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Abstract 
 Commercial database systems make extensive use of caching to speed up query execution. Semantic caching is 

the idea of caching actual query results in the hope of being able to reuse them to speed up subsequent queries. 

This paper deals with cache management policies, which refer to policies for admission into the cache and eviction 

from the cache. When a query is executed, we must decide what part, if any, of the query result to add to the 

cache. If the cache is full, we must also decide which, if any, of the currently cached results to evict from the 

cache. The objective of these policies is to minimize the cost of executing the current and future queries or, 

phrased differently, maximize the benefit of the cache. The main difficulty is predicting the cost savings of future 

queries.  

In this study we present a family of cache admission and eviction policies, named RECYCLE, specifically 

designed for semantic caching within a relational database server. Our policies were designed to be both effective 

(high reuse ratio) and efficient (low overhead). The policies make use of a novel type of statistics, called access 

statistics. These statistics are easy to gather and maintain, yet, they offer a solid and flexible framework for 

dealing with the complexity of the problem. The decision whether to cache a query result takes into account the 

current content of the cache and the estimated benefit of the result during its lifetime. We experimentally compare 

the effectiveness of our policies with several other caching policies, and show the superiority of our solution. 

1. Introduction 

Commercial database systems make extensive use of caching to speed up processing. All systems use one or more 

page caches – usually called buffer pools – that store frequently referenced database pages to reduce disk IO.  On a 

large database server several gigabytes of memory may be used for buffer pools. Many systems also cache execution 

plans to avoid optimizing the same query or stored procedure multiple times.  Catalog data is also frequently cached. 

Various caches are used during query optimization and query processing but the details vary from system to system. 

All these software caches are on top of the hardware caches employed by all modern processors to reduce main 

memory and hard disk accesses.   

Semantic caching is the idea of caching actual query results in the hope of being able to reuse them to speed up 

subsequent queries. It is not necessary to cache only final query results – we may decide to cache the result of any 

subexpression of a query plan. Semantic caching can be applied in many contexts but our focus is on semantic 

caching within a database server. Semantic caching is an old idea but, to the best of our knowledge, it is not 

implemented in any commercial database product. The mechanisms and policies required for semantic caching are 

somewhat complex, making actual implementation a challenging task.  The focus of this paper is on policies so we 

assume that the necessary mechanisms for saving, reading and purging cached results are in place.  

Cached query results are nothing more than temporary materialized views managed entirely by the system, so 

much of the work on materialized views can be applied directly to semantic caching, in particular view matching 

and view maintenance algorithms. Maintenance considerations are different though, because we always have the 

option of simply discarding a cached result. To emphasize the equivalence with materialized views, we will refer to 

cached results as Materialized Query Results (MQRs). In the same way as a materialized view, an MQR consists of 

two parts: the expression defining the result and the actual stored result. 

The purpose of a semantic cache is to speed up query execution as much as possible. The speedup depends on the 

reuse ratio of the cache. The reuse ratio depends on several factors, some of which are outside our control. These 

factors are: 

 Query workload characteristics. Caching exploits hotspots, which in the context of semantic caching 

means both data hotspots and query hotspots. In other words, semantic caching can only be effective if the 

workload contains similar queries over the same data. Furthermore, the hotspots must be reasonably stable 

over time. The queries must also be somewhat expensive – there is no point in caching a result that can be 
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computed very cheaply from base tables. These are inherent characteristics of the workload. All we can do is 

try to reduce the overhead of the caching mechanism when there is little to be gained by caching.  

 Update characteristics. The more volatile the data is, the less we can expect to gain from caching because 

high volatility reduces the lifetime of cached data. This is true even if MQRs are kept up to date in the same 

way as materialized views or indexes because volatility increases the maintenance overhead. There is one 

exception to this rule, namely, when update hotspots hit a different part of the database than query hotspots. 

This is another inherent characteristic of the workload. All we can do is try to avoid caching frequently 

updated data. 

  Cache management policies. This refers to policies for admission into the cache and eviction from the 

cache. When a query is executed, we must decide what part, if any, of the query result to add to the cache. If 

the cache is full, we must also decide which, if any, of the currently cached MQRs to evict from the cache.  

 Cache invalidation policies. The contents of an MQR are defined by a query expression and computed from 

some collection of rows in the underlying tables. If one of the underlying tables is updated, the cached result 

may become invalid. The simplest policy is to invalidate an MQR whenever there are any updates to one of 

its underlying tables. This is a bit heavy handed though because the change may be in rows that did not and 

still don’t contribute to the MQR. One can envision polices at different levels of sophistication for deciding 

whether an update to a base table invalidates an MQR.  

 Reuse algorithms. This refers to the algorithms used for detecting whether part or all of a query can be 

computed from one or more MQRs.  Again, many algorithms at different levels of speed and effectiveness 

are possible. Existing view matching algorithms can be applied unchanged, provided they are fast and 

scalable enough. 

This paper deals with cache management policies. The objective of these policies is to minimize the cost of 

executing the current and future queries or, phrased differently, maximize the benefit of the cache. The main 

difficulty is predicting the cost savings of future queries. Suppose that we actually knew the sequence of future 

queries and updates and, furthermore, for each query its cacheable expressions. Given the current state of the cache, 

the best plans chosen by the optimizer for some queries make use of cached results. Changing the state of the cache 

by admitting a new result and evicting some existing results may completely change the best plan for some queries. 

The only way to reliably find out would be to re-optimize every query with the new state of the cache, which is a 

completely impractical proposition. Somehow taking into account the effects of these interactions among cached 

results is the most difficult part of devising admission and eviction policies for semantic caching. Updates 

complicate the picture further, because now the lifetime of a cached result becomes dependent on the invalidation 

rules employed by the cache.   

In this study we present a family of cache admission and eviction policies, named RECYCLE, specifically 

designed for semantic caching within a relational database server. We also experimentally compare the effectiveness 

of our policies with several other caching policies. Our policies were designed to be both effective (high reuse ratio) 

and efficient (low overhead). The policies need information about the frequency of access to different parts of the 

database: tables, columns, and subsets of rows. These access statistics are easy to gather and maintain, yet, they offer 

a solid and flexible framework for dealing with the complexity of the problem. They identify hotspots of the 

database, i.e., parts of the base data that are frequently accessed by the user queries but are not currently cached. 

Caching is not automatic, i.e., the decision whether to cache a query result takes into account the current content of 

the cache and the estimated benefit of the result during its lifetime. These two strategies form the basis of our 

approach. The contributions of our work are summarized as follows. 

 We propose a family of novel algorithms for the problem of semantic caching. 

 These algorithms have small computational overhead. Yet they can effectively detect and track the hotspots 

of the query workloads as they change over time. In addition, the decisions they make take into account the 

current state of the cache, which is crucial for the performance of a semantic cache. 

 We introduce the notion of base data access statistics, and we demonstrate how they can help to tackle a hard 

problem, namely, rendering our policies aware of the interdependencies of the cache contents, at a small cost. 

 An experimental evaluation shows that our algorithms have performance superior to other policies proposed 

in the literature. 

The rest of the paper is organized as follows. We review the relevant literature in Section 2, and we point out why 

previous approaches are not viable solutions for the general case. In Section 3 we discuss the complexity of the 

semantic cache management problem, and we outline our approach for solving it. Section 4 introduces some 

mathematical tools we use later in the paper. In Section 5 we propose the novel RECYCLE algorithms for cache 
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management. An experimental evaluation of our algorithms is presented in Section 6. Finally, we conclude in 

Section 7, and we discuss some future research directions. 

2. Related Work 

In this section, we review different cache admission and eviction policies that have been proposed in the 

literature. We limit the discussion to work related to relational databases and data warehouses. 

Least Recently Used (LRU) is probably the most widely used cache replacement policy. Its admission policy is as 

simple as can be: always admit a referenced object into the cache. Whenever space is needed in the cache, the object 

whose last reference occurred the furthest in the past is evicted. The LRU policy is not able to discriminate between 

objects that have frequent references and objects that are rarely accessed. To remedy this problem the LRU-K [9] 

algorithm was proposed, where eviction decisions are based on the time of the K-th to last reference. In practice, 

LRU-2 provides the best trade-off among performance, storage overhead, and responsiveness to changing access 

patterns. LRU-based schemes are not suited for a semantic cache because they assume that all objects are of the 

same size and all have the same replacement cost.  

Aggarwal, Wolf and Yu [1] proposed a policy called Size-adjusted LRU (SLRU) that generalizes LRU to objects 

of varying sizes and varying replacement costs. The application context was caching of (static) web pages. In this 

context, partial reuse of a cached object does not make sense. However, in semantic caching partial reuse is common 

and cannot be ignored. Chidlovskii and Borghoff [2] describe a semantic cache designed for caching results of 

queries to web search engines.  Paraphrased in relation terminology, each search engine can be viewed as storing a 

single table against which a restricted form of select queries (without projection) can be issued. That is, their cached 

objects correspond to results of select-only queries. A cached object may be partially used by a query and they 

extend the SLRU algorithm to consider this. However, their extension is rather ad-hoc and specific to their 

application. Furthermore, their policy ignores differences in replacement cost and does not consider the effects of 

updates at all.  

Stonebraker et al. [12] describe, among other things, a cache management system for Postgres. The context can be 

paraphrased as follows. Suppose that we have a large number of regular, i.e., not materialized, views defined where 

the views are typically small. When a query references a view, the view is evaluated completely. To avoid 

evaluating the same view expression repeatedly, the system may decide to cache the result of some of the views, up 

to some maximum cache size. The proposed admission and eviction policies take into account several properties of 

the cached views: size, cost to materialize, cost to access it from the cache, update cost, access frequency, and 

update frequency. These parameters are combined in a formula that estimates the benefit per unit size (megabyte) of 

caching a view. For views in the cache, access frequency and update frequency are estimated by maintaining 

statistics for each cached view. The paper does not describe exactly how these statistics are maintained and whether 

they adapt to changing access and update patterns. For views not in the cache, the frequencies are estimated as the 

average frequencies over all the objects in the database. For our application, the major drawback of this scheme is 

that it does not consider the possibility of evaluating a view, wholly or in part, from other cached views. In addition, 

a cached view is used only if it is referenced in a query, which does not apply in our case. Furthermore, estimating 

the frequency of reads and updates by the average over all objects is a very rough approximation. A similar cache 

management mechanism is used by Keller and Basu [12] but in a different context, namely, semantic caching in a 

client-server architecture. 

WATCHMAN is a semantic cache manager designed by Shim, Scheuermann, and Vingralek. It is targeted for 

data warehouse application. Their policies include several desired characteristics but, unfortunately, several of their 

assumptions do not carry over to a more general setting. The initial version, presented in [11], assumes that a cached 

result is reused only if it matches the query exactly. Their admission and eviction policies are similar to the Postgres 

policies explained above but updates are not considered. Access frequencies are estimated by keeping track of the 

last K references to each cached result. Similar to LRU-K, they also retain, for some time, information about results 

that have been evicted from the cache. In [12], they present an improved version that includes a limited form of 

partial reuse and considers updates. They consider only queries that are selections over a central fact table joined 

with one or more dimension tables, normally with a group-by on top. Queries with joins and aggregation, but no 

selections, are termed data cube queries. Queries that can be rewritten as selections on top of data cube queries are 

termed slice queries. Their system recognizes two cases of derivability, namely, (a) a data cube is derivable (i.e., can 

be computed) from a compatible but less aggregated data cube and (b) a slice query is derivable from its underlying 

data cube query. For all other queries, exact match is required. The system maintains query derivability information 

in a directed graph. The nodes represent all current cached results, base tables, and some results that are no longer 

cached but for which statistics are kept. Two nodes are connected by an edge if one node can be derived from the 

other. The graph is used when selecting victims for eviction. The limited form of derivability considered makes it 
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possible to easily find the next best alternative for computing a query if a cached result is evicted. However, this is 

not feasible in a general setting with a more complex derivability structure because the next best alternative depends 

on the optimizer’s reuse rules. Calling the optimizer multiple times to select victims for eviction is clearly too slow 

and expensive. An additional problem is that their policies completely ignore queries that have never been cached, 

regardless of how frequently they occur. It also appears that the admission policy is unresponsive to changing 

hotspots, that is, sufficiently expensive, highly aggregated results will stay in the cache indefinitely even when 

access patterns change.  

The WATCHMAN scheme is used by the DynaMat project [8], which also assumes that the cache manages a 

restricted set of query results. In particular, the results are either single points in the data space or hyperplanes with 

each dimension ranging over the whole domain. The experiments indicate that this approach performs better than 

both LRU and LFU (Least Frequently Used). A cache that stores only a predefined set of query results is also 

described by Deshpande et al. [4]. Each element in the cache is a chunk, a small hyperrectangular subregion of the 

entire datacube. The chunks are formed in such a way that they are all mutually disjoint. The cache management 

algorithm admits every new chunk as long as there is free space in the cache. The replacement policy is based on the 

CLOCK scheme, enhanced with a benefit function, which is proportional to the fraction of the base fact table that a 

chunk represents. This approach is experimentally shown to perform better than LRU and query caching, where the 

whole query (and not chunks) is cached. However, the query-caching scheme used in the comparison is rather 

simplistic. The above algorithm was recently extended [5], so that the benefit function accounts for the fact that a 

cached chunk can also be used to answer queries at a higher aggregation level. 

A very different cache replacement policy is described by Dar et al. [3]. While LRU is based on temporal locality, 

this work proposes the notion of semantic locality, which attempts to capture the space locality of queries. When 

using this policy, the cached results that have the greatest semantic distance (Manhattan distance between the 

centroids of the queries in the data space) from the current query are evicted first. The experimental results show 

that this approach wins over the simple LRU approach. However, those results were derived by considering a single 

client accessing a single relation. It is not obvious whether the same techniques will be beneficial in a more general 

setting. 

The above studies propose interesting directions of research, but none of them tackles the problem of semantic 

cache management in its entirety. Our work tries to remedy this situation, by considering all the relevant parameters 

under a single framework. The algorithm we propose makes informed decisions both for admission and eviction of 

query results, based on the characteristics of the query, the access patterns in the workload, and the contents of the 

cache. 

3. Challenges of Semantic Caching 

Solving the above problem for a semantic cache is in general more involved than in the case of a traditional 

cache. The disk pages or relational tuples stored in a traditional cache are mutually exclusive, each one 

corresponding to a different portion of the base data. Thus, there are no relationships among them that the cache 

should consider. On the other hand, the objects stored in a semantic cache are not guaranteed to be mutually 

exclusive. They are the actual answer sets to arbitrary user queries, and they may correspond to overlapping regions 

of the database. This is exactly why the semantic cache problem is harder. Now there are interactions among the 

MQRs. Some MQR may be subsumed by one or more other MQRs. In this case the former can be derived from the 

latter, therefore the benefit of storing all of them is questionable. Thus, the benefit of storing a QR in the cache is not 

only a function of the workload characteristics, but is also heavily dependent on the contents of the cache. The 

benefit of an MQR may change as other MQRs are added to or deleted from the cache. 

As the number of MQRs grows, the interactions among them become extremely complex and cumbersome to 

track and manipulate. Therefore, the problem of selecting the right QRs to admit to the cache becomes increasingly 

hard. Actually, for a reasonably sized cache that holds a number of MQRs in the order of several thousands, the 

aforementioned problem is very expensive to solve, especially since the cache has to operate in real time. Note 

however, that in some special cases the complexity of this problem is tractable. As has been demonstrated in 

previous work [5][12], in the restricted environment of a data warehouse the cache is able to monitor the interactions 

among the MQRs with the use of specialized structures. This is made possible because the number of possible 

interactions is limited by the lattice organization of the data in the warehouse. Though, this is not true for the general 

case with which we are dealing. 

Our strategy for dealing with the problem is twofold. First, we associate the benefit we assign to each MQR with 

the rest of the contents of the cache. Whenever an MQR is accessed we compute its benefit as the cost savings 

resulting from the use of the MQR instead of the best other alternative. Obviously, this approach takes into account 



 5  

the interdependencies of the cached results. However, a careful examination of the aforementioned scheme reveals 

that it is computationally too expensive to implement. The algorithms we propose work around this problem by 

providing an efficient and effective estimation of the true cost savings. 

Second, we maintain statistics on the frequency of accesses to various base data objects (i.e., tables, columns, 

etc.). These statistics are very useful, because they give an indication of how popular a new result is going to be if it 

is cached. By recording only the base data accesses we enable our algorithms to make an accurate prediction of 

what is missing from the cache. The cache should store those query results that cannot be computed from the cache, 

and that refer to parts of the database that are frequently accessed. Keeping access statistics on the base data gives 

answer to exactly those questions. This is also a very effective way for giving the admission policy useful hints on 

the contents of the cache and their interrelationships, which would otherwise be prohibitively expensive to evaluate 

and take into account.  

In the rest of the paper we present the details of our solution. The algorithms we propose are based on the above 

considerations. They account for the complexity of the problem, yet, in an efficient manner. 

4. Tracking Changing Patterns by Exponential Smoothing 

To implement our cache management policies we need to be able to compute the weighted averages of a 

moderately large number of time series, which have the characteristic that most observations are zero. This section 

explains how exponential smoothing can be used to efficiently maintain such averages. It will become clear in 

subsequent sections exactly what these time series are as we explain our caching policies.  

Let’s first consider a single time series, X={Xt, Xt-1, Xt-2, …}. We can compute its weighted average value by a 

linear combination of the observed values, that is, a function of the form 

Wavgt(X) = woXt + w1Xt-1 + w2Xt-2 +  , 

where W = {w0, w1, w2, … } is a series of weights (constants) whose sum equals one. Normally, the weights would 

form a non-increasing series to give higher weight to the most recent observations. Moving averages is an example 

of a widely used estimator. A moving average of length m uses the weights W = {1/m, 1/m, …, 1/m, 0, 0, …}, that 

is, the first m weights are equal to 1/m and the remaining weights are all zero. 

Exponential smoothing uses exponentially decreasing weights, that is, the average is estimated by the formula   

Savgt(X) = Xt + (1- )Xt-1 + (1- )
2
Xt-2 + (1- )

3
Xt-3 +  , 

where  is a constant, 0    1, called the smoothing constant. By subtracting Savgt-1(X) from Savgt(X), we find 

that the average at time t can be computed using the formula  

 Savgt(X) = (1- )Savgt-1(X) + Xt , 

which is the recursive formula normally used for exponential smoothing. This formula shows one of the key 

advantages of exponential smoothing, namely, there is no need to store the actual observations to compute the 

updated average.  To compute the average at time t, all we need is the average at time t-1 and the observed value at 

time t. 

Now consider the case when we have n different series that we need to update at time t. For each series X
i
, we 

store its current average Savgt-1(X
i
), i=1, 2, …, n. At time t, we receive another set of observations Xt

i
 , i=1,2, …, n, 

one for each series and update the n averages using the formula above. This appears to be very efficient but recall 

that we are interested in the case when most observations are zero, in particular, when there is only one non-zero 

observation at each point in time. We will now show how the computation can be reorganized so that we only need 

to update the averages for series receiving non-zero observations.  

First, we unwind the recursion and write the average as a function of t previous observations and the average at 

time t=0. This produces the formula 

Savg t(X) = Xt + (1- )Xt-1 + (1- )
2
Xt-2 + (1- )

3
Xt-3 +  + (1- )

t
 Savg 0(X). 

Next, we multiply both sides of the equation by (1- )
-t
, which produces the formula   

(1- )
-t 

Savg t(X) = (1- )
-t
 Xt + (1- )

-t+1 
Xt-1 + (1- )

-t+2 
Xt-2 + (1- )

-t+3 
Xt-3 +  +  Savg  0(X). 

Now define Wt = (1- )
-t
, which we will call smoothing scale factor, and CSavgt(X) = Wt

 
Savgt(X). We can then 

rewrite the series in terms of these quantities 
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CSavg t(X) = Wt Xt + Wt-1
 

Xt-1 + Wt-2
 

Xt-2 + Wt-3
 

Xt-3 +  +  Savg  0(X). 

Subtracting CSavgt-1 from CSavgt, we obtain the following recursive update formulas 

 CSavgt(X) = CSavgt-1(X) + WtXt, and 

 Wt = Wt-1/(1- ). 

Notice that if Xt is zero then CSavg remains unchanged. In other words, if we maintain CSavg instead of Savg, 

we only need to update the average for the series that receives non-zero observations. Wt is the same for all n series 

so that adds only one additional multiplication to the maintenance procedure. CSavgt(X) can easily be recovered 

using the formula Savgt(X) = CSavgt(X)/Wt.  

However, note that Wt and CSavgt(X) are monotonically increasing, so eventually they will overflow. To avoid 

overflows, we must periodically rescale all of them. Rescaling is a straightforward operation: for each series X set 

CSavgt(X) = CSavgt(X)/Wt and finally set Wt = 1. How often we need to rescale, depends on the value of  and the 

floating-point representation used. For our application,  would normally be less than 0.05 and the observed values 

small (less than 100). If double-precision (64-bit) floating-point numbers are used, rescaling every 500 time intervals 

is sufficient.  

The parameter  controls the weight associated with each observation in the time series, and subsequently, the 

speed with which the procedure forgets old values and adjusts to new ones. Obviously, we are seeking for an  

value that will allow us to follow the changing patterns in the series X, but at the same time be insensitive to 

random, momentary changes. In the experimental evaluation section we explore the sensitivity of our policies when 

this parameter changes. 

We will now explain the procedure of using exponential smoothing to estimate frequencies with an example. 

Suppose we want to estimate how frequently each of the base tables, T1, T2, …, Tn, in the database are used in a 

query. To achieve this we use a vector storing one value, CSavg(Ti), for each table and two additional fields: 

SumCSavg, storing the sum of all Csavg, and W, the smoothing scale factor. Initially all fields are set to zero, except 

for W, which is set to one. When a query using, for example, tables T1 and T2 is executed, we update the values as 

follows: 

 CSavg(T1) = CSavg(T1) + W      

 CSavg(T2) = CSavg(T2) + W   

 SumCSavg = SumCSavg + W   2 

 W = W/(1- ) 

The estimated frequency of use of a table Ti can be computed at any time as CSavg(Ti)/SumCSavg. It is important to 

emphasize here that because of the exponential smoothing, these frequencies adapt automatically to changing access 

patterns. This property allows our policies to effectively work with non-stable query workloads. 

5. The RECYCLE Algorithms 

We now describe the RECYCLE cache management policies, and we present the algorithmic tools we employed. 

Subsequently, we discuss some variations of the basic algorithms. 

5.1 Admission and Eviction Policies 

Similar to several schemes proposed earlier, the RECYCLE admission and eviction policies are based on the 

notion of benefit, more specifically estimated future benefit. The benefit is normalized by the size (in megabytes) of 

the result set. Each QR that is candidate for admission and each MQR (already in the cache) are associated with a 

benefit metric. The benefit is a function of the cost to recompute the result of the expression, its frequency of reuse, 

its update frequency, and its size. As we have already discussed, the benefit should also take into account the current 

contents of the cache. A candidate QR may have a high computation cost from the base data, but very low when the 

cache contents are employed as well. In that case, the benefit for caching this result should be accordingly low.  The 

detailed algorithms used for estimating the benefit of results already in the cache and candidates for caching are 

described later in the paper. 

We consider for caching only results produced by query expressions consisting of selections and (inner) joins, 

possibly with a single group-by on top (SPJG expressions). In addition, selection predicates, if present, are limited to 

conjunctions of range restrictions, that is, conjunctions of predicates of the form (C1 op1 const1 OR C2 op2 const2 OR 
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…), where Ci is a column, opi  are comparison operators from the set {<, , >, , =, <>}, and consti  are constants. 

Note that the range restrictions within a conjunct must reference the same column (but different conjuncts may 

reference different columns). The reason why cached results are limited to SPJG expressions, is merely because our 

current reuse algorithm (explained in [6]) is also limited to this class of expressions. It is pointless to cache objects 

that the system will not know how to reuse. The class of cacheable expressions supported may be extended in the 

future. 

Candidates for admission to the cache are identified at the end of query optimization. Not only the final query 

result but also any SPJG subexpression of the query is a candidate for caching. To find candidates, we traverse the 

final query plan and identify cacheable expressions, that is, SPJG expressions with selection predicates, if any, that 

are range restrictions. We compute the estimated benefit for each cacheable expression and select the one with the 

highest benefit as a candidate for caching. That is, for each query we select at most one expression for caching. 

The actual caching happens during execution of a query plan so the final decision whether to admit a QR must be 

made during execution time.  Most systems cache query plans and reuse them if the same query is submitted again 

by the same or other users. Hence, a query plan may be executed multiple times. We must reassess whether to admit 

QR to the cache every time the plan is executed because the contents of the cache may have changed.  If the QR 

already exists in the cache, there is no need to cache it again. If it does not exist in the cache, it is admitted only if its 

estimated benefit exceeds the estimated benefit of the MQRs that it evicts. In order not to slow down execution, it is 

important that the final decision whether to admit a QR into the cache and what MQRs to evict can be made quickly. 

Now consider the problem of choosing one or more victims for eviction. This problem turns out to be equivalent 

to the standard knapsack problem: among the MQRs already in the cache and the candidate for admission, select the 

subset that maximizes the total benefit and fits in the space limit of the cache. The total benefit is computed as the 

sum of the benefit (which is normalized by the size) times the size in megabytes of each MQR and of the candidate 

for admission. As is well known, the knapsack problem is NP-complete but there are good approximate algorithms 

[20]. The simplest algorithm is the greedy heuristic: sort the items in decreasing order of “price per pound” and then 

pick items from the beginning of the list until the knapsack is full. As we show in the Appendix, the approximation 

that the greedy heuristic achieves in our context is close to optimal. In our case, “price per pound” translates into 

benefit per megabyte. We use the dual version of the greedy heuristic; namely, evict MQRs from the cache in 

increasing order of their benefit per megabyte. This heuristic gives us a list of victims but we still need to decide 

whether exchanging them for the candidate QR will increase the total benefit. The total benefit of an MQR or a 

candidate QR is its benefit per megabyte times its size in megabytes. We add up the total benefits of the selected 

victims and compare the sum to the total benefit of the candidate QR. The QR is admitted (and the selected victims 

evicted) only if its total benefit is higher than the sum of the total benefits of the victims. 

The RECYCLE cache management policies are summarized as follows. 

Admission policy: After optimization of a query, traverse the final plan and identify the cacheable subexpression 

QR with the highest estimated benefit per megabyte. If the estimated benefit of QR is positive, mark QR as a 

candidate for caching during execution. Before execution of a query plan with a marked subexpression QR begins, 

decide whether to admit QR to the cache. If QR is already in the cache (cached by a previous execution of the plan), 

do not admit QR again. Otherwise, consider whether there is enough free space for QR in the cache. If there is 

enough space, then admit QR. If there is not enough space, then admit QR only if its estimated total benefit is higher 

than the sum of the total benefits of the MQRs that must be evicted in order to free up the space needed by QR. 

Eviction policy: Repeatedly evict the MQR with the lowest estimated benefit among all the MQRs remaining in the 

cache until enough space has been freed up. 

5.2 Estimating the Benefit of a Cached Result 

The basic idea is to credit an MQR with the benefit, i.e., the cost saving, attributable to it whenever it is used 

during query execution. For each MQR, we keep track of its average benefit per megabyte per query executed. When 

a query Q is executed and a set of MQRs are used in order to produce the answer, we would like to credit each MQRi 

used with a benefit computed as 

 BMQRi(Q) =(CQ(without MQRi) – CQ(with MQRi) )/|MQRi|. 

The components in the formula are as follows. 

 CQ(without MQRi) is the cost to compute query Q assuming that the MQRi is not cached; 

 CQ(with MQRi)  is the current cost to compute query Q, that is, making use of MQRi; 

 |MQR| is the size of MQRi (in megabytes). 
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This formula has the advantage that the benefit attributed to an MQR takes into account the current state of the 

cache. Now consider whether and how we can obtain the values needed in the formula. The size, |MQR i|, is readily 

available, since we know the amount of space occupied by each cached result. For CQ(with MQRi)  we can use the 

optimizer’s cost estimate for query Q. However, CQ(without MQRi) is not readily available. To obtain an estimate 

we would have to mark MQRi as unavailable and reoptimize the query. Reoptimizing once for each MQR used in a 

query is clearly too expensive, thus we have to come up with a solution that does not require reoptimization. 

An alternative approach is the following. Query Q reads some fraction of the rows in MQRi. We know the cost of 

computing the cached result when it was created and we can also estimate the cost of reading the cached result. If 

we assume that the query would have recomputed the part of the cached result that it read, it is reasonable to 

estimate the benefit using the following formula 

 BMQRi(Q) = FQ  (C(compute MQRi) – C(read MQRi))/|MQRi|, 

where  

 FQ is the fraction of MQRi read by query Q, 

 C(compute MQRi) is the cost of computing the result of MQRi (excluding the cost of storing it), and 

 C(read MQRi) is the cost of reading MQRi. 

This formula does not require any reoptimization. The only quantity in the formula that depends on the 

current query Q is FQ. An estimate of the fraction of the cached result read by the query can be obtained easily be 

examining the execution plan of the query (our solution) or by counting rows read during query execution. For 

C(compute MQRi) we simply use the optimizer’s cost estimate at that node in the plan. We estimate C(read MQRi) 

using the optimizer’s normal cost formulas and its estimates of row count and average row size for the result. 

This formula takes into account the state of the cache when MQRi was created. MQRi may have been computed 

using base tables only or using some other cached results. This will be reflected in the cost, that is, if MQRi was 

computed using other cached results, C(compute MQRi) will be lower than if it had been computed directly from 

base tables. However, the benefit does not reflect the current cost of computing MQRi, that is, the benefit remains 

the same even if the cached results used to compute MQRi are evicted from the cache. This could be remedied by 

tracking which other cached results MQRi depends on. When one of the cached results on which MQRi depends on is 

evicted, we reoptimize (but do not recompute) the query expression defining MQRi to get a new estimate for 

C(compute MQRi). This increases the cost of eviction because evicting a cached result triggers reoptimization of all 

other cached results that depend on it. To avoid a flurry of reoptimization, we could simply mark the affected cached 

results as needing reoptimization and defer the actual reoptimization until the next time the cached result is used. 

Further investigation of this idea is needed because it is not immediately clear under what circumstances the extra 

cost and complexity of dependency tracking and reoptimization are justified. Note that we suggest calling the 

optimizer after the eviction decision has been made to fix up future estimates but not in order to make the eviction 

decision. We have not implemented this idea. 

We keep track of  the average benefit for each MQR in the cache using the low-overhead version of exponential 

smoothing presented in the previous section.  Each MQR in the cache has an associated data structure, called its 

descriptor, that contains among other things four fields needed for benefit estimation: (cumulative) average benefit, 

CumBenefit; cost of computing the result, CostCompute; cost of reading the result, CostRead; and size of the result 

(in megabytes), SizeMB.  The fields CostCompute, CostRead and SizeMB are initialized when the result is admitted 

to the cache. CumBenefit is initialized to zero. In addition, there is one field, ScaleFactor, common to all cached 

results that keeps track of the current smoothing scale factor. When a query is executed, CumBenefit is updated for 

each MQR used in the query according to the formula 

  CumBenefit = CumBeneft +   Scalefactor  fQ  (CostCompute – CostRead)/SizeMB. 

Finally, the global smoothing scale factor is updated acccording to the formula 

 Scalefactor = Scalefactor/(1- ). 

The MQRs (actually the MQR descriptors) are organized in a heap structure to enable fast access to the MQRs 

with the lowest average benefit.  

5.3 Estimating the Benefit of a Candidate for Admission 

When a new query result QR is considered for admission to the cache, we need to compute its expected benefit. 

The query result may be the final result of a user query or the result of a subexpression of the query. The benefit 
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depends on how frequently it is likely to be accessed in the future, the cost savings from caching it as opposed to 

recomputing it, its size, and how long the result is expected to remain valid. These parameters are combined in a 

function that represents the benefit of caching QR per unit size and per unit time: 

 BQR = (PQR  FQR(C(compute QR) – C(read QR)) – VQR  C(write QR) )/|QR|   

The parameters used in the formula are as follows. 

 PQR is the probability of a (future) query using the result if cached;  

 FQR is the average fraction of the result read by a query that uses the result; 

 C(compute QR) is the current cost of computing QR, regardless of whether it was computed entirely from base 

tables or from some existing MQRs; 

 C(read QR) is the cost of reading QR from the cache; 

 VQR is the time QR is expected to remain valid; 

 C(write QR) is the cost of materializing (writing) QR; 

 |QR| is the size of QR (in megabytes). 

We already discussed how to compute C(compute QR) and C(read QR) in the previous section. C(write QR) can 

be computed in the same way as C(read QR), namely, by using the optimizer’s normal cost formulas for estimating 

the cost of writing a temporary result. 

PQR is the probability of QR being used by a future query as perceived by the base data. We are interested in how 

frequently the system accesses base tables for answering a query, because those are the queries that may use this 

result if it is cached. This way of calculating PQR is very important, giving our caching policy the desirable property 

that results covering “unpopular” parts of the database are unlikely to be cached. It does, however, ignore the fact 

that some queries that used other cached results before may now use QR instead (i.e., once QR is cached). 

FQR is the average fraction of the result read by a query that uses the result. This quantity is rather difficult to 

estimate; it depends both on the characteristics of the cached result and the characteristics of the query. As a 

practical solution, we estimate this by the average observed fraction across all MQRs kept in the cache. That is, it is 

the exponentially smoothed average of the usage fractions FQ (defined in the previous section) observed as queries 

are executed. One could probably do better by dividing the MQRs into classes based on some characteristics, for 

example, tables and columns used, and estimating FQR separately for each class. However, we have not investigated 

this issue in detail. 

VQR is the time QR is expected to remain valid considering the invalidation rules used by the cache. As a base 

table T is updated, some of the cached results containing data from T may no longer be correct and have to be 

purged from the cache. Exactly when a cached result is declared invalid depends on the invalidation rules used. In 

principle, we can always decide correctly whether to invalidate a cache result by recomputing the expression and 

comparing the old and new results. This is a totally impractical rule, of course, so in practice we have to use more 

efficient, and therefore more conservative rules.  The simplest rule is to invalidate an MQR whenever one of its base 

tables is updated. A slightly better rule would also consider what columns were affected: if the expression defining 

an MQR does not reference any of the updated columns, it cannot be affected by the update, and remains valid. 

Estimating VQR requires that we maintain some statistics on update frequencies. This issue will be discussed further 

in Section Error! Reference source not found., when we discuss access statistics. 

Note that the benefit formula implicitly takes into account the cache contents. If QR was computed cheaply from 

some MQRs already in the cache, C(compute QR) will be low and the cost savings small. Even if computing QR 

directly from base tables is high, the actual cost and the potential cost savings may be small. This gives our caching 

policy the property that a result is unlikely to be cached if it covers queries over a part of the database that is already 

well covered by other MQRs in the cache. In that case, little is to be gained by caching QR. 

The RECYCLE cache management policies are designed to allow in the cache only those results that are 

frequently accessed and that result in substantial savings for future queries. This is true even when the characteristics 

of the workload change over time.  

5.4 Estimating the Reuse Frequency of a Candidate for Admission 

To use the benefit formula described in the previous section we need to estimate the probability of reuse of 

candidates for admission. In this section, we discuss how we compute the probability of reuse from a collection of 

more elementary probabilities. In the next section, we show how these more elementary probabilities can be 

efficiently estimated by maintaining certain simple access statistics on base data.  

QRs that are candidates for caching are defined by SPJG expressions of the following general form: 
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SELECT <List of output expressions> 

FROM   R1, R2, ..., Rn 

WHERE  <RangePredicate1> AND <RangePredicate1> AND ... 

       AND <JoinPredicate1> AND <JoinPredicate2> AND ... 

[GROUP BY <List of grouping expressions>] 

 

where each <RangePredicate> is a range restriction over some column in one of the source tables and each 

<JoinPredicate> is a predicate involving columns from more than one table. The output expressions and grouping 

expressions are typically plain column references, but may also be arbitrary scalar expressions. 

Given a QR of this type, we want to estimate the probability that a (future) query will use the result of this 

expression. This probability depends on a variety of factors, including the characteristics of the expression, the 

current contents of the cache, and the algorithm for recognizing whether a result can be used in a query. Clearly, we 

have to make some simplifying assumptions. The first assumption is one of independence, namely, source tables are 

selected independently of each other, output columns are selected independently of each other, columns on which 

range predicates are applied are selected independently of each other, applicable join predicates are selected 

independently of each other, and grouping columns are selected independently of each other. Second, we assume 

that a cached result can only be used to answer a query expression that references the same tables. These are 

admittedly strong assumptions, yet they allow us to efficiently tackle a hard problem and still deliver superior 

performance. 

Suppose we have available or can estimate the following probabilities: 

1. Ptab(Ri), the probability that a query uses table Ri as a source table; 

2. Pout(Ri.Cj | Ri), the probability that column Cj of table Ri is used as an output column given that table Ri 

occurs as a source table; 

3. Psel(Ri.Cj | Ri), the probability that a query has a range restriction on column Cj of table Ri that is contained in 

the corresponding range restriction of the QR, again given that table Ri occurs as a source table; 

4. Pjoin( joinpred(Ri, Rj) | Ri & Rj), the probability that a query uses the same join predicate between tables Ri 

and Rj as the one used in the QR, given that Ri and Rj occur as source tables; 

5. Pgroup(Ri.Cj | Ri), the probability that a query uses column Cj of table Ri as a grouping column, given that table 

Ri occurs as a source table; 

Assuming tables are selected independently, the probability of a query using tables R1, R2, …, Rn is then 
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Let Col(Ri) denote the  set of columns of table Ri and  Cout(Ri) the set of columns of table Ri output by QR. The QR 

is usable by a query only if the query outputs a subset of the columns output by QR, that is, if it outputs no columns 

not output by QR. This probability can be computed as 

n

i j

ijiout

tot

out RCRPP
1

)|.(1 , 

where j ranges over all columns in Col(Ri) – Cout(Ri), that is, all columns of Ri not output by QR.  

A query cannot be computed from the QR unless all its range restrictions are contained in the corresponding range 

restrictions of the QR. This probability can be computed as 
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where j ranges over all columns that are range restricted in QR. 

A query cannot be computed from QR unless it contains, at least, all the join predicates contained in QR. The 

probability of this occurring can be computed as 
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If QR contains a grouping clause, a query cannot be computed from QR unless its grouping clause specifies a 

subset of the grouping columns in QR. In other words, its grouping list cannot contain any columns not in the 

grouping list of QR. Let Cgroup(Ri) denote the set of grouping columns from table Ri used in QR. This probability 

can be computed as 

 
n

i j
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where j ranges over all columns in Col(Ri) – Cgroup(Ri), that is, all columns of Ri that are not used as grouping 

columns in QR. 

Finally, we combine all the above probabilities to get the probability of reuse of the QR: 
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5.5 Access Statistics for Base Data 

In this section, we describe a mechanism for keeping track of the frequency of accesses to various base data 

objects (i.e., tables, columns, etc.), which we use in our cache management policies. We use these statistics to 

estimate how popular a new result is expected to be if it is cached, which then affects the expected savings from 

caching the result. Note that we are concerned only with accesses to base tables and not with accesses to cached 

results.  Expected savings for results already cached are estimated by a different mechanism.   

Obviously, the finer granularity we use in the statistics, the more accurate estimates we get. However, accuracy 

comes at the expense of additional CPU and storage overhead. We choose to monitor the frequency of accesses to 

the following objects: 

1. Tables; 

2. Joins between two tables; 

3. Output columns of tables; 

4. Selection ranges for columns (i.e., column access histograms);  

5. Sets of grouping columns. 

We use exponential smoothing to ensure that our frequency estimates adapt to changing patterns in the workload. 

This also allows us to update the estimates very efficiently. We also keep the frequencies normalized at each step so 

they can be treated directly as probabilities. 

We’ll explain the procedure of access statistics maintenance in detail for tables, and then briefly cover other 

objects. We maintain one statistics object for each base table (if the base table has been used in at least one query). 

The table statistics object contains just one field, UnscaledFreq, which is initialized to one. In addition, there are 

two global variables. The smoothing scale factor, ScaleFactor, and SumUnscaledFreq, which stores the current sum 

of the all the existing UnscaledFreq fields. The ScaleFactor field is unique and common to all the statistics objects 

we keep for a database. It is updated every time a query is executed as follows 

 ScaleFactor = ScaleFactor/(1- ). 

Now assume that a query accessing base tables R1, …, Rk is executed. Then, ScaleFactor is updated as above, and 

the for the rest of the variables we apply the formulas: 

UnscaledFreq(Ri) = UnscaledFreq(Ri) +   ScaleFactor, 1  i  k, and 

SumUnscaledFreq = SumUnscaledFreq +   ScaleFactor  k. 

The probability of a query accessing table Ri, Ptab(Ri), can be estimated at any time by normalizing the frequency: 

Ptab(Ri) = UnscaledFreq(Ri)/ScaleFactor. According to the formula presented in Section 5.4 for computing the 

probability of a query accessing together all the tables it references, we can estimate Ptab
tot

 simply as Ptab
tot

 = 

Ptab(Ri)  Ptab(Rk). 

Following a procedure similar to the one outlined above we can also compute the probabilities with which a query 

references a join between two tables, a set of  output columns, or a set of grouping columns. In the case where the 

query involves range restrictions on one or more columns we follow a slightly different approach. This is necessary 

in order to correctly estimate the probability of reuse of such a query result. Our strategy is outlined in the next 

section. 



 12  

5.5.1 Access Histograms for Column Selection Ranges 

In order to be able to make accurate estimates of access frequencies to a column subset we construct and maintain 

Access Histograms (AccHist) on individual columns. These histograms divide the active domain of the column to a 

prespecified number of buckets nB. Initially, this subdivision of the domain into buckets is done in a uniform way, 

assigning an equal number of domain values to each bucket (similar to equi-width selectivity histograms). We 

associate every column with two histograms, AccHistGreater and AccHistLess, and each bucket of these histograms 

stores an UnscaledFreq field. These fields are initialized according to the uniform distribution, that is, 

UnscaledFreq = 1/nB, unless we have a reason to favor some of them. If, for example, some column stores values 

related to time, and we know that the majority of the queries ask for recent values, then we may tailor the initial 

distribution accordingly. Note though, that even if we start with the uniformity assumption, the exponential 

smoothing technique will cause the UnscaledFreq values to asymptotically converge to the real distribution (under 

the assumption that the query workload exhibits some reference locality). Two more variables, SumUnscaledFreqG 

and SumUnscaledFreqL, keep for each of the two histograms the current sum of all the UnscaledFreq values. 

Finally, we also use ScaleFactor, which is unique and defined for the entire database. 

The AccHistGreater histogram is updated in response to selection conditions of the form R.C opGreater const, 

where C is the name of a column of table R, opGreater {>, }, and const is a value in the active domain of C. 

Similarly, AccHistLess is activated by selection conditions of the form R.C opLess const, where opLess {<, ≤}. 

Queries that specify a closed range restriction within the active domain of C, i.e., with selection conditions of the 

form const1 op R.C op const2, are divided into two parts each one involving a single comparison operator, and are 

treated separately. Assume that a query Q specifies k range restrictions with opGreater operators, and l restrictions 

with opLess operators is executed. For each restriction we locate the bucket b that contains const and update its 

UnscaledFreq field. We update the statistics as follows 

 ScaleFactor = ScaleFactor/(1- ), 

 UnscaledFreqG(bi) = UnscaledFreqG(bi) +   ScaleFactor, 1  i  k, 

 UnscaledFreqL(bi) = UnscaledFreqL(bi) +   ScaleFactor, 1  i  l, 

 SumUnscaledFreqG = SumUnscaledFreqG +   ScaleFactor  k, and 

 SumUnscaledFreqL = SumUnscaledFreqL +   ScaleFactor  l. 

Remember that ScaleFactor is updated only once for each query that is executed.  

Now we are ready to estimate the probability Psel that a range restriction can be reused by other queries. Consider 

a single selection condition of query Q of the form Rq.Cq opGreaterq constq, and let bq be the bucket in which constq 

lies. Bucket bq alone can give us an estimate of the probability of a query having a similar restriction, that is, Rq.Cq 

opGreaterq const2, where const2 lies in the range of values of bucket bq. However, any query with a restriction Rq.Cq 

opGreaterq const3, where const3  constq, will be able to reuse the result of the selection condition, albeit only a 

portion of it. Thus, the probability Psel(Rq.Cq| Rq) is calculated as follows 
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where nB is the total number of buckets of AccHistGreater. Analogously, for range restrictions involving opLess 

comparison operators we have 
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It is likely that the selected range will not align exactly with the bucket boundaries, but will rather intersect a bucket 

at an arbitrary point. In that case, we can use linear interpolation in order to refine the estimates we get for the 

UnscaledFreq field. 

In the last step of the procedure, following the formula we presented in Section 5.4, we can derive the probability 

of reuse of the range restrictions of query Q by multiplying the individual Psel values for all the k+l range 

restrictions. 

So far, the implicit assumption in our discussion was that the column under consideration is a numeric attribute. 

However, we can apply the same techniques for a categorical attribute as well, if there exists an ordering function on 

that attribute. 
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Evidently, the choice we made to construct the access histograms using buckets of equal width is not the optimal 

solution. Thus, we need a way to change the bucket boundaries in order to fit better the underlying access 

distribution. This procedure cannot be performed just once at the beginning, but should rather be dynamic, because 

the access distribution is evolving along with the query workload. There are several approaches that have been 

proposed in the literature for dynamically managing histograms (albeit, selectivity histograms) [14][16][15]. This 

problem is very interesting in out setting, but we do not pursue it any further in the current work. 

5.6 Accounting for Updates in the Base Data 

An important issue that we have not discussed so far is that of updates in the base data. When the contents of the 

relations in the database change, the cache must change as well in order to reflect the latest state of the database. 

When propagating the changes from the database to the cache we first have to identify the affected MQRs. Then 

there are three alternatives on how to enforce consistency between the database and the cached results. The first is to 

recompute the affected MQRs; the second is to incrementally maintain them; and the third is to invalidate them. 

Obviously, regardless of the choice we make, caching a query result that will soon be updated is a waste of 

resources, and we would like to avoid it.  

In order to remedy this situation we keep track of the frequency of updates to the same database objects as for the 

access statistics, namely, tables, joins between tables, output columns of tables, selection ranges for columns, and 

sets of grouping columns. Once again, we use exponential smoothing in order to take into account changing patterns 

in the workload. Then, we just have to penalize the benefit estimate of a candidate for admission according to the 

frequency with which is gets updated. 

5.7 Revisiting the Query Execution Cycle 

In order to implement the RECYCLE cache management strategies we have to make some minor changes to the 

query execution cycle. When a query is submitted to the system it first enters the optimizer, where the query is 

optimized. The output is the estimated best execution plan, which may reference both cached objects and base data. 

It is this plan that is subsequently executed by the execution engine in order to produce the result of the query. The 

query execution plan may also be cached to avoid the reoptimization if the same query is encountered again. 

The final query execution plan is delivered to the cache subsystem for preprocessing. The cacheable 

subexpresssions are identified and the one with the highest estimated benefit is selected and marked. The cache 

gathers all the essential statistics and information in a succinct representation, and attaches this data packet to the 

plan. The information in this packet is everything that is needed for computing the benefit functions, as well as 

updating the base data access statistics. The data packet that has been attached to the query execution plan travels 

with it until execution time. When execution begins, the data packet is handed over to the cache. It is then that the 

actual processing takes place. The cache updates all the pertinent statistics, computes the new benefit functions and 

updates the old ones, makes the decision of whether to cache the new result or not, and if necessary which old 

results to evict from the cache. All the relevant information is preprocessed, so the computation overhead during 

execution time is minimal. 

We consciously made the decision to leave for execution time as little processing as possible because a query is 

optimized only once but may be executed several times. Even if the state of the system has changed since the query 

was optimized, the effort is not wasted, because it is the same plan that will be executed. The only data that may be 

outdated are the cost estimates used in the benefit functions. If in the meantime the state of the cache has changed in 

such a way that the computation of the MQRs involved in the query is affected, then the cost savings estimate will 

not be accurate. Nevertheless, we expect this situation to have only a small effect on the performance of the cache, 

and we believe that the advantages of our approach justify the current choices. 

5.8 Variations of the RECYCLE Algorithms 

There are several possible variations of the policies we presented, with different levels of computation time and 

space costs. An obvious question is how much of the access statistics is enough. However, the answer to this 

question is not straightforward since it heavily depends on the characteristics of the workload, and can vary greatly. 

There is a tradeoff between the accuracy of the statistics and the complexity and performance (time-wise) of the 

system. Along this direction, we could drop some or all of the base data access statistics. In the case where we 

choose not to keep any access statistics, we could replace PQR in the benefit function for admissions with the average 

access frequency over all the MQRs. In effect, we are replacing the estimate of the future access frequency for a new 



 14  

MQR with the average access frequency of all MQRs. We call this policy RECYCLE-s (RECYCLE simplified), and 

we study its performance in the experimental evaluation. 

We also experiment with another variation of the policies where we set PQR = 1. In this case we ignore the PQR 

factor altogether. The underlying assumption is that all the candidates for admission to the cache are equally likely 

to be accessed again in the future, and therefore are assigned the same weight with respect to that parameter. In the 

experimental section we refer to this policy as RECYCLE-c (RECYCLE constant). 

6. Experimental Evaluation 

In order to evaluate the performance of the proposed cache management policies we implemented the algorithms 

described in this paper and ran a series of experiments. The implementation was done in the SQL Server commercial 

database management system, written in C++, for the Windows 2000 operating system. For the experiments we used 

a synthetic dataset based on the TPCD benchmark, and a synthetically generated workload over this dataset. The 

size of the dataset is 100MB. The queries in the workload were generated following a specified distribution over the 

elements of the dataset (i.e., relations, attributes, ranges of attributes). In the workload we use for the experiments 

we have specified a number of hot spots. That is, some regions of the dataset are accessed more often that others. In 

the workload there are a total of 500 queries. The measure we report in the experimental graphs is the cost savings, 

which indicates how much of the total execution cost of the queries in the workload was saved because of the use of 

the cache. We set the size of the cache to 50MB. 

6.1 Changing the Smoothing Constant 

In the first set of experiments we only examine the RECYCLE policies. More specifically, we are interested in 

evaluating the effect of changing the smoothing constant. Remember that we apply an exponential smoothing 

mechanism over both the access statistics for the base data and the benefit values of the cached results. We refer to 

the smoothing constant for the base data statistics as alpha-b, and the one for the benefit of MQRs as alpha-c. The 

smoothing constant controls the speed with which the algorithm forgets the old values and adjusts to the new ones. 

When the value of the smoothing constant is high then the procedure adjusts to the new values faster and 

consequently has shorter memory. 

Figure 1 depicts the effect on cost savings of varying parameter alpha-b when alpha-c is constant, for three 

different values of alpha-c, namely 0.2, 0.1, and 0.05. As we increase the value of alpha-b the cost savings decrease 

or remain constant. We observe the same trend across all values of alpha-c. 
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Figure 1: Varying the parameter alpha of the statistics on the accesses to the base data. 

 

In Figure 2 we show the same experiments as before, but this time we vary the parameter alpha-c for three 

constant values of alpha-b. Similarly to the previous graph we observe that the cost savings are diminishing when 

we increase the value of alpha-c. This means that in both cases it is beneficial to keep the values of the smoothing 

constants low, so that the cache management policies follow the changing patterns of the workload and remain 
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unaffected by the random changes. It is also evident by examining the two figures that the RECYCLE policies are 

more sensitive on the alpha-c parameter that the alpha-b. 
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Figure 2: Varying the parameter alpha of the statistics on the cached results. 

6.2 Comparison to Other Cache Management Policies 

In order to assess the performance of our approach we compare the RECYCLE policies with other cache 

management policies proposed in the literature. In the following we briefly describe the alternatives we consider. 

 Random: Always admit a new result. Randomly evict cached results to make space for the new 

admission. 

 Least Recently Used (LRU): Always admit a new result. Evict the cached result that was least recently 

used. 

 Least Frequently Used (LFU): Always admit a new result. Evict the cached result that is least 

frequently used. When computing the frequency of use of the cached results we also apply an 

exponential smoothing mechanism. 

 Fixed Cost With No Aging: A benefit value is associated to each candidate for admission based on the 

ratio (cost of computing the result)/(size of the result). A new result is admitted if its benefit is greater 

than the total benefit of all the cached results that have to be evicted in order to make space for this new 

result. The cached results with the lowest benefit values are evicted. 

 Fixed Cost: This policy is the same as the previous one, with the added feature that an exponential 

smoothing mechanism is used, which makes cached results not recently used more attractive for 

eviction. 

 Infinite: Always admit a new result. Never evict any cached result.  

The only reason we include the random and infinite policies in our evaluation is as a reference for the 

performance of the rest of the algorithms. We expect all the other policies to perform better than random and worse 

than infinite. Evidently, the infinite policy is not realistic, because it assumes that the available space for the cache is 

unbounded. Note however, that infinite is not the same as optimal. The optimal algorithm must have a bound on the 

size of the cache, and because of this is expected to perform at most as good as infinite. This implies that the upper 

bound for the performance of the cache management policies is probably lower than what indicated by infinite. We 

did not implement the optimal policy, because it is an NP-hard problem, and the exponential growth of the solution 

space was prohibitive for the size of the problems we considered in the experiments. 

Figure 3 depicts the cumulative cost savings for the workload of the 500 queries and for all the aforementioned 

cache management policies. As expected, the performance of all the algorithms is between infinite and random. The 

RECYCLE policy is performing well above the competitors, closely following the infinite. This experiment 

demonstrates the superiority of our solution to the cache management problem. 
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Figure 3: Cumulative cost savings for various cache management policies. 

In the last set of experiments we investigate the performance of the variations of the RECYCLE policies. The 

graph of Figure 4 depicts the cumulative cost savings for the query workload and for each one of the infinite, 

RECYCLE, RECYCLE-s, and RECYCLE-c policies (described in Section 5.8). In this case we want to assess the 

relative importance of various parameters in our approach.  

The results of the experiments show that we have to pay a significant performance penalty for completely 

ignoring the access statistics to the base data (RECYCLE-c). Even when trying to approximate this parameter, as in 

the case of RECYCLE-s, we do not get performance close to the one achieved by the RECYCLE policy. This is a 

strong argument in favor of our decision to employ the access statistics to base data, so that the cache management 

policies can take more informed actions. 
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Figure 4: Cumulative cost savings for different variations of the RECYCLE cache management policies. 

7. Conclusions and Future Work 

In this paper we propose a family of novel cache admission and eviction policies, named RECYCLE, specifically 

designed for semantic caching within a relational database server. These algorithms have small computational 

overhead. Yet they can effectively detect and track the hotspots of the query workloads as they change over time. In 

addition, the decisions they make take into account the current state of the cache, which is crucial for the 
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performance of a semantic cache. We introduce the notion of base data access statistics, and we demonstrate how 

they can help to tackle a hard problem, namely, rendering our policies aware of the interdependencies of the cache 

contents, at a small cost. Caching is not automatic, i.e., the decision whether to cache a query result takes into 

account the current content of the cache and the estimated benefit of the result during its lifetime. These two 

strategies form the basis of our approach. An experimental evaluation shows that our algorithms have performance 

superior to other policies proposed in the literature. 
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Appendix 
 

In the following we will show that the approximation achieved by the greedy heuristic in our setting is close to 

optimal. Remember that we use the same greedy algorithm as the Knapsack problem in order to decide which results 

to keep in the cache and which to evict. 

Assume that Bopt is the benefit of the optimal algorithm, and Bgr the benefit achieved by the greedy heuristic. 

Then, we wish to show that the ratio r = (Bopt – Bgr)/Bopt is small, or in other words, that the solution achieved by 

greedy is very close to optimal. We know that for the fractional Knapsack problem the optimal solution is the one 

given by greedy Bopt = Bgr + f blast, where 0  f <1, and blast is the benefit of the last item, a fraction of which was 

taken. Then, it holds that: 

gr

last

opt

last

opt

gropt

B

bf

B

bf

B

BB
r , 

and 

min

max

b
s

S
Bgr

, 

where S is the total size of the cache, smax is the size of the largest item, and bmin the smallest benefit. By 

combining the above two formulas we get for r: 

min

max

max

min

max

b
s

S

bf

b
s

S

bf
r last , 

where bmax is the largest benefit. In the last inequality we observe that if smax << S and bmax is close to bmin then the 

ratio r is very close to 1. In a commercial database management system we expect to have several hundreds of 

cached results of relatively small size. Therefore, the first assumption is almost certain to hold. We could argue that 

the same is true for the second assumption as well, given that there are no extreme cases in the workload under 

consideration. Consequently, the statement that the greedy approximation is close to optimal for our setting is true in 

the general case. 


