
Self-Organizing Energy Aware Clustering of Nodes in
Sensor Networks Using Relevant Attributes

Marwan Hassani • Emmanuel Müller • Pascal Spaus • Adriola Faqolli
Themis Palpanas ◦ Thomas Seidl •

•Data Management and Data Exploration Group ◦Department of Computer Science
RWTH Aachen University, Germany University of Trento, Italy

{hassani, mueller, seidl}@cs.rwth-aachen.de themis@disi.unitn.eu

ABSTRACT
Physical clustering of nodes in sensor networks aims at group-
ing together sensor nodes according to some similarity cri-
teria like neighborhood. Out of each group, one selected
node will be the group representative for forwarding the
data collected by its group. This considerably reduces the
total energy consumption, as only representatives need to
communicate with distant data sink. In data mining, one
is interested in constructing these physical clusters accord-
ing to similar measurements of sensor nodes. Previous data
mining approaches for physical clustering concentrated on
the similarity over all dimensions of measurements.

We propose ECLUN, an energy aware method for physical
clustering of sensor nodes based on both spatial and mea-
surements similarities. Our approach uses a novel method
for constructing physical clusters according to similarities
over some dimensions of the measured data. In an unsu-
pervised way, our method maintains physical clusters and
detects outliers. Through extensive experiments on syn-
thetic and real world data sets, we show that our approach
outperforms a competing state-of-the-art technique in both
the amount of consumed energy and the effectiveness of de-
tecting changes in the sensor network. Thus, we achieve
an overall significantly better life times of sensor networks,
while still following changes of observed phenomena.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications—
Data mining

General Terms
Algorithms, Management

Keywords
Physical Clustering, Relevant Attributes, Subspace Cluster-
ing, Sensor networks, Energy Efficiency, Change detection
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1. INTRODUCTION
The communication process is the dominating energy con-
sumer in sensor networks, particularly when this is happen-
ing over long distances. Sensor nodes need to use their full
sending power to forward their sensed data to distant sink,
while they can use less power when communicating locally
with each other. Considering the energy limited resources
in sensor networks, this motivated a lot of research on the
physical clustering of sensor nodes. The idea is to divide sen-
sor nodes into groups according to some criteria, and then
selecting one node from each of these group to serve a group
representative. The main task of the group representative is
forwarding the readings of sensor from its group to this dis-
tant sink. As nodes need to communicate within the group
(the cluster) using less energy, this considerably reduces the
total consumed energy in the whole network.

Data mining approaches contributed to this problem mainly
in two parts: the criteria used for clustering and the process
of selecting representatives. The similarity of sensed mea-
surements and spatial characteristics were used as a group-
ing measure. Thus, inside each cluster, the node with the
most similar readings to the measurements of all nodes in-
side that cluster is selected as a cluster representative.

In both cases, the selection methodology is based on the sim-
ilarity between all attributes of clustered nodes. Todays sen-
sor nodes are collecting increasingly many number of dimen-
sions for each sensor node. The similarity measures should
cope with the increasing dimensionality of sensed data. In
such data, distances grow more and more alike. The full
data space is thus sparse and each nodes will be alone in its
physical cluster as no global similarity between the measure-
ments of different nodes can be observed. We are tackling
this point in this work, by introducing a novel method for
performing physical clustering based on the similarity over
some of the sensed attributes using subspace clustering. We
show that this method produces improvements in energy
consumption even for low dimensional data.

In addition to the importance of saving energy, we designed
our method to cope with the change detection. Detecting
novelty in input stream is an important feature that has to
be considered when designing any data knowledge technique
in sensor networks. For example, it is an essential point in
evaluating learning algorithms in drifting environments [9].



1.1 Our Contribution
The following aspects are our main contributions we in-
cluded in this work:

• Reducing the communication burden
In our approach, nodes do not continuously commu-
nicate with the representative. Communication is es-
tablished only when a state change is detected in the
monitored phenomena. By the careful construction of
clusters, this communication is further reduced by us-
ing the similarity to representative readings.

• Subspace physical clustering
Our novel method for building clusters according to
the relevant attributes results in more consistent clus-
ters, and helps for maintaining the clusters with less
effort.

• Outlier-aware change detection
We present a simple but effective method for detecting
outliers in the input stream performed by each node,
and another one performed by the representative to
detect deviating nodes in its cluster. We show that
our approach by applying this method, is still capable
of detecting changes in input stream.

• Uniform utilization of energy resources in sen-
sor network
We suggest further optimization methods to our ap-
proach to uniformly distribute the usage of energy be-
tween the nodes. We cope with the cases of single-
node clusters, and changing representatives according
to residual energy. This results in a longer lifetime of
the whole sensor network as nodes die close to each
other.

The remainder of this paper is organized as follows. Sec-
tion 2 mainly reviews the literature related to the physical
clustering problem. Section 3 introduces some formulations
and definitions used in our approach. Section 4 describes in
detail our algorithm. Section 5 presents the experimental
results. We conclude the paper and suggest future work in
Section 6.

2. RELATED WORK
In this section we list briefly the related work to our physical
clustering problem.

Traditional offline clustering algorithms e.g. [8], [4],[25]
can not cope with the streaming and distributed nature of
sensor nodes.

Although some distributed versions of clustering al-
gorithms were established like SDBDC [11], DFEKM [12],
they are still dealing with offline data and can not simply
adapted to perform online distributed clustering.

Many algorithms were developed to deal with the online
distributed clustering of data. EDISKCO [10] is an en-
ergy efficient approach for online approximative clustering

of sensor data. The Distributed Grid Clustering algorithm
[22] is an example of an online 2-layer distributed clustering
of sensor data. ELink [16] and the Distributed Single-Pass
Incremental algorithm DSIC [24] are two examples on time
series clustering of sensor nodes. None of these algorithms
considered the possibility of having clusters hidden in sub-
sets of the attributes.

Subspace clustering has been proposed, for today’s applica-
tions with incising number of given dimensions. Subspace
clustering detects clusters in arbitrary projections by auto-
matically determining a set of relevant dimensions for each
cluster [20, 15]. Thus, one is able to detect objects as part of
various clusters in different subspaces. Recent research has
seen a number of approaches using different definitions of
what constitutes a subspace cluster [3, 13]. As summarized
in a recent evaluation study [19], their common problem is
that the output generated is typically huge. In recent sub-
space clustering algorithms we have focused on tackling re-
dundancy [5, 6, 18]. In contrast, projected clustering assigns
each object to a single projection [2, 17]. This strict parti-
tioning of the data into projected clusters can be regarded
as extreme redundancy elimination. Projected clustering re-
sults in a manageable number of clusters, but is not able to
detect overlapping clusters. Both subspace clustering and
projected clustering have its focus on offline data outside
sensor networks. In contrast, we aim at combining cluster-
ing in subspace projections [5, 2] with physical clustering for
sensor networks [10].

SERENE [7] is a framework for SElecting REpresentatives
in a sensor NEtwork. It uses clustering techniques to se-
lect the subset of nodes that can best represent the rest of
sensors in the network. In order to reduce communication,
rather than directly querying all network nodes, only the
representative sensors are queried. In this way the overall
energy consumption in sensor network is reduced and con-
sequently sensor network lifetime is extended.
To select an appropriate set of representative sensors, SERENE
performs the analysis of historical readings of sensor nodes,
in order to find out the correlations both in space and time
dimensions among sensors and sensor readings. Sensors may
be physically correlated. Sensor readings may be correlated
in time. Physically correlated sensors with correlated read-
ings are assigned to the same cluster. Then each cluster
performs further analysis in order to select the sensors with
the highest representation quality. The last two steps of this
process are the same with the steps of clustering process in
our algorithm.

Similar to our algorithm, this technique uses density-based
clustering algorithm, DBSCAN [8]. Nevertheless, different
from our algorithm, in SERENE approach the first stage of
clustering process is analysis of historical data for detect-
ing correlations among nodes and sensor readings. Due to
restrictions of energy, computational and memory capacity
in sensor nodes, this analysis can not be performed by the
nodes themselves.

Continuous storing of historical data for all nodes that are
spatially correlated, in order to analyze correlation of their
readings, requires more memory capacity than a sensor node



possesses. Processing of all the analyses over measurements
of sensors to find out correlations, needs high computation
resources as well. Moreover, this process requires exchange
of attribute measurements between all the nodes that are
spatially correlated. This is followed by a high energy con-
sumption in nodes, due to frequent communication and data
exchange with more than one node in their clusters. Due to
all these restrictions, in this approach sensor nodes can not
be self organized into clusters. As a result, this technique
is suitable only for those scenarios where nodes operate in a
supervised way.

Another difficult part of this technique is related with main-
tenance of SERENE platform. With passing of time, the
readings of sensor nodes change, consequently the same set
of sensors may not be anymore correlated with each other,
or a new correlation may appear among some other nodes.
This change requires a reorganization of nodes in clusters.
Reclustering process is followed by additional communica-
tion among nodes for updating historical data. This will
increase the communication burden and the size of trans-
mitted data will be significantly high. More analyses should
be performed over data, meaning more resources will be con-
sumed for computation purposes.
All the above mentioned reasons make this approach expen-
sive in terms of energy and not easy to maintain in cases of
continuous clustering applications.

In [23] a Data-Driven Processing Technique in Sensor Net-
works was suggested. The goal of this technique is to pro-
vide continuous data without continuous reporting, but with
checks against the actual data. To achieve this goal, this ap-
proach introduces temporal and spatio-temporal suppression
schemes, which use the in-network monitoring to reduce the
communication rate to the central server. Based on these
schemes, data is routed over a chain architecture. At the
end of this chain, the nodes that are most near to central
server send the aggregate change of the data to it.

Snapshot Queries [14] is another approach that introduces
a platform for energy efficient data collection in sensor net-
works. By selecting a small set of representative nodes, this
approach provides responses to user queries and reduces the
energy consumption in the network. In order to select its
representative, each sensor node in this approach builds a
data model for capturing the distribution of measurement
values of its neighbors for each attribute.

After a node decides which of its neighbors it can repre-
sent, it broadcasts its list of candidate cluster members to
all its neighbors. Each node selects as its representative that
neighbor that can represent it and that additionally has the
longest list of candidate cluster members. This is again ex-
pensive as all messages are broadcasted and not directed to
specific nodes, which might result in repeated broadcasting
in case of message loss. Maintaining this model is very ex-
pensive in terms of energy, as all nodes needs to exchange
all historical readings among each other. In our algorithm,
each sensor node maintains a small cache of past measure-
ments of itself for each attribute. And the control messages
exchanged among nodes during the initialization phase are
directed to specified nodes. As the closest state-of-the-art
to our approach, we evaluate our algorithm by comparing it

to Snapshot Queries [14].

3. PROBLEM FORMULATION
In this section we formally define the related problems to
our algorithm.

3.1 The Representatives Selection Problem
Given a set SN of n sensor nodes SN = {sn1, sn2, ..., snn}
each measuring a set of attributes {a1, a2, ..., ak}, an Eu-
clidean distance function d(sna, snb) ≥ 0; {a, b} ⊂ {1, 2, ..., n}
and a real number ε > 0. The problem of selecting represen-
tative nodes in SN is to find a subset R = {r1, r2, ..., rm} ⊆
SN ; m ≤ n each ri ∈ R is representing a set of nodes Di =
{sni1, sni2, ..., snil}, Di ⊆ SN and ∀sn ∈ Di: d(ri, sn) ≤ ε
such that the measurements sensed by all members of Di

are best represented by the measurements of ri.

Definition 1. (Physical cluster of nodes)
A physical cluster C of sensor nodes is a set Di with a max-
imum number of MaxNds > 0 nodes represented by the
representative ri such that ∀sn ∈ Di:√

(xri − xsn)2 + (yri − ysn)2 + (zri − zsn)2 ≤ ε

where ε is the radius of C.

Definition 2. (Spatial and non-spatial attributes)
Each node sn ∈ SN is defined in each time stamp t by a set
of attributes {a1t, a2t, ..., akt, xsn, ysn, zsn} where {a1t, a2t, ..., akt}
is a set of non-spatial attributes which represent the mea-
surements of sn at time stamp t and {xsn, ysn, zsn} are the
spatial attributes of sn.

Definition 3. (Relevant attributes)
Let {µ1(t), µ2(t), · · ·µk(t)} and {σ1(t), σ2(t), · · ·σk(t)} be re-
spectively the mean values and the standard deviations of
the non-spatial attributes of l readings of sensor node sna at
time stamp t, a non-spatial attribute am, where 1 ≤ m ≤ k,
is called a relevant attribute between two nodes sna and snb

at the time t if Xmt(snb) ∈ [µm(t)−2σm(t), µm(t)+2σm(t)]
where Xmt(snb) is the sensor snb reading of attribute m at
time stamp t.

3.2 The Problem of the ECLUN Algorithm
Given a set SN of n sensor nodes with a set of attributes
deployed in an environment for monitoring physical phe-
nomena and a base station to collect these measurements,
the general problem of ECLUN algorithm is to decrease the
total amount of consumed energy in SN by grouping the
nodes of SN into physical clusters Ci where 1 ≤ i ≤ n each
represented by a representative ri with some relevant at-
tributes aj where 1 ≤ j ≤ k and then sending to the base
station either the readings of the relevant attributes of ri to
represent the readings of all members of Ci or the summary
of the readings of all members of Ci. The target is to con-
tinuously update the base station by all important changes
in the sensed phenomena.



4. ECLUN ALGORITHM
In this section we describe in details our approach. We dif-
ferentiate between two phases of the algorithm. The initial-
ization phase where physical clusters are constructed in an
unsupervised way, and the running phase when these clus-
ters are maintained and updates are sent to the representa-
tive and the server.

4.1 The Initialization Phase
Algorithm 1 gives an overview of this phase. We will next
describe each of these steps in details.

Algorithm 1 Initialization Phase of ECLUN

1. Caching of initial data
2. Detection of geographical neighbors
3. Setting relevant attributes
4. Estimation of representation quality for each node
5. Selection of local representatives
6. Load balancing among representatives

4.1.1 Caching of Initial Data
Each node senses the first l measurements for each attribute
and stores them in the cache of data history. These l mea-
surements will be exchanged between nodes, and thus will
decide the initial physical clustering of nodes. Therefore,
outlier readings must completely be excluded in this phase.
We assume that attribute measurements for each sensor are
normally distributed. Therefor, nodes during this phase con-
tinuously calculate the mean and standard deviation values
of their measurements for each attribute. If any new reading
falls out the corresponding confidence interval [µ − 2σ, µ +
2σ], it is suspected to be an outlier, and stored in the sus-
pected list with a maximum length of s. If the suspected list
was filled within the previous s time stamps, then its read-
ings are considered in the main list, otherwise it is excluded
completely from both lists.

4.1.2 Detection of Geographical Neighbors
Every node detects its geographical neighbors GN by run-
ning spatial queries with radius ε. This is done by broad-
casting its ID and spatial attributes and mean values of
non-spatial attributes < IDn, µ1, µ2, · · · , µk, xsn, ysn, zsn >
within a radius ε, where µ1, µ2, · · · , µk are the mean values
of the initial l readings of sn for each non-spatial attribute.
Thus, every node becomes aware of the geographical coor-
dinates as well as the initial readings of its neighbors, these
data are stored in a list GN in each node.

4.1.3 Setting Relevant Attributes
In this step, each node decides the relevant attributes be-
tween it and each node in its GN list. According to Def-
inition 3, the node uses the non-spatial readings received
in the previous step and the statistics of its own previous l
measurements to decide the relevant attributes. The thresh-
old Min Rel Attr ≤ k; k is the number of non-spatial at-
tributes, decides the minimum number of relevant attributes
between two nodes when one wants to represent the other.
Each node excludes from the list of GN , all neighboring
nodes with less than Min Rel Attr relevant attributes to

sn1

sn2

sn3

sn4sn7

CCMsn1
CCMsn7

Figure 1: Candidate Cluster Members

it. The rest nodes are stored in the candidate cluster mem-
ber CCM list.

In Figure 1, although nodes sn2 and sn3 are part of GN of
node sn1, they do not belong to its candidate cluster mem-
bers CCM . Apparently, there are less than Min Rel Attr
relative attributes between node sn1 and each of sn2 and
sn3, so they are both not in the CCM of sn1.

4.1.4 Estimation of Representation Quality for Each
Node

In this step of algorithm, each node analyzes how effective
it is in representing its CCM nodes in the network.

Definition 4. (Representation quality)
The representation quality RepQ of node sn when repre-
senting its CCM nodes is defined as:

RepQ(sn) = (1−α)

∑
sni∈CCM(sn)(ε− d(sn, sni))

ε× | CCM(sn) | +α
REsn

IEsn

Where ε is the maximum radius of the possible cluster that
might be represented by sn, d(sn, sni) is the distance be-
tween sn and any of its CCM , α is a coefficient for weighting
the energy, IEsn and REsnare the initial and the residual
energy of sn respectively.

According to Definition 4, RepQ is greater when the mem-
bers of CCM are forming a compact cluster around sn.
Closer nodes means less consumed energy and much more
similar measurements. Additionally, the residual energy is
an important factor, as the possibility will be less later that
sn gets soon out of energy. The bigger the value of α, the
more the importance of the residual energy factor when se-
lecting representatives.

4.1.5 Selection of Local Representatives
Each node decides whether it will be itself a local represen-
tative or it will be represented by any other similar node in
its neighborhood. To take this decision, nodes refer to the
representation quality parameter.

Each node sni broadcasts its RepQ value to every node snj

that belongs to its CCM . Every node sn ∈ SN stores the
list of candidate local representatives CLR, together with
the RepQ values received by them, and includes also itself



in this list. The list is ranked in a decreasing order according
to RepQ. One of the following will happen:

1. If the current node has its own RepQ value in the top
of this list, it announces itself as a representative.

2. If two nodes have the same RepQ value, then the closer
node is selected as a representative for the current node

3. Otherwise, node sn is represented by the node which
is having the RepQ in its CLR

After this step, every node either has chosen only one node
as its representative, or is a representative itself. Since rep-
resentatives announce themselves, each node collects the IDs
of representative nodes in its neighborhood, it stores them
in an internal list called neighbor local representatives NLR.

As we saw when building CCM , we had Min Rel Attr ≤
k; k is the number of non-spatial attributes, we adopt this
idea from the subspace clustering area [5, 2]. For many
given attributes, one can hardly find two sensor nodes that
can have similar measurements in all attributes, this will
result in a huge number of single-node clusters. To avoid this
we relax the representation criteria in such a way that the
representative needs only to have some relevant attributes
with its represented nodes. Algorithm 2 gives a description
of the process of selecting the representative according to
the relevant attributes and updating the server with relevant
and non-relevant attributes by each node.

Algorithm 2 Selecting representatives per attributes

1. if this attributeis a relevant attribute then
2. Let it be represented by the local representative

repa which is sharing the highest number of
relevant attributes

3. else if (other representative repb can represent
this attribute) then

4. Some attributes are represented by repa others
by repb

5. else
6. Let this attribute be forwarded to server by repa
7. end if

4.1.6 Load Balancing Among Representatives
To provide a uniform utilization of energy resources in sen-
sor network, we set a threshold MaxNds for the maximum
number of nodes that can be represented by one represen-
tative. According to that, representatives decide to exclude
from its cluster the most distant cluster members. The ex-
cluded node then tries to join the nearest representative in
its NLR list.

At the end of the initialization phase, physical clusters C
are established.

4.2 The Running Phase
The algorithm initiates the communication process only when
a state change is detected. Nodes communicate with their
representatives only when they detect a state change in the
attribute measurements of the event they are monitoring.

Similarly, representatives send data to the server only if they
detect a state change in the statistics of the measurements
collected from all the nodes of their clusters. We have then
two possible communication paths: node-representative and
representative-server.

4.2.1 Node-Local Representative Communication
Each node sn compares the current measurement values
Xjti(sn) on non-spatial attribute j = (1 · · ·m) sensed at ti
with the mean value µj(ti−1) of the l previous measurements
values of the corresponding attribute. If |Xjti(sn)− µj(ti−1)| ≤
δj where δj ; j = (1 · · ·m) are the measurements thresholds
for attribute j, then a change in the measurements is de-
tected and an update of Xjti should be sent to the corre-
sponding representative. Otherwise no data is sent to the
representative and old measurements sent previously to the
representative by sn are used.

4.2.2 Local Representative-Server Communication
During each time stamp in the running phase, the repre-
sentative executes Algorithm 3. After this, and at the same
time stamp, the representative maintains C. It checks whether
Xjti(sn) that it has received from sn falls inside the confi-
dence interval [µjC(ti−1)−2σjC(ti−1), µjC(ti−1)+2σjC(ti−1)]
for each relevant attribute in C or not. If this was not the
case, then sn is temporarily excluded from the ti statistics.
Its readings are saved in a list with a maximum length s. If
s was filled within the previous s time stamps with readings
of sn, then the representative requests sn to join another
physical cluster, and forwards its s readings together with
the ID of sn to the server. And sn in turn, searches for
a neighboring representative in its NLR list and continues
from step 5 in Algorithm 1. The only exception here will be
that Min Rel Attr threshold does not apply, as nodes try
to minimize the number of nodes representing it.

Algorithm 3 Representative running phase

1. while updates are received from nodes at time ti do
2. if any attribute is missed then
3. use ti−1 values
4. for each relevant attribute j do
5. µjC(ti) = 1

|C|
∑

sn∈C
6. if |mujC(ti)− µjC(ti−1)| ≤ ψj then
7. update the server with µjC(ti) and σjC(ti)
8. end for
9. end while

4.3 Energy Aware Optimizations
We suggest further optimizations for the sake of energy effi-
ciency in our algorithm.

4.3.1 Delegation of Representative Authority
The energy of local representatives decreases rapidly much
more than the energy of other nodes in the network.

If a representative runs out of energy, all of its cluster nodes
should recluster.This is considerably energy consuming. Fur-
thermore, losing the representative node will cause a big lack
of information about the monitored phenomena delivered by
the complete cluster. We suggest a uniform utilization of



energy sources in the network, by applying a technique of
delegation representative authority.

Each local representative is aware of its residual energy. At
the time it notices that its energy capacity is decreased un-
der a certain threshold (for instance: 50% of its initial energy
as it started to represent this cluster), local representative
requests the residual energy values of nodes in C. The au-
thority of representing the cluster is delegated to the node
with the highest residual energy including current represen-
tative. If none of the cluster nodes has more residual energy
than current representative, then it continues being the rep-
resentative of its cluster and performs later the same check
again.

4.3.2 Optimization in Case of Single Node Cluster
In such a scenario, sensor node has to communicate with
distant server for updating only its measurements. To avoid
this, each node that is alone in its cluster sends lazily ‘join
requests’ to its neighbor representatives. Each neighbor rep-
resentative then checks whether the attribute measurements
are relevant to its cluster. Accordingly it might join that
cluster or keep representing itself. In case of more acknowl-
edgments, it selects the nearest neighbor representatives.
Receiving no-acknowledgment means that the node is se-
lecting different data than its neighbors and will keep rep-
resenting itself. This might mean that either this node is
corrupted or measuring some local event.

5. EXPERIMENTAL EVALUATION
To evaluate the performance of ECLUN, we performed a
set of experiments to test the effectivity of each feature of
ECLUN, and to compare the performance of ECLUN with
the state-of-the-art competing algorithm, Snapshot Queries
[14]. We start by describing our real and synthetic datasets
in 5.1, then our evaluation methodology for each set of ex-
periments in 5.2, in 5.3 we describe the settings of our ex-
periments and then we conclude this section by discussing
the experimental results in 5.4.

5.1 Datasets
We have used three real datasets in addition to one syn-
thetic dataset for evaluating ECLUN. We give a description
of each with some of the parameter settings applied with
them on both ECLUN and Snapshot Queries. Unless oth-
erwise stated, these parameter settings applies to all exper-
iments.

5.1.1 Real Datasets
Intel Berkeley Research Lab: Intel Lab 1
Out of the 54 nodes readings collected in [1]. Three nodes
had a huge number of missing readings, therefore we used the
clean readings of 51 nodes each contains 4-parameters read-
ings taken every 31 seconds. The clean processed dataset
contained 15730 readings. We have mapped these time stamps
into 5 days, 15 hours, 27 min and 10 sec period of time. The
network topology was selected to be as close as possible to
original nodes topology. When applying this dataset on any
algorithm we set the initial energy IE of each node to 295
Joules. We call this real dataset Intel Lab 1 in our next
experiments.

Table 1: Generated events in the synthetic dataset
Event 1 Event 2

Values per
dimension

D1{Low}
D2{High}
D3{Low}

D1{High}
D2{Low}
D3{High}

Time stamps
[From, to]

[0,200],
[1000,1100],
[10000,11000]

[300,350],
[1000,1100],
[2000,2500]

Most af-
fected node

Node 2,
coordinates:
(2,0)

Node 47,
coordinates:
(4,6)

Intel Berkeley Research Lab: Intel Lab 2
To get more readings, we have excluded 5 nodes from the
original Intel lab dataset. This resulted in 23077 healthy
readings. For small missed values in between, we have al-
ways inserted the last received value instead of later missed
readings. Again we set the topology of the network in both
evaluated algorithms to be as close as possible to the origi-
nal topology. When applying this dataset on any algorithm
we set the initial energy IE of each node to 10000 Joules.
We call this dataset Intel Lab 2.

I9 Sensor Dataset
Explanation about this one-dimensional dataset with 40589
readings can be found in [10]. The 16 nodes were randomly
inserted to the algorithms without mapping the coordinates
of network topology. When applying this dataset on any
algorithm we set the initial energy IE of each node to 1100
Joules.

5.1.2 Synthetic Dataset
The synthetic dataset was generated mainly for evaluating
the response of each of the competing algorithms to some in-
serted changes in the monitored phenomena.We generated
readings for 49 sensor nodes distributed in one 7x7 grid with
12000 3-dimensional readings for each node. The normally
distributed random readings were mainly simulating the hu-
midity, light and temperature attributes sensed by TelosB
nodes [21]. The total range of each attribute was divided into
three subranges: Low, normal and High. Inserted events
are any combination of three ranges, each taken from an
attribute. We have generated 2 different in different parts
of the network, details about these events are depicted in
Table 1.

5.2 Evaluation Methodology
We evaluated ECLUN from three different perspectives:

1. Evaluating each Feature of ECLUN: We have
tested the effect of each feature of ECLUN by eval-
uating for every feature two versions of ECLUN, one
containing this feature and the other not. The mea-
sure was the total number of dead nodes in the whole
network with the progress of time.

2. Energy Consumption: Two measures were performed
to evaluate the energy consumption of ECLUN with
that of Snapshot Queries, the total number of dead



nodes in the network, and the total amount of con-
sumed energy in Joules.

3. Detection of Changes in Input Stream: We wanted
to see the values of readings delivered to the server by
the representatives in each algorithm on time stamps
where we synthetically inserted events as in Table 1.

5.3 Setup of the Experiments
For evaluating the energy consumption, in all experiments
we used the energy model described in [10]. For all ex-
periments of ECLUN, we had the following settings on all
datasets: the radius of covered nodes by the range of each
node: ε = 2, the maximum number of nodes in one physical
cluster: MaxNds = 4 and the delegation authority thresh-
old: 50% of initial energy. For Intel Lab 1 and Intel
Lab 2 datasets, we have selected the number of initial read-
ings l = 10, the threshold of relevant attributes for repre-
senting Min Rel Attr = 2, the node-representative update
thresholds: δj ; j = (1 · · · 4) as (0.2, 0.2, 0.2, 0.2) and the
representative-server update thresholds: ψj ; j = (1 · · · 4) as
(0.2, 0.2, 0.2, 0.2). For I9 dataset: l = 10, Min Rel Attr =
1, δ1 = 0.2 and ψ1 = 0.2. To have fair results, the pa-
rameter settings of Snapshot Queries were always identical
to that of ECLUN whenever they apply. We set the error
threshold Tj ; j = (1 · · · 4) to (5, 5, 5, 5). According to [14],
these values deliver the best results in terms of number of
participating nodes in each cluster on the one hand, and an
accepted representation error on the other hand.

5.4 Experimental Results
5.4.1 Results of Features Evaluation

In each of the following selected two experiments, we test a
feature in ECLUN, by comparing the energy consumption
of two versions of ECLUN that differ only in including this
feature or not.

Node - Representative and Representative - Server
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Figure 2: Testing the ECLUN feature of performing the

update only when a change is detected using the Intel

Lab 1 dataset

server to occur only when a change is detected. Exclud-
ing it means that the nodes always communicate with the
representative whenever they have a new reading, and the
representative in turn always communicates with the server.
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Figure 3: Testing the ECLUN feature of subspace clus-

tering using the Intel Lab 1 dataset

As expected, the results in Figure 2 shows that this feature
extends the whole network life time. Without using this fea-
tures nodes start to die in the network after 5 days, 14 hours,
1 minute and 55 seconds, while by using the first node dies
around 1 hour and 20 minutes after that. Additionally, by
the end of dataset 21 nodes are still alive when enabling this
feature, while all nodes die when disabling it. As we will see
in the change detection results, this feature is not delaying
important changes.

Subspace Clustering:(Clustering per Relevant At-
tributes)
Disabling this feature means that a node can only be rep-

resented by nodes that are relevant to it in all spaces (at-
tributes). The possibility for nodes to find such a represen-
tative in its neighbors will be very low. Which ends with
a self representation by the node. As depicted in Figure
3, using this feature delays the death of first node around
31 minutes and increases the number of the still-alive nodes
by 11 with the end of the simulation. The impact of the
subspace clustering is even stronger with higher dimensions.

5.4.2 Results of Energy Consumption Evaluation
We evaluate here the energy consumption of ECLUN and
Snapshot Queries algorithm [14]. Figure 4 depicts the resid-
ual energy in Joules of each sensor node after the initializa-
tion phase. As shown, the initialization phase of Snapshot
Queries consumes more energy than that of ECLUN. This
is because of the extensive messages of big sizes that are
exchanged between nodes in Snapshot Queries during this
phase. Although this initialization phase happens not so of-
ten in ECLUN through reclustering, our experiments showed
that it happens more likely in Snapshot Queries. This is due
to the subspace nature that ECLUN uses. It can be seen also
in Figure 4, that the energy consumption in ECLUN is bal-
anced between all the nodes after this phase, in contrast to
Snapshot Queries, where selected representatives consumes
more energy than others even during this phase.

Figure 5 presents a comparison between two versions of each
algorithm. For ECLUN, we used the all-features version
and another without the previous features tested in 5.4.1
and without the delegation of authority optimization. For
Snapshot Queries, we applied the two forms of changing the
representative with the decrease of energy suggested in [14].



Figure 4: The residual energy in each of the 51 nodes

after the process of selecting representatives in ECLUN

and Snapshot Queries using Intel Lab 1

Table 2: Total energy consumption of ECLUN and
Snapshot queries in Joules

Dataset Number
of
Nodes

Number
of Read-
ings per
Node

ECLUN
Energy
Consump-
tion [Joules]

Snapshot
Energy
Consump-
tion [Joules]

Intel
Lab 2

49 23077 22552.5 25546.9

I9 16 40589 13837.1 14094.9

The first one is similar to ECLUN, where nodes are invited
to send their residual energy and the one with the high-
est residual energy is selected. The other approach ran-
domly selects the next representative, we called this (Snap-
shot Queries with randomized representatives). The two ver-
sions of ECLUN extend considerably the network life time
much more than both of the versions of Snapshot Queries.
The better version of Snapshot Queries starts to lose nodes
around 7 hours and 15 minutes earlier than the normal
ECLUN. When the dataset ends, ECLUN has still 21 alive
nodes, while the two versions of Snapshot Queries almost
lose all of their nodes. Another important feature is that
the nodes in ECLUN die close to each other, which yields a
better usage of the network resources and more data about
observed phenomena. Figure 6 and Table 2 show the effi-
ciency of ECLUN over Snapshot Queries for different sizes
of data with different dimensionality.

Figure 5: Number of dead nodes in different versions of

ECLUN and Snapshot Queries using Intel Lab 1
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Figure 6: Number of dead nodes using the I9 dataset

5.4.3 Results of Change Detection Evaluation
For evaluating this measure, we used the synthetic dataset.
Figure 7 depicts the input events affecting some parts of
the sensor network, and the corresponding output sent by
ECLUN and Snapshot Queries to the server at the same time
stamp. Figures 7(a) and 7(b) show the input and ECLUN
output Event 1 at time stamp:11. Snapshot Queries de-
tected this event at time stamp:12 Figure 7(c). Obviously,
ECLUN was not only able to detect this event exactly when
it appeared, it could also deliver the involved nodes in this
event with few false positives. Snapshot Queries detected
the change event with a delay of one time stamp, then de-
livered the data of only one node out of the six involved
in Event 1. Figures 7(d), 7(e) and 7(f) describe the in-
put, ECLUN output and Snapshot Queries output at time
stamp:1000. ECLUN detected the event at the same time
stamp but was less accurate than at time stamp:11. This is
due to the fact that at time stamp:11, ECLUN has clustered
the nodes according to the first l = 10 readings. Event 1 was
existing during that interval, and thus detecting it was much
more accurate. Snapshot Queries could not detect this event
at all. Figures 7(g), 7(h) and 7(i) depict the same sequence
for Event 2 at time stamp: 1050.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a novel algorithm for an energy
aware physical clustering of sensor nodes. Our algorithm
considers both spatial and data similarities when building
these physical clusters. Nodes in our suggested approach
make use of established data mining techniques like sub-
space clustering for joining physical clusters according to
relevant attributes, and outlier detection for online exclu-
sion of outlying readings. We further suggested a power-
ful method for the maintenance of the constructed clusters.
This enables the network to adapt with different changes of
observed phenomena in an unsupervised way, while consum-
ing less energy. We proved the efficiency and effectiveness
of our approach through comprehensive experiments.

In the future, we would like to combine our sensor stream
data clustering approach (EDISKCO [10]) with this node
clustering approach. This can further save energy, and might
improve the correctness of approximative solutions applied
on stream sensor data. With the huge exchange of data in
physical clustering of sensor nodes, security looks like an im-
portant issue. We aim at tackling this point by extending
our outlier ranking techniques. As an additional require-
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Figure 7: Change detection evaluation using the Synthetic Dataset with 2 inserted events

ment, we would like to extend our approach additionally to
consider subspace physical clustering of mobile sensor nodes.
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