total number of tuples in the dataset (which is 50,000), and
the space occupied by the marginals as a percentage of the space required by the dataset.
Each set of bars actually represents an experiment with a different set of selected regions.
Note that for the five cases we report in the experiments, the selected regions in each case
are a subset of those in the next larger case.

Remember that the query workload which defines the selected regions of the dataset is
produced randomly, and we do not force the selected regions to be disjoint. When two, or
more, selected regions overlap, this means that we have the choice to estimate the value of
the measure attribute for the overlapping tuples from the information we have stored for
any of these selected regions. The graph of Figure 5.1 shows that the number of tuples of
the dataset that belong to more than one selected region (shown in dark color) is negligible
compared to the total number of tuples in the selected regions. Therefore, we can safely
assume that this parameter of the problem does not affect the outcome of our experiments

significantly.

5.2.2 Queries on Detailed Values

In Figure 5.2 we depict the reduction in the error of the estimation for different sets of

selected regions of increasing cardinality. The basis for computing the reduction of the

102

25

ol]

15 7 O RMSE for entire dataset

B RMSE for selected
10 7 regions
5 |
0
1.7 3.2 4.1 4.9 6.9

% of dataset tuples

% reduction of

Figure 5.2: The percentage of the error reduction when estimating all the values in the
dataset, and when estimating only the values contained in the selected regions. These
measures are reported as a function of the percentage of the dataset tuples that is covered
by the selected regions. We also depict the corresponding confidence intervals. The absolute
RMSE values for the experiments shown in this graph are reported in Table 5.2.

selected queries on entire dataset queries on selected regions
T€gIoNs
from overall lowest | with selected highest || from overall lowest | with selected highest

1.7 19577 19557 16662 14410
3.2 19577 19536 17515 15787
4.1 19577 19522 17727 15967
4.9 19577 19509 17644 15802
6.9 19577 19482 17106 15330

Table 5.2: The absolute RMSE values for the experiments shown in the graph of Figure 5.2.
These values are the means over the 30 runs of each experiment.

error are the estimates provided by the marginals of order 1, which correspond to the
independence assumption. The graph shows the observed error reduction as a percentage,
for both the error over the entire dataset, and the error over the values contained in the

selected regions.

Evidently, the benefit of storing the marginals for the selected regions is entirely absorbed
by the values contained in these selected regions. The rest of the values in the dataset do
not benefit. Thus, when the reduction in the estimation error of the values in the selected
regions is spread over the entire dataset, as depicted by the light colored bars in the graph

of Figure 5.2, it becomes negligible.

103

We should note here, that the significantly higher error reduction for the first set of
selected regions (leftmost dark bar in the graph) is caused by a small number of queries,
whose values are approximated exceptionally well. The reduction of the error for the rest of
the cases is slightly more than 10%. The fact that this error reduction remains steady across
the different sets of selected regions, even though the space dedicated to the marginals is
increasing, is not surprising. The additional marginals are related to a new, different, set
of values in the dataset. Therefore, we should not expect them to reduce any further the
estimation errors of the old set of values.

Nevertheless, as we show in Figure 5.3, the overall error is steadily diminishing when

we materialize more marginals. This graph illustrates the reduction of the error for the

0.6

0.5 jﬁ

4w 0.4 —

S % RMSE f ti
= 1 BE or entire
3 03 ‘T‘ dataset

L

® 02 TL —

0.1 T —
0.0
17 32 41 49 6.9

% of dataset tuples

Figure 5.3: The percentage of the error reduction when estimating all the values in the
dataset, as a function of the percentage of the dataset tuples that is covered by the selected
regions. We also depict the corresponding confidence intervals. The absolute RMSE values
for the experiments shown in this graph are reported in Table 5.3.

selected queries on entire dataset
T€gI0NS
from overall lowest | with selected highest

1.7 19577 19557

3.2 19577 19536

4.1 19577 19522

4.9 19577 19509

6.9 19577 19482

Table 5.3: The absolute RMSE values for the experiments shown in the graph of Figure 5.3.
These values are the means over the 30 runs of each experiment.

104

entire dataset as a function of the tuples covered by the selected regions. This confirms the
intuition that when we use more space to store marginals in order for the selected regions
to cover more tuples of the dataset, we should expect a reduction of the overall estimation
error.

In the following experiments we compare the error reduction in estimating the values
contained in the selected regions (Figure 5.4), and all the values in the dataset (Figure 5.5),
when we employ the marginals of order 1 and order 3 of the selected regions. The marginals
of order 1 are the lowest order marginals, and in the graphs are depicted with the light
colored bars, while the marginals of order 3 are the highest order, and are depicted with

the dark colored bars. Figure 5.4 shows that the reduction in the estimation error when

25

20

15 A O RMSE for selected
regions, from lowest

B RMSE for selected
10 4 regions, from highest
5 i T T T
Q- T T T
1.7 32 4.1 4.9 6.9

% of dataset tuples

% reduction of

Figure 5.4: The percentage of the error reduction when estimating only the values contained
in the selected regions, by using the marginals of order 1 and order 3. These measures are
reported as a function of the percentage of the dataset tuples that is covered by the selected
regions. We also depict the corresponding confidence intervals. The absolute RMSE values
for the experiments shown in this graph are reported in Table 5.4.

we use the marginals of order 3 is up to three times larger than when using the marginals
of order 1, for values in the selected regions only. When we consider all the values in the
dataset, then the benefit is not as pronounced (see Figure 5.5). In this case, the error
reduction is approximately twice as large when we use the marginals of higher order. This
improvement in the estimation accuracy comes at the expense of space, since the marginals
of order 3 require about 50 times more space than those of order 1. Clearly, we have to take
into account this tradeoff when deciding whether the added accuracy, that the marginals of

higher order offer, is needed.

105

selected queries on selected regions queries on selected regions
T€gI0NS

from overall lowest | with selected lowest || from overall lowest | with selected highest
1.7 16662 15311 16662 14410
3.2 17515 16739 17515 15787
4.1 17727 16982 17727 15967
4.9 17644 16885 17644 15802
6.9 17106 16416 17106 15330

Table 5.4: The absolute RMSE values for the experiments shown in the graph of Figure 5.4.
These values are the means over the 30 runs of each experiment.

0.6

05 T
B 04
5 I RMSE for entire
B g3 T dataset, from lowest
§ ’ B RMSE for entire
= dataset, from highest
& 0.2 +

0.1 1

0.0 : : :

1.7 3.2 41 49 89

% of dataset tuples

Figure 5.5: The percentage of the error reduction when estimating all the values in the
dataset, by using the marginals of order 1 and order 3. These measures are reported as
a function of the percentage of the dataset tuples that is covered by the selected regions.
We also depict the corresponding confidence intervals. The absolute RMSE values for the
experiments shown in this graph are reported in Table 5.5.

5.2.3 Aggregate Queries

In our discussion so far, we have only considered the case where we are interested in esti-
mating all the detailed values specified by a query. The error metric has been calculated
accordingly, by measuring the difference between the estimate and the real value for each
one of the detailed values individually.

In the next set of experiments, we consider another important class of queries, namely,
the aggregate queries. For this class of queries, we are interested in a single value only:
the aggregate of all the values specified by the query. Then, the error is calculated on the

estimate of the aggregate and the real aggregate value.

106

selected queries on entire dataset queries on entire dataset
T€gI0NS

from overall lowest | with selected lowest || from overall lowest | with selected highest
1.7 19577 19568 19577 19557
3.2 19577 19560 19577 19536
4.1 19577 19555 19577 19522
4.9 19577 19550 19577 19509
6.9 19577 19541 19577 19482

Table 5.5: The absolute RMSE values for the experiments shown in the graph of Figure 5.5.
These values are the means over the 30 runs of each experiment.

For the following experiments, we produced a query workload of 5,000 queries, by em-
ploying the same method we used to produce the selected regions, as described earlier. We
used the same sets of selected regions as before, and repeated each experiment 30 times.
The results on the errors we report are over the 5,000 aggregate queries, and then averaged
over the 30 repetitions of each experiment. The error metric we use is once again the RMSE.

Figure 5.6 depicts the reduction in the error when estimating aggregate queries, and

when we use the marginals of order 3 for the selected regions. @~ We measure the error

100 ~

90 ~

80 ~

70 A

60 E Agg RMSE for entire
50 - dataset

B Agg RMSE for selected

40 regions

30 ~

20 A

10 -

0 -

1.7 32 4.1 4.9 6.9

% of dataset tuples

% reduction of

Figure 5.6: The percentage of the error reduction when estimating the aggregate value of
subsets of the entire dataset, and subsets of the selected regions only. These measures are
reported as a function of the percentage of the dataset tuples that is covered by the selected
regions. We also depict the corresponding confidence intervals. The absolute RMSE values
for the experiments shown in this graph are reported in Table 5.6.

reduction for aggregate queries over the entire dataset (light colored bars), and over the

selected regions only (dark colored bars). In the latter case, we simply consider the portion

107

selected aggregate queries on entire dataset aggregate queries on selected regions
T€gI0NS

from overall lowest | with selected highest || from overall lowest | with selected highest
1.7 761268 741431 80178 327
3.2 733327 712434 97210 416
4.1 694062 670774 102492 487
4.9 670111 646311 104874 495
6.9 667404 635354 120110 755

Table 5.6: The absolute RMSE values for the experiments shown in the graph of Figure 5.6.
These values are the means over the 30 runs of each experiment.

of each query that overlaps with some selected region, and we compute the aggregate value
of this portion. (In each of the experiments we ran, there were approximately 1,000 queries
overlapping with the selected regions.) The graph shows that the estimates produced for the
aggregate queries over the selected regions is almost perfect (the error reduction is slightly
less than 100%). The reason why the estimates are so accurate, is because in the general
case, when estimating the values of a dataset, we expect to have an almost equal number
of under-estimates and over-estimates, which will cancel each other out when we compute
the aggregate value.

Even when we consider aggregate queries over the entire dataset, we still get significantly
more accurate estimates. As Figure 5.7 shows, the error reduction for aggregate queries over

the entire dataset is approximately 2.5%-5% for the selected regions we considered. This

selected aggregate queries on entire dataset
T€QgIONS
from overall lowest | with selected highest

1.7 761268 741431

3.2 733327 712434

4.1 694062 670774

4.9 670111 646311

6.9 667404 635354

Table 5.7: The absolute RMSE values for the experiments shown in the graph of Figure 5.7.
These values are the means over the 30 runs of each experiment.

reduction is 10-25 times larger than for queries on the detailed values (see Figure 5.3).
In the last experiments, we evaluate what the added benefit of using marginals of order

3 for the selected regions is, as compared to marginals of order 1. Figure 5.8 compares the

108

6.0

s 4.0
g
3 30 | [| | /mAgg RMSE for entire
a dataset
e
X 2.0 + 1
10 M
0.0 T

1.7 32 4.1 4.9 6.9
% of dataset tuples

Figure 5.7: The percentage of the error reduction when estimating the aggregate value of
subsets of the entire dataset. These measures are reported as a function of the percentage of
the dataset tuples that is covered by the selected regions. We also depict the corresponding
confidence intervals. The absolute RMSE values for the experiments shown in this graph
are reported in Table 5.7.

reduction in the error of aggregate queries over the selected regions, when using marginals

of order 1 (light colored bars) and order 3 (dark colored bars). The marginals of order

selected aggregate queries on selected regions aggregate queries on selected regions
regions
from overall lowest | with selected lowest || from overall lowest | with selected highest

1.7 80178 18530 80178 327

3.2 97210 23093 97210 416

4.1 102492 25493 102492 487

4.9 104874 26286 104874 495

6.9 120110 32105 120110 755

Table 5.8: The absolute RMSE values for the experiments shown in the graph of Figure 5.8.
These values are the means over the 30 runs of each experiment.

1 are able to reduce the estimation error by 75%, while the use of the marginals of order
3 contribute to the error reduction with an extra 25%, virtually eliminating the error in
the estimation. Nevertheless, this added accuracy comes at the expense of space, since the
marginals of order 3 require between one and two orders of magnitude more space than the
marginals of order 1. The same error reduction is not observed when we consider aggregate

queries over the entire dataset. As Figure 5.9 shows, the benefit of using marginals of higher

order is in this case negligible.

109

O Agg RMSE for selected
regions, from lowest

B Agg RMSE for selected
regions, from highest

% reduction of
(2]
o
,
|

1.7 32 4.1 4.9 6.9

% of dataset tuples

Figure 5.8: The percentage of the error reduction when estimating the aggregate value of
subsets of the selected regions only, by using the marginals of order 1 and order 3. These
measures are reported as a function of the percentage of the dataset tuples that is covered
by the selected regions. We also depict the corresponding confidence intervals. The absolute
RMSE values for the experiments shown in this graph are reported in Table 5.8.

6.0

5.0 | (
IB 4.0 ;T LT
g I Agg RMSE for entire
B a0 L I |] dataset, from lowest
§ ' B Agg RMSE for entire
= dataset, from highest
& 2.0 A

1.0

0.0 4 T T T

1.7 3.2 41 49 89

% of dataset tuples

Figure 5.9: The percentage of the error reduction when estimating the aggregate value
of queries over the entire dataset, by using the marginals of order 1 and order 3. These
measures are reported as a function of the percentage of the dataset tuples that is covered
by the selected regions. We also depict the corresponding confidence intervals. The absolute
RMSE values for the experiments shown in this graph are reported in Table 5.9.

110

selected aggregate queries on entire dataset aggregate queries on entire dataset
T€gI0NS

from overall lowest | with selected lowest || from overall lowest | with selected highest
1.7 761268 741762 761268 741431
3.2 733327 712578 733327 712434
4.1 694062 670930 694062 670774
4.9 670111 646618 670111 646311
6.9 667404 635777 667404 635354

Table 5.9: The absolute RMSE values for the experiments shown in the graph of Figure 5.9.
These values are the means over the 30 runs of each experiment.

5.3 Conclusions

In this chapter, we presented a case study, where we applied the techniques described in
this thesis on a real dataset. In the absence of a real workload, we generated synthetic

workloads, and measured the benefit of applying our techniques.

The most interesting results are illustrated by the graph in Figure 5.2. This graph
indicates the extent to which a number of marginals can estimate the values of a dataset,
for five different sets of selected regions of the dataset. The outcome of the experiments
show that the marginals can help in the estimation of the values towards which they are

targeted, whereas the benefit in the overall estimation error is minimal.

The above two distinct cases correspond to the following two extreme scenarios. The first
is when the future query workload will consist of exactly the same queries as the selected
regions. In this case, we will observe the error reduction bars depicted in dark color in
Figure 5.2. In the second scenario, the future query workload will consist of queries spread
uniformly over the entire dataset. This corresponds to the outcome of the experiments

represented by the light color bars.

Obviously, the performance that we should expect from such a system lies somewhere
in between those two extremes. How close the future query workload will be to the selected
regions is a matter of how well we can model it, and predict it. There are cases, like the
example of the census dataset, where there is no reason to believe that the future queries
will be localized. On the other hand, one can think of situations where the query workload
may exhibit high locality of reference. Consider the example of a consulting company that

produces reports on the marketing of specific products. Then, it may only be a restricted

111

set of products, time periods, and market segments, that would be relevant in the analysis
process.

Finally, we should note the case of aggregate queries, for which our techniques can
provide estimates extremely close to the real values. In a real life scenario, we expect that
the query workload will be a mixture of queries asking for the detailed values, and aggregate
queries that target subsets of the regions specified by the materialized marginals (i.e., the
answer to these aggregate queries is not readily available). Then, the benefit of using our

framework will be even greater than what is suggested in Section 5.2.2.

112

Chapter 6

Discussion and Conclusions

In this chapter we present the overall conclusions from the work described in this disserta-

tion. We also discuss future work and possible directions for research in related areas.

6.1 Conclusions

In recent years there has been a proliferation in the amount of information that is being
produced. It is often times the case that not all data are stored, because of their sheer size.
In order to save space people usually aggregate data and only store the aggregates. The
detailed data have to be moved to tertiary storage or permanently deleted.

In this dissertation we examine the problem of using only the information contained in
the aggregates in order to extract estimates of the detailed values from which the aggregates
were derived. Since this is an under-specified problem, we employ the information theoretic
principle of mazimum entropy. This principle allows us to produce estimates for the detailed
values based only on the aggregated, without the need to make any additional assumptions
about the detailed data distribution.

Based on this framework, we describe a technique for identifying deviations in multi-
dimensional datasets. Deviations are those values that do not follow the general trends of
the dataset. Therefore, they may be interesting to the user analyst. The advantage of this
technique is that it does not require any human intervention or domain specific knowledge.

We also present a method that, based on the aggregates of a multidimensional dataset,
provides approximate answers to queries asking about the individual values of the dataset.

It turns out that by storing a few of the largest deviations we can increase considerably the

113

accuracy of the estimation. In this context, we show how we can extend the framework to

offer quality guarantees for the reconstruction process.

Our study indicates that the techniques we describe can capture the general trends in the
data distributions we are trying to approximate. However, they are not as powerful as other
techniques that have been proposed in the literature for the problem of approximate query
answering, like wavelets [MVW98] [VW99], and histograms [PTHS96b] [JKM*98]. These
techniques work by constructing special data structures that help in the value estimation
process. They carefully examine the distribution of the data, and have the flexibility to
devote more resources to those parts of the data that are harder to estimate. On the
contrary, the goal of this dissertation is to evaluate the benefit of using the aggregates of
a multidimensional dataset in order to estimate its detailed values. Our method does not
aim to replace the above techniques of approximate query answering, and certainly cannot
compete against them in the domain of problems for which they were designed. Instead, it
is complementary to them, in the sense that it provides a means to produce estimates for

values when the only information available are the aggregates of those values.

Finally, in this dissertation we study the above problem in a space constrained environ-
ment, where there is only a limited amount of space for storing the aggregates. In this case
we have to select a subset of the aggregates, which also defines the set of queries whose
values we can estimate within our framework. This is essentially a space constrained opti-
mization problem, which we refer to as the Constrained Set Satisfaction (COSS) problem.
The tremendous amount of information produced every day, as well as the limited capaci-
ties of certain mobile devices (either memory or bandwidth), confirm the need for efficient

solutions to such optimization problems.

Since there are no known approximation algorithms for the COSS problem, we explore
the use of greedy and randomized techniques as well as clustering based approaches. We
describe an experimental evaluation of the algorithms that illustrates the relative perfor-
mance of the different approaches. We also present a theoretical analysis, and identify
cases where the algorithms perform poorly. This study is the first examination of practical
algorithms that solve the COSS problem. Our experimental evaluation can serve both as
a practitioner’s guide, and also provide intuition about the nature of the problem from a

theoretical perspective.

114

6.2 Future Work

There are several research directions that remain unexplored. We believe that studying
them further will not only help build on the material presented in this study, but will also

affect related areas of research.

We would like to explore further the problem of marginal selection. As we discussed
in Chapter 3, when we build the estimated multidimensional distribution of the data we
have a range of choices as to which marginals to use during this process. We may choose to
use all the marginals of the highest order, or all the marginals of any other order, or even
marginals from different orders. Each specific choice results in different accuracy for the
estimation of the detailed values, and is associated with different space requirements. This
trade off between accuracy and space can determine which choice of marginals is optimal

for each situation.

In order to be able to reason about this trade off, we should have an effective and
efficient way for evaluating the relative benefit of using alternative sets of marginals in
the reconstruction procedure. By analyzing the data and studying their properties, we
can definitely get indications as to which marginals may prove more useful. For example,
a direction that seems promising is to examine the correlations [Str80] [DS86] [CDH™02]
present in the data. In this case, we can choose to store those marginals that preserve the

strongest correlations.

In general, we would like to be able to give guidelines for choosing marginals based on
specific characteristics of the dataset. This is an important issue, because it may lead to
substantial savings in the space required by the marginals with only a minimal reduction

in the estimation accuracy.

Assume we have a way of evaluating the relative benefit of using different sets of
marginals to estimate the answer of a query. Then, the next natural question is how
to pick among those alternatives under a constraint on the space required by the marginals.
This is an extension to the COSS problem described in Chapter 4, where we are able to
satisfy each object by multiple different sets of components. In this case, the algorithms

apart from selecting which objects should be satisfied, should also determine the set of

115

components by which each object will be satisfied. Obviously, the solution space for the
problem grows significantly, as the dependencies among the components and the objects
become more complex.

We now briefly describe an extension to one of the algorithms proposed for the solution
of the COSS problem, that can be used in this new setting. The new algorithm is based on
the GrBenSp algorithm, described in Section 4.4.

Consider the graph depicted in Figure 6.1. In this graph we illustrate an example of

objects components
[v

D v

U l‘a V3
Va

f]

Uz < OR ‘.. Ve

e
< <

Figure 6.1: An example of the bipartite graph G that captures the dependencies among
objects and components.

the dependencies that may hold among objects and their components. We denote by the
closed curves the different sets of components. The straight lines are hyperedges between
a single object and all the components in the set to which it is connected. An “OR” tag
among hyperedges means that the object may be satisfied by one of the corresponding sets
of components. For example, object u; may be satisfied either by the set of components
{v1,v2,v3}, or by the set {va,vg,v7}. For each object, the algorithm will select the best
alternative, based on the benefit per space ratio. Then, the algorithm will select the object
with the best benefit per space ratio overall.

More specifically, the outline of the algorithm is as follows. Initially, no components are

selected, and therefore, no objects are satisfied. First, we compute, for a particular object,

116

the benefit per space ratio for each set of components that satisfies this object. During this
computation we only account for the space of the components that have not been already
selected. We mark the set of components that yields the largest benefit per space ratio
for the particular object. We repeat the same computation for all the objects that are not
currently satisfied. At the end of this process we have marked for each object a preferred
set of components, and we know the corresponding benefit per space ratios. Then, among
those sets of components we select the one with the highest ratio. This concludes the first
iteration, and we repeat the entire process until there is no more space available.

We should note though, that in this new context the COSS problem presents much

harder challenges, and should be studied anew.

In this dissertation we present a preliminary theoretical analysis for the greedy algo-
rithms proposed for the solution of the COSS problem (see Section 4.6.3). This analysis
is useful, because it indicates that the performance of some of the algorithms can become
arbitrarily poor in the worst case. Nevertheless, it is far from complete. A more careful
study of the theoretical properties of the algorithms is needed. This will help us compre-
hend the intricacies of the problem, and will lead to better understanding of the behavior

of the algorithms.

An interesting application of the techniques presented in this study is in the area of se-
lectivity estimation in the context of a Database Management System (DBMS). All the state
of the art DBMSs gather statistics on the data they manage, which are subsequently used
by the optimizer. These statistics provide invaluable information for selectivity estimation
during the process of query optimization.

In order to take correct decisions, the optimizer needs to know the joint distribution of
values for a combination of attributes in the database. However, it is typical that statistical
information is available only for a few, low dimensional, joint distributions. The reason for
this choice is that there exist a huge number of possible joint distributions, and their space
requirements are considerable.

Our techniques offer a feasible and efficient alternative. They have the ability to ap-
proximate joint distributions of high dimensionalities, based on a number of distributions

of lower dimensionality. The nice property of these techniques is that they are bound to

117

yield more accurate estimates than the ones used by the state of the art databases, whose
estimates are based on 1-dimensional histograms. Moreover, the algorithms we describe in
this dissertation can effectively use any information about the distributions they are trying
to approximate that is available to the system. Hints, or even exact values for parts of the
unknown distributions may be available by examining the execution of the query workload
[SLMKO1] [BCO02]. In such cases, we can use this information to improve the accuracy of

the estimation of the unknown distribution.

118

Bibliography

[AAD*+96]

[AAR96]

[ACNOO]

[AGPRY9]

[AIS93]

[AM92]

Sameet Agarwal, Rakesh Agrawal, Prasad Deshpande, Ashish Gupta, Jeffrey F.
Naughton, Raghu Ramakrishnan, and Sunita Sarawagi. On the Computation
of Multidimensional Aggregates. In VLDB International Conference, pages
506-521, Mumbai (Bombay), India, September 1996.

Andreas Arning, Rakesh Agrawal, and Prabhakar Raghavan. A Linear Method
for Deviation Detection in Large Databases. In International Conference on
Knowledge Discovery and Data Mining, pages 164-169, Portland, OR, USA,
August 1996.

Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated Se-
lection of Materialized Views and Indexes in SQL Databases. In VLDB Inter-

national Conference, pages 496-505, Cairo, Egypt, September 2000.

Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ra-
maswamy. Join Synopses for Approximate Query Answering. In ACM SIGMOD
International Conference, pages 275-286, Philadelphia, PA, USA, June 1999.

Rakesh Agrawal, Tomasz Imielingki, and Arun Swami. Mining Association
Rules between Sets of Items in Large Databases. In ACM SIGMOD Interna-
tional Conference, pages 207-216, Washington, DC, USA, May 1993.

Soraya Abad-Mota. Approximate Query Processing with Summary Tables in
Statistical Databases. In International Conference on Extending Database Tech-

nology, pages 499-515, Vienna, Austria, March 1992.

119

[AS94]

[AS95)

[BC02]

[BDF+97]

[Ber82]

[BFHT75]

[BKNSO0]

[BLY4]

[BMUT97]

[BPPY6]

Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Asso-
ciation Rules. In VLDB International Conference, pages 487-499, Santiago de
Chile, Chile, September 1994.

Rakesh Agrawal and Ramakrishnan Srikant. Mining Sequential Patterns. In
International Conference on Data Engineering, pages 3—14, Taipei, Taiwan,

March 1995.

Nicolas Bruno and Surajit Chaudhuri. Exploiting Statistics on Query Expres-
sions for Optimization. In ACM SIGMOD International Conference, pages
263-274, Madison, WI, USA, June 2002.

Daniel Barbara, William DuMouchel, Christos Faloutsos, Peter J. Haas,
Joseph M. Hellerstein, Yannis Ioannidis, H. V. Jagadish, Theodore Johnson,
Raymond Ng, Viswanath Poosala, Kenneth A. Ross, and Kenneth C. Sevcik.
The New Jersey Data Reduction Report. Bulletin of the Technical Committee
on Data Engineering, 20(4):3-45, 1997.

D. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Aca-
demic Press, 1982.

Yvonne M. M. Bishop, Stephen E. Fienberg, and Paul W. Holland. Discrete
Multivariate Analysis: Theory and Practice. The MIT Press, 1975.

Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jorg Sander.
LOF: Identifying Density-Based Local Outliers. In ACM SIGMOD Interna-
tional Conference, pages 21-32, Dallas, TX, USA, May 2000.

V. Barnet and T. Lewis. OQutliers in Statistical Data. John Wiley and Sons,
Inc., 1994.

Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dynamic
Itemset Counting and Implication Rules for Market Basket Data. In ACM
SIGMOD International Conference, pages 255-264, Tuscon, AZ, USA, June
1997.

A. Berger, S. Pietra, and V. Pietra. A Maximum Entropy Approach to Natural
Language Modelling. Computational Linguistics, 22(1), May 1996.

120

[BPT97]

[BS97]

[BW0O]

[CCS93]

[CDY7]

Elena Baralis, Stefano Paraboschi, and Ernest Teniente. Materialized Views
Selection in a Multidimensional Database. In VLDB International Conference,

pages 156-165, Athens, Greece, September 1997.

Daniel Barbara and Mark Sullivan. Quasi-Cubes: Exploiting Approximations

in Multidimensional Databases. ACM SIGMOD Record, 26(3):12-17, 1997.

Daniel Barbara and Xintao Wu. Using Loglinear Models to Compress Dat-
acubes. In Web-Age Information Management, pages 311-322, Shanghai,
China, June 2000.

E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP to User-Analysts:
An IT Mandate. http://www.hyperion.com, 1993.

Surajit Chaudhuri and Umeshwar Dayal. An Overview of Data Warehousing
and OLAP Technology. Sigmod Record, 26(1):65-74, 1997.

[CDH'02] Yixin Chen, Guozhu Dong, Jiawei Han, Benjamin W. Wah, and Jianyong Wang.

[CFZ01a]

[CFZ01b)

[CGNO02]

[CHYY6]

Multi-Dimensional Regression Analysis of Time-Series Data Streams. In VLDB

International Conference, pages 323-334, Hong Kong, China, August 2002.

Mitch Cherniack, Michael J. Franklin, and Stan Zdonik. Expressing User Pro-
files for Data Recharging. IEEFE Personal Communications, pages 6—13, August
2001.

Mitch Cherniack, Michael J. Franklin, and Stanley B. Zdonik. Data Man-
agement for Pervasive Computing. In VLDB International Conference, page

Tutorial, Rome, Italy, September 2001.

Surajit Chaudhuri, Ashish Gupta, and Vivek R. Narasayya. Compressing SQL
Workloads. In ACM SIGMOD International Conference, pages 488-499, Madi-
son, WI, USA, June 2002.

Ming-Syan Chen, Jiawei Han, and Philip S. Yu. Data Mining: An Overview
from Database Perspective. IEEE Transactions on Knowledge and Data Engi-
neering, 8(6):866-883, 1996.

121

[CLRS01]

[CR99]

[CSD98]

[CT91]

[DS40]

[DS86]

[Fay98]

[FIS97a]

[FIS97b)

[FPSM91]

[GBLPY6]

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. New York: McGraw-Hill, 2001.

S. F. Chen and R. Rosenfeld. A Gaussian Prior For Smoothing Maximum En-
tropy Models. Technical Report CMU-CS-99-108, Carnegie Mellon University,
February 1999.

Soumen Chakrabarti, Sunita Sarawagi, and Byron Dom. Mining Surprising
Patterns Using Temporal Description Length. In VLDB International Confer-
ence, pages 606617, New York, NY, USA, August 1998.

Thomas Cover and Joy Thomas. Elements of Information Theory. Wiley, 1991.

W. E. Deming and F. F. Stephan. On a Least Square Adjustment of a Sampled
Frequency Table When the Expected Marginal Totals Are Known. Annals of
Mathematical Statistics, 11:427-444, 1940.

Ralph B. D’Agostino and Michael A. Stephens. Goodness-of-Fit Techniques.
New York: M. Dekker, 1986.

Usama Fayyad. Mining Databases: Towards Algorithms for Knowledge Dis-
covery. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 21(1), 1998.

C. Faloutsos, H. V. Jagadish, and N. Sidiropoulos. Recovering Information
from Summary Data. VLDB, Athens, Greece, pages 36—45, August 1997.

Christos Faloutsos, H. V. Jagadish, and N. D. Sidiropoulos. Recovering In-
formation from Summary Data. In VLDB International Conference, Athens,

Greece, August 1997.

William J. Frawley, Gregory Piatetsky-Shapiro, and Chistopher J. Matheus.
Knowledge Discovery in Databases: An Overview. Gregory Piatetsky-Shapiro
and William J. Frawley editors, Knowledge Discovery in Databases, pages 1-27,
1991.

Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh. Data Cube:
A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and

122

[GJ79]

[GLY7]

[GMWS1]

[GS00]

[Gup97]

[Han97]

[Han98]

[HHK99]

[HKOO]

[HRU96]

Sub-Totals. In International Conference on Data Engineering, pages 152-159,
New Orleans, LO, USA, March 1996.

Michael Garey and David Johnson. Computers and Intractability. W. H. Free-
man, 1979.

Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,
1997.

P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. New York:
Academic Press, 1981.

Jim Gray and Prashant Shenoy. Rules of Thumb in Data Engineering. In
International Conference on Data Engineering, San Diego, CA, USA, February
2000.

Himanshu Gupta. Selection of Views to Materialize in a Data Warehouse. In

ICDT International Conference, pages 98-112, Delphi, Greece, January 1997.

Jiawei Han. OLAP Mining: An Integration of OLAP with Data Mining. In
IFIP Conference on Data Semantics, pages 1-11, Leysin, Switzerland, October
1997.

Jiawei Han. Towards On-Line Analytical Mining in Large Databases. ACM
Sigmod Record, 27(1):97-107, 1998.

Joseph M. Hellerstein, Lisa Hellertein, and George Kollios. On the Generation
of 2-Dimensional Index Workloads. In ICDT International Conference, pages

113-130, Jerusalem, Israel, January 1999.

Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2000.

Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Implementing
Data Cubes Efficiently. In ACM SIGMOD International Conference, pages
205-216, Montreal, Canada, June 1996.

123

[1P95]

[TW87]

[JAMS8Y]

[TKM*98]

[TKMO99]

[JLS99]

[IM00]

[TMS95]

[Kan93]

[KGV83]

Y. Ioannidis and Viswanath Poosala. Balancing Histogram Optimality and
Practicality for Query Result Size Estimation. ACM SIGMOD, San Jose, CA,
pages 233244, June 1995.

Yannis E. Ioannidis and Eugene Wong. Query Optimization by Simulated
Annealing. In ACM SIGMOD International Conference, pages 922, San Fran-
cisco, CA, USA, May 1987.

David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine Schevon.
Optimization by Simulated Annealing: An Experimental Evaluation. Opera-

tions Research, 37(6):865-892, 1989.

H. V. Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath Poosala, Ken-
neth C. Sevcik, and Torsten Suel. Optimal Histograms with Quality Guaran-
tees. In VLDB International Conference, pages 275-286, New York, NY, USA,
August 1998.

H. V. Jagadish, Nick Koudas, and S. Muthukrishnan. Mining Deviants in
a Time Series Database. In VLDB International Conference, pages 102-113,
Edinburgh, Scotland, September 1999.

H. V. Jagadish, Laks V. S. Lakshmanan, and Divesh Srivastava. Snakes and
Sandwiches: Optimal Clustering Strategies for a Data Warehouse. In ACM
SIGMOD International Conference, pages 37-48, Philadephia, PA, USA, June
1999.

Christopher Jermaine and Renée J. Miller. Approximate Query Answering
in High-Dimensional Data Cubes. In ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, Dallas, TX, USA, May 2000.

H. V. Jagadish, I. S. Mumick, and A. Silberschatz. View Maintenance Issues
in the Chronicle Data Model. ACM PODS, pages 113-124, June 1995.

Gopal K. Kanji. 100 statistical tests. Sage Publications, 1993.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):671-680, 1983.

124

[KK92]

[KM99)

[KMR194]

[KN9S]

[KN99]

[KR9Y]

[Kul68]

[LHC97]

[LL02]

[LPHO2]

J. N. Kapur and H. K. Kesavan. Entropy Optimization Principles with Appli-

cations. Academic Press Inc, 1992.

Howard J. Karloff and Milena Mihail. On the Complexity of the View-Selection
Problem. In ACM PODS International Conference, pages 167-173, Philadel-
phia, PA, USA, May 1999.

Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu Toivonen, and
A. Inkeri Verkamo. Finding Interesting Rules from Large Sets of Discovered As-

sociation Rules. In ACM International Conference on Information and Knowl-

edge Management, pages 401-407, Gaithersburg, MD, USA, November 1994.

Edwin M. Knorr and Raymond T. Ng. Algorithms for Mining Distance-Based
Outliers in Large Datasets. In VLDB International Conference, pages 392-403,
New York, NY, USA, August 1998.

Edwin M. Knorr and Raymond T. Ng. Finding Intensional Knowledge of
Distance-Based Outliers. In VLDB International Conference, pages 211-222,
Edinburgh, Scotland, September 1999.

Yannis Kotidis and Nick Roussopoulos. DynaMat: A Dynamic View Mainte-
nance System for Data Warehouses. In ACM SIGMOD International Confer-
ence, Philadelphia, PA, USA, June 1999.

Solomon Kullback. Information Theory and Statistics. John Wiley and Sons,
1968.

Bing Liu, Wynne Hsu, and Shu Chen. Discovering Conforming and Unexpected
Classification Rules. In Workshop on Intelligent Data Analysis in Medicine and
Pharmacology, Nagoya, Japan, August 1997.

Guy M. Lohman and Sam S. Lightstone. SMART: Making DB2 (More) Au-
tonomic. In VLDB International Conference, pages 877-879, San Diego, CA,
USA, August 2002.

Laks V. S. Lakshmanan, Jian Pei, and Jiawei Han. Quotient Cube: How to
Summarize the Semantics of a Data Cube. In VLDB International Conference,

pages 778-789, Hong Kong, China, August 2002.

125

[LSPCO00]

[Mal93]

[Man99)]

[MQM97]

[MRL99]

[MSW72]

[MVW98]

[MVW00]

[NCWDS84]

Wolfgang Lehner, Richard Sidle, Hamid Pirahesh, and Roberta Cochrane.
Maintenance of Cube Automatic Summary Tables. In ACM SIGMOD Inter-
national Conference, pages 512-513, Dallas, TX, USA, May 2000.

F. Malvestuto. A Universal Scheme Approach to Statistical Databases Con-
taining Homogeneous Summary Tables. ACM TODS, 18(4), pages 678-708,
December 1993.

Heikki Mannila. Theoretical Frameworks for Data Mining. Invited talk in
ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, May 1999.

Inderpal Singh Mumick, Dallan Quass, and Barinderpal Singh Mumick. Main-
tenance of Data Cubes and Summary Tables in a Warehouse. In ACM SIGMOD
International Conference, pages 100-111, Tuscon, AZ, USA, June 1997.

Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Random
Sampling Techniques for Space Efficient Online Computation of Order Statistics
of Large Datasets. In ACM SIGMOD International Conference, pages 251-262,
Philadephia, PA, USA, June 1999.

W. T. McCormick, P. J. Schweitzer, and T. W. White. Problem Decomposition
and Data Reorganization by a Clustering Technique. Operations Research,

20(5):993-1009, 1972.

Yossi Matias, Jeffrey Scott Vitter, and Min Wang. Wavelet-Based Histograms
for Selectivity Estimation. In ACM SIGMOD International Conference, pages
448-459, Seattle, WA, USA, June 1998.

Yossi Matias, Jeffrey Scott Vitter, and Min Wang. Dynamic Maintenance of
Wavelet-Based Histograms. In VLDB International Conference, pages 101-110,
Cairo, Egypt, September 2000.

Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou. Vertical
Partitioning Algorithms for Database Design. ACM Transactions on Database
Systems, 9(4):680-710, 1984.

126

[NLHP9S]

[NR8Y]

[NY97]

[Pal0o]

[PCY95]

[PG99)

[P197]

[PTHS964]

[PTHS96b]

Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang.
Exploratory Mining and Pruning Optimizations of Constrained Associations
Rules. In ACM SIGMOD International Conference, pages 13—24, Seattle, WA,
USA, June 1998.

Shamkant B. Navathe and Minyoung Ra. Vertical Partitioning for Database
Design: A Graphical Algorithm. In ACM SIGMOD International Conference,
pages 440-450, Portland, OR, USA, May 1989.

David Nehme and Gang Yu. The Cardinality and Precedence Constrained Max-
imum Value Sub-Hypergraph Problem and its Applications. Discrete Applied
Mathematics, 74:57-68, 1997.

Themistoklis Palpanas. Knowledge Discovery in Data Warehouses. ACM SIG-
MOD Record, 29(3):88-100, 2000.

Jong-Soo Park, Ming-Syan Chen, and Philip S. Yu. An Effective Hash Based
Algorithm for Mining Association Rules. In ACM SIGMOD International Con-
ference, pages 175-186, San Jose, CA, USA, May 1995.

Viswanath Poosala and Venkatesh Ganti. Fast Approximate Answers to Ag-
gregate Queries on a Data Cube. In International Conference on Scientific and

Statistical Database Management, pages 24-33, Cleveland, OH, USA, 1999.

Viswanath Poosala and Yannis E. Ioannidis. Selectivity Estimation Without the
Attribute Value Independence Assumption. In VLDB International Conference,
pages 486495, Athens, Greece, August 1997.

V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. Improved Histograms for
Selectivity Estimation of Range Predicates. ACM SIGMOD, Montreal Canada,
pages 294-305, June 1996.

Viswanath Poosala, Yannis E. Ioannidis, Peter J. Haas, and Eugene J. Shekita.
Improved Histograms for Selectivity Estimation of Range Predicates. In ACM
SIGMOD International Conference, pages 294-305, Montreal, Canada, June
1996.

127

[PKO1]

[PSCP02]

[PTY8]

[RKR97]

[RRS00]

[RS97]

[SA95]

[SA96]

[SAMYS]

Themistoklis Palpanas and Nick Koudas. Entropy Based Approximate Query-
ing and Exploration of Datacubes. In International Conference on Scientific
and Statistical Database Management, pages 81-90, Fairfax, VA, USA, July
2001.

Themistoklis Palpanas, Richard Sidle, Roberta Cochrane, and Hamid Pirahesh.
Incremental Maintenance for Non-Distributive Aggregate Functions. In VLDB
International Conference, Hong Kong, China, August 2002.

Balaji Padmanabhan and Alexander Tuzhilin. A Belief-Driven Method for
Discovering Unexpected Patterns. In International Conference on Knowledge

Discovery and Data Mining, pages 94-100, New York, NY, USA, August 1998.

Nick Roussopoulos, Yannis Kotidis, and Mema Roussopoulos. Cubetree: Orga-
nization of and Bulk Incremental Updates on the Data Cube. In ACM SIGMOD
International Conference, pages 89-99, Tuscon, AZ, USA, June 1997.

Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient Algorithms
for Mining Ouliers from Large Data Sets. In ACM SIGMOD International
Conference, pages 427-438, Dallas, TX, USA, May 2000.

Kenneth A. Ross and Divesh Srivastava. Fast Computation of Sparse Dat-
acubes. In VLDB International Conference, pages 116-125, Athens, Greece,
September 1997.

Ramakrishnan Srikant and Rakesh Agrawal. Mining Generalized Association
Rules. In VLDB International Conference, pages 407-419, Zurich, Switzerland,
September 1995.

Ramakrishnan Srikant and Rakesh Agrawal. Mining Sequential Patterns: Gen-
eralizations and Performance Improvements. In International Conference on

Ezxtending Database Technology, pages 3-17, Avignon, France, March 1996.

Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. Discovery-driven Ex-
ploration of OLAP Data Cubes. In International Conference on Extending
Database Technology, pages 168-182, Valencia, Spain, March 1998.

128

[Sar97]

[Sar99]

[Sar00]

[SDNRY6]

[SFBYY)

[SLMKO01]

[SON95]

[SS94]

[SS01]

Sunita Sarawagi. Indexing OLAP Data. IEEFE Data Engineering Bulletin,
20(1):36-43, 1997.

Sunita Sarawagi. Explaining Differences in Multidimensional Aggregates. In
VLDB International Conference, pages 42-53, Edinburgh, Scotland, September
1999.

Sunita Sarawagi. User-Adaptive Exploration of Multidimensional Data. In

VLDB International Conference, pages 307-316, Cairo, Egypt, September 2000.

Amit Shukla, Prasad Deshpande, Jeffrey F. Naughton, and Karthikeyan Ra-
masamy. Storage Estimation for Multidimensional Aggregates in the Presence
of Hierarchies. In VLDB International Conference, pages 522-531, Mumbai
(Bombay), India, September 1996.

Jayavel Shanmugasundaram, Usama M. Fayyad, and P. S. Bradley. Compressed
Data Cubes for OLAP Aggregate Query Approximation on Continuous Dimen-
sions. In International Conference on Knowledge Discovery and Data Mining,

pages 223-232, San Diego, CA, USA, August 1999.

Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. LEO -
DB2’s LEarning Optimizer. In VLDB International Conference, pages 19-28,
Rome, Italy, September 2001.

Ashok Savasere, Edward Omiecinski, and Shamkant Navathe. An Efficient
Algorithm for Mining Association Rules in Large Databases. In VLDB Inter-
national Conference, pages 432-444, Zurich, Switzerland, September 1995.

Sunita Sarawagi and Michael Stonebraker. Efficient Organization of Large Mul-
tidimensional Arrays. In International Conference on Data Engineering, pages

328-336, Houston, TX, USA, February 1994.

Gayatri Sathe and Sunita Sarawagi. Intelligent Rollups in Multidimensional
OLAP Data. In VLDB International Conference, pages 531-540, Rome, Italy,
September 2001.

129

[ST96a]

[STY6D)]

[ST96c]

[Str80]

[Toi96]

[TS97]

[TUA*98]

[VW99]

[VWI98]

A. Silberschatz and A. Tuzhilin. What Makes Patterns Interesting in Knowledge
Discovery Systems. IEEE Transactions on Knowledge and Data Engineering,

Vol. 8, No 6., pages 970-974, December 1996.

Avi Silberschatz and Alexander Tuzhilin. User-Assisted Knowledge Discov-
ery: How Much Should the User Be Involved. In ACM-SIGMOD Workshop
on Research Issues on Data Mining and Knowledge Discovery, Montreal, ON,

Canada, June 1996.

Avi Silberschatz and Alexander Tuzhilin. What Makes Patterns Interesting
in Knowledge Discovery Systems. IEEE Transactions on Knowledge and Data

Engineering, 8(6):970-974, May 1996.

Gilbert Strang. Linear Algebra and its Applications. Academic Press, 1980.

Hannu Toivonen. Sampling Large Databases for Association Rules. In VLDB
International Conference, pages 134-145, Mumbai (Bombay), India, September
1996.

Dimitri Theodoratos and Timos K. Sellis. Data Warehouse Configuration. In
VLDB International Conference, pages 126—135, Athens, Greece, September
1997.

Dick Tsur, Jeffrey D. Ullman, Serge Abiteboul, Chris Clifton, Rajeev Motwani,
Svetlozar Nestorov, and Arnon Rosenthal. Query Flocks: A Generalization of
Association-Rule Mining. In ACM SIGMOD International Conference, Seattle,
WA, USA, June 1998.

Jeffrey Scott Vitter and Min Wang. Approximate Computation of Multidimen-
sional Aggregates of Sparse Data Using Wavelets. In ACM SIGMOD Interna-
tional Conference, pages 193-204, Philadelphia, PA, USA, June 1999.

Jeffrey Scott Vitter, Min Wang, and Bala Iyer. Data Cube Approximation and
Histograms via Wavelets. In ACM International Conference on Information

and Knowledge Management, pages 96—-104, Washington, DC, USA, 1998.

130

[YKL97]

[ZCL*00]

[ZDNY7]

[ZXHY8]

Jian Yang, Kamalakar Karlapalem, and Qing Li. Algorithms for Materialized
View Design in Data Warehousing Environment. In VLDB International Con-

ference, pages 136-145, Athens, Greece, September 1997.

Markos Zaharioudakis, Roberta Cochrane, George Lapis, Hamid Pirahesh, and
Monica Urata. Answering Complex SQL Queries Using Automatic Summary
Tables. In ACM SIGMOD International Conference, pages 105-116, Dallas,
TX, USA, May 2000.

Yihong Zhao, Prasad Deshpande, and Jeffrey F. Naughton. An Array-Based
Algorithm for Simultaneous Multidimensional Aggregates. In ACM SIGMOD
International Conference, pages 159-170, Tuscon, AZ, USA, June 1997.

Osmar R. Zaiane, Man Xin, and Jiawei Han. Discovering Web Access Patterns
and Trends by Applying OLAP and Data Mining Technology on Web Logs.
In Advances in Digital Libraries, pages 19-29, Santa Barbara, CA, USA, April
1998.

131

