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Abstract. The problem of frequent item discovery in streaming data
has attracted a lot of attention lately. While the above problem has
been studied extensively, and several techniques have been proposed for
its solution, these approaches treat all the values of the data stream
equally. Nevertheless, not all values are of equal importance. In several
situations, we are interested more in the new values that have appeared
in the stream, rather than in the older ones.

In this paper, we address the problem of finding recent frequent items in
a data stream given a small bounded memory, and present novel algo-
rithms to this direction. We propose a basic algorithm that extends the
functionality of existing approaches by monitoring item frequencies in
recent windows. Subsequently, we present an improved version of the al-
gorithm with significantly improved performance (in terms of accuracy),
at no extra memory cost. Finally, we perform an extensive experimental
evaluation, and show that the proposed algorithms can efficiently identify
the frequent items in ad hoc recent windows of a data stream.

1 Introduction

The problem of frequent item discovery in streaming data has attracted much
attention, because it is relevant to many different applications across various
domains [13,15,12]. A naive approach to deal with this problem is to keep a
count of each distinct item. Yet, in general, we assume that our main memory is
not large enough to hold counters for all the distinct items. Several techniques
that can efficiently solve the problem have been proposed in the literature that
also take into account the special characteristics and requirements of streaming
data [23,10,17]. These techniques are approximate, but they can provide the
correct answer with high probability and they have been empirically proven to
produce accurate results.

The above approaches treat all the values of the data stream equally. Note
though, that not all the values that have appeared in the data stream are of
equal importance. In several situations, we are more interested in the values that
have appeared in the stream in the recent past, rather than in the distant past.
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Similar observations have also been made in other works, where the problems of
time-variant data summarization [25, 5], clustering [3], and storage [8] have been
studied.

The same is true for the problem of frequent item identification in data
streams. A few indicative examples are described below.

— In the financial domain, we are interested in finding stocks that are traded the
most in a stock exchange system. This knowledge is crucial for applications
that deal with automatic trading, pre-trade analysis, post-trade execution,
and market monitoring [26].

— In the communications and network operators industry several applications
need to monitor the frequency of occurrence of packets traveling between
specific nodes in the network [12]. This information is in many cases at the
core of the business of companies in this area.

— Retail shops and online businesses are interested in identifying the products
that sell the most. The results of this analysis can be used for launching
special promotions, performing inventory management, and in other appli-
cations [19].

The applications in the above examples require estimates in the item frequencies
for the recent past, rather than for the entire history of the data stream. More-
over, in certain cases the users would like to be able to query about the item
frequencies in different windows in the recent past, and compare these values
among themselves.

In this paper, we propose solutions for the discovery of recent frequent items
in streaming data given a small bounded memory. These solutions are based on
existing sketching techniques, which we extend in order to be able to effectively
operate on the recent past. We describe the TiTiCount' algorithm that can be
used to efficiently answer queries for frequent items in ad hoc recent windows.
The algorithm uses a tilted timeframe for the representation of the past, which
allows the algorithm to provide item frequency estimates for a number of different
windows in the past, using a small amount of memory. At the same time, these
estimates are more accurate for the most resent windows, and the accuracy of
the estimates diminishes as we go further in the past. We also present a query
answering method that takes into account the size of the window intervals used
by our algorithm, and provides better frequency estimates than the straight-
forward approach.

Furthermore, we propose TiTiCount+, an enhanced algorithm for query an-
swering. In this case, when a query for some item frequency in a particular
window comes in, the query answering algorithm makes use of the information
stored in the specified window of interest, but also uses the information stored
in certain neighboring windows. Based on this extra information, the algorithm
is able to refine the item frequency estimates, leading to more accurate results,
with minimal additional processing. As we will describe in more detail later on,
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this scheme also leads to superior performance in the case where the distribution
of the data stream is non-stationary.
In summary, in this work we make the following contributions.

— We describe algorithms that can estimate the frequency counts of hot items
in the recent past of a data stream. Our approach efficiently supports queries
on ad hoc recent windows, and can store information about arbitrary points
in the past, depending on the user preferences and available memory budget.

— We propose a simple method that accounts for the size of our summary
structures, and leads to more accurate item frequency estimates in query
answering when compared to the straight-forward approach.

— We extend the above algorithm with a technique that combines the informa-
tion stored in different parts of our data representation structures in order
to improve the accuracy of the results. As we empirically demonstrate, the
above technique results in a significant performance improvement at a neg-
ligible additional processing cost.

— Finally, we perform an extensive experimental evaluation using synthetic
and real data. The results show the behavior of the algorithms in different
conditions, and demonstrate the effectiveness of the proposed approach.

The rest of the paper is organized as follows. We start by giving some nec-
essary background for the problem of mining data streams for frequent items
in Section 2. In Section 3, we describe the problem of recent frequent items
formally. Section 4 describes the development of our algorithm on the basis of
two existing algorithms. Our experimental evaluation is presented in Section 5.
Finally, we discuss related work in Section 6 and conclude in Section 7.

2 Background

We assume a data stream S that is composed of a stream of integer numbers,
where each integer represents the occurrence of a data item in S.

Let N be the current length of the data stream S, i.e., N is the current
number of transactions. Further assume that the data stream contains M distinct
values. A frequent item is an item whose frequency is greater than ¢N, where
the support parameter ¢ is a user-defined threshold in the interval [0.0, 1.0].

Several algorithms have been proposed for efficiently mining frequent items
in data streams. The Frequent (FREQ)[18] and the Lossy Counting (LC)[23] al-
gorithms are based on maintaining approximate frequency counts, while Combi-
natorial Group Testing (CGT)[11], Count-Min (CM)[10], CCFC [7] and hCount
(HC)[17] are based on sketches. We have conducted extensive experiments in
order to compare the performance of these algorithms. Our implementation of
the FREQ, LC, CM, CGT, and CCFC algorithms was based on the Massive
Data Analysis Lab code-base [2]. The hCount algorithm was implemented from
scratch, using the same optimizations as the other algorithms. We ran experi-
ments on both synthetic and real datasets, and measured time and space usage



for all the above six algorithms, averaged over several independent runs. In or-
der to evaluate the quality of the results obtained, we used the two standard
measures of recall (percentage of the true frequent items that are found by the
algorithm) and precision (percentage of items identified by the algorithm, which
are truly frequent).

In the interest of space, we only briefly summarize our results (details are
in the full version of this paper). We ran experiments with varying the support
threshold ¢. The results indicate that the performance of CCFC'is affected when
support is low, but its recall improves when the support level is high. Regarding
precision, hCount and CCFC are consistently the top performers, with the other
algorithms improving their performance as the support threshold is increased.

We also measured the scalability and time requirements of the algorithms by
running experiments with 10 to 100 million transactions. The results show that
all algorithms scale linearly in time with respect to the number of transactions.
CCFC requires the longest time, whereas LC and FRE(Q) are the most time-
efficient, with hCount performing very close to the fastest algorithms.

The qualitative results from all our experiments are summarized in Table 1
(a more detailed discussion of the experiments can be found elsewhere [22]).
Based on these experiments (similar results have also appeared elsewhere [17]),
we selected the hCount algorithm as the frequency estimation component of our
approach, because it has several desirable characteristics. Namely, it exhibits a
consistently good performance across various conditions, it has low time com-
plexity, and is relatively easy to implement.

Note that this choice is not restrictive in any way, and in our techniques
hCount could be replaced with any other suitable frequency estimation algo-
rithm.

Table 1. Performance Summary.

Algorithm Characteristics
FREQ Fast. Low precision.
CGT Fastest of the sketch-based. Cannot handle lower support
CM Less space than CGT but more time, cannot handle lower support
CCFC Slow, fairly good accuracy
LC Fast, good recall and precision
HC Fast, good recall and precision

3 Recent Frequent Items

In this section, we formally define the problem of recent frequent item discovery,
and we give a brief overview of our approach.



3.1 Problem Definition

Let the data stream S be represented by {711, 75, ..., Ty}, where T; denotes the
it" item, and T}, is the latest (most recent) item in the stream. In this work, we
assume that each item, T}, is represented by a single integer, and corresponds to
a transaction 2.

Let w = [Wmin, Wmaz] define a window in the history of the stream, where
Wmin Tefers to the index of the least recent point in the window, and w,q.
to the index of the most recent one. The length, or size (in terms of number
of transactions), of window w is |w| = Wymar — Wmin. Further, assume that ¢,
0 < ¢ <1 is a user-defined parameter that determines which items are frequent,

according to the following definition.

Definition 1. [Frequent Item] An item is called frequent with respect to a win-
dow w if it appears in at least ¢p|w| transactions within w.

We can now define the recent frequent item problem for a stream S.

Problem 1. [Recent Frequent Item (RFI)] Given a threshold ¢, and a window
w, where n — Wy < L, we want to identify the frequent items in w, for a
predetermined parameter L >> 1.

We make two remarks regarding the above definition of the problem. First,
both the window w and the threshold ¢ are part of the query, and can be different
for each query. Also note that the query window of interest w, is ad hoc, and
can refer to any interval in the recent history of the stream. The parameter
L determines how far in the past the query window can refer to. Essentially,
L defines the least recent transaction that can be part of the query window,
and in practice can be very large. That is, for a window w = [Wnin, Wmaz],
n_Léwmin<wmaw <n.

Second, we define the window size in terms of the number of transactions,
rather than time, because the data rates of streams are often times variable.
Hence, windows defined in terms of number of transactions are more appropriate.
Nevertheless, the techniques we propose can in principle work for both cases.

3.2 Proposed Approach

Previous works have studied the problem of identifying frequent items in the
entire history of a data stream [18,23,11,10,7,17]. What is fundamentally dif-
ferent in our case is that we wish to identify frequent items in arbitrary (recent)
window intervals of the stream. In order to solve the RFI problem, we have to
store information about the item frequencies in various time-points in the past,
which will allow us to answer queries for ad hoc windows.

A simple solution to the above problem is to divide the recent history of the
stream, that is, the last L transactions, in fixed-size intervals, and estimate the

2 For the remainder of this paper, we will use the terms item and transaction inter-
changeably.



item frequency counts for each one of these windows. This scheme allows us to
answer queries even if they are not aligned to the interval boundaries; in this
case, we provide an approximate answer.

However, the drawback of this approach is that the memory requirements
are rather high. For L >> 1, we need to keep information on a large number
of intervals. Note that the number of intervals is also directly related to the
accuracy of the query answers we can provide. Therefore, reducing the memory
requirements comes at the cost of performance.

In order to overcome the above limitation and efficiently solve the RFI prob-
lem, we propose the use of tilted-time window intervals. (Similar approaches
have been studied in other applications as well [8,3,25,5]. Though, as we de-
scribe later on, we propose novel operation schemes that allow our algorithms to
offer significant performance improvements.) Under this scheme, we divide the
history of the stream in increasingly larger intervals as we move in the past (re-
sulting in more accurate item frequency estimations for the most recent window
intervals, and increasingly less accurate for the window intervals further in the
past). Therefore, we can significantly reduce the memory requirements, while
still being able to answer queries from different time horizons. In the algorithms
we propose, we assume logarithmic tilted-time windows, where each subsequent
older window interval is twice the size of the previous interval. In this case, we
can cover the entire space of L transactions with just K = log L windows.

In the following section, we describe algorithms that efficiently and effectively
solve the RFI problem, using the tilted-time windows scheme. We also propose
techniques that can significantly improve the accuracy of the algorithms using
the same amount of memory. These improvements are more pronounced for
queries involving the older, larger window intervals. Thus, we effectively alleviate
the disadvantage that the tilted-time windows have on the intervals referring to
stream values further in the past.

4 Algorithms for Recent Frequent Items

In this section, we present algorithms for the RFI problem. We start by briefly
describing the main skeleton of the algorithms, which is the same for all of them.
Subsequently, we discuss in more detail specific features of each algorithm, and
the benefits it brings along.

As we mentioned earlier, we use the hCount sketch in order to estimate
the frequency counts within a given window interval. The hCount algorithm
[17] maintains an array of M x H counters, where M and H are parameters
determined by the data characteristics and the allowed error. The algorithm
uses H hash functions that map the occurrence of an item to H of the counters,
which are subsequently incremented by one. The estimate of an item’s frequency
is computed as the minimum value of all the counters to which the item maps.

In our case, instead of a single window interval, the algorithm has to oper-
ate with K intervals. These windows follow a tilted time-frame as follows. The
first window, wq, covers the b most recent stream values, that is, transactions



Trh—b+1,---, 5. The parameter b defines the size of wg, and is called batch size.
The second window, w; is also of size b, and covers the next b transactions.
Then, the size of each subsequent window is double the size of the previous
one. In general, the size of the i-th window is given by the formula w; = 2~ b,
0<i< K.

In order to account for all K window intervals, we extend the hCount sketch
to an array of M x H x K elements by replacing each one of the M x H counters
¢m,pin the original structure with an array ¢, 5[] of K counters, for 0 < m <
M, 0 < h < H 3. These arrays of counters correspond to the K windows, as
shown in Figure 1. The first element (in some cases also the second, as we will
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Fig. 1. Tilted-time windows.

explain later) of these arrays, ¢[0], stores the counts for newly incoming stream
values (according to the hCount algorithm). The subsequent elements store the
historical values of the counts that refer to the corresponding window interval.
In essence, they keep track of the history of the item frequencies.

There are two main operations that we need to have in place (outlined in
Figure 2). First, the shifting of the counter values c[] so that they correspond to
the current window intervals. This operation is triggered every time the window
that receives the new stream values gets full, that is, every b transactions. Second,
the item frequency estimation mechanism, used to provide the estimate of an
item frequency within a given window interval.

In the next sections, we describe in more detail different solutions that we
propose for the above two operations.

4.1 Basic Algorithm

The straightforward approach to implement the shifting operation is to use in-
termediate windows (and corresponding counters). As shown in Figure 3, the
counters corresponding to the first window, ¢[0], are always receiving the new
data (depicted in gray), and counter values shift sequentially every b transac-
tions.

Answering item frequency questions in this model is simple as well. When a
query for the frequency of an item in a specific window interval w, comes in, we

3 For the remainder of the text, we omit the indices m, h when we refer in general to
the array of counters c|].



Let n :=current transaction number
b := batch size

When new transaction T,, arrives:

1 use hCount to determine the set of counters C related to T},

2  for each counter in C

3 update the counts of ¢

4 if (n mod b) == 0

5 call PerformShift()

When query for frequency-of item 4 in window interval [tfnrm’t.gnam] arrives:
6 use hCount to determine the set of counters C corresponding to T,

7 call GetFreqEst(C,[t2 . .t ..])

Fig. 2. Main skeleton of the proposed algorithms.
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Fig. 3. Shifting with Intermediate Windows (batch size b = 10). Gray boxes
denote windows receiving new stream values.

identify the counters that store information on time intervals overlapping with
wgq, and we sum the estimates from these counters. Note that if the query interval
wq is not aligned with the counter time intervals, then we introduce errors in the
estimation, since we are counting frequencies over intervals that do not belong
in the w, (this is true for the two ends of the query interval).

The advantage of this algorithm, which we call NaiveCount, is its simplicity.
Though, this advantage comes at the expense of memory (for the intermediate
windows). The required memory for NaiwveCount is (2K — 1)S, where K is the
number of windows and S is the memory required by hCount (or any other
similar technique that can be used here), and the number of shift operations is
in the worst case K. In the following sections, we show how we can reduce the
memory requirements, while at the same time improving the accuracy of the
results.

4.2 Reducing the Memory Requirements

We observe that we can reduce the memory requirements of the algorithm by
discarding the intermediate windows. Under the new shifting scheme (see Fig-



ure 4), we keep track of which counters correspond to which window intervals,
which allows us to directly move counter contents to the next window. (We also
employ lazy shifting, by allowing also the second window to process new stream
values, thus, only shifting contents when necessary and saving some shift op-
erations.) In this case, the memory requirements are K'S (K is the number of
windows and S the size of the sketch), while the number of shift operations is
in the worst case K.
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Fig. 4. Shifting without Intermediate Windows (batch size b = 10). Gray
boxes denote windows receiving new stream values.

Even though this algorithm, TiTiCount, needs almost half the amount of
memory of NaiveCount by not using any intermediate windows, the accuracy
of its results is not affected. This is because the intermediate windows are only
used to facilitate the shifting operation.

What is more interesting is that with TiTiCount we can actually improve
the accuracy of the results. In NaiveCount, we notice that whenever the edges
of the query window w, are not aligned with the edges of the window intervals
corresponding to the counters c[], we introduce an error in the results. Consider
query ¢ with wg = [100,950] of Figure 6. The edges of w, are not aligned with the
edges of wy and wy. Nevertheless, for the calculation of the result NaiveCount
will consider the counts corresponding to the entire intervals wy and wq, even
though part of them falls outside w.

TiTiCount resolves this problem, and only takes into account the portions
of the windows that are covered by the query. This is achieved by considering in
the result the weighted fraction of the estimate provided by the counters c[] that
corresponds to the fraction of the counter window overlapping the query window.
In this work, we apply a linear model in this computation (i.e., the fraction
is directly computed as the amount of overlap), but other, more sophisticated
techniques can be applied (e.g., even limited knowledge on the distribution of
the frequencies within a window could lead to an even more accurate non-linear
model). However, as we show in the experimental evaluation of the algorithms,
this simple idea improves the quality of the results substantially.



4.3 Exploiting Redundant Information

Taking a close look at the shifting operation, we observe that during specific
time intervals, information pertaining to the same data stream transactions is
stored in more than one counters at the same time. For example, referring back
to Figure 4 (example of shifting for TiTiCount), we observe that information
regarding transactions 1 — 20 is stored both in ¢[2] and ¢[3] (see bottom of
the figure). Note that the counters do not store the same information, as ¢[3]
corresponds to a larger time interval than c[2]. Nevertheless, there is a certain
amount of information redundancy, and in the following paragraphs we explain
how the TiTiCount+ algorithm uses it in order to further improve the accuracy
of the results.

In order to exploit the above side-effect of shifting, we modify the shifting
operation as follows. We no longer employ the lazy shifting scheme used by
TiTiCount, but instead have the first window process all the new data stream
transactions. This results in an increased number of shift operations, which in
the worst case can be as many as K (K — 1)/2. However, the required shifts are
on the average much less, and as we empirically demonstrate, the additional cost
in the total running time is very small. The memory requirements are the same
as before, namely, KS.
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Fig. 5. Value added shifting (batch size b = 10). Gray boxes denote windows
receiving new stream values.

When we apply the above shifting mechanism, the way the various window
intervals are placed with respect to each other is governed by the following
properties 4.

Lemma 1. [Window Property 1] If two window intervals overlap, then the smaller
window interval is completely contained in the larger one.

Lemma 2. [Window Property 2] All window intervals that overlap have one
common boundary, and this common boundary is the most recent edge of these
intervals.

4 In the interest of space, we omit the proofs, which can be found in the full version
of this paper.



The above properties are very important, because they constitute the base
of the query answering algorithm. The main idea of the algorithm is to always
use the counters corresponding to the smallest possible window interval in order
to estimate some frequency count. When a query w, comes in, it is split into
subqueries wyq, , . .., Wsq, , - - -, Wsq, that align with the boundaries of the counter
window intervals. Then, results for each subquery are derived as follows.

— Smallest Interval: If wsq; can be answered using multiple counters then use
the counter that corresponds to the smallest window interval to compute the
result.

— Subtraction Operation: If the window interval, w;, of the counter that is to
be used to answer wsy, overlaps with a smaller window interval, w;, then
subtract the values of the wy counter from the w; counter, and subsequently
compute the result.

The above steps lead to correct results, because the properties stated in Lem-
mata 1 and 2 ensure the window intervals are aligned in such a way that the
subtraction operation is feasible. The following example explains how this algo-
rithm works.

Example 1. Assume we have five window intervals, wy,...,ws, and that the
current transaction number is 990, as shown in Figure 6. A query ¢ comes in,
asking for frequent items in interval [100,950]. The algorithm splits ¢ in five
subqueries, according to the boundaries of the window intervals with which it
overlaps. Then, the algorithm computes frequency estimates for each subquery
as follows. The estimate for g5 is derived from the wy counter by applying the
weighted fraction model (i.e., the estimate will be (950—90141)/(990—901+1)
times the result returned by the counter). Frequency estimates for ¢4 and g3 are
derived directly from the counters of intervals w; and ws, respectively. For ¢o,
the estimate is directly computed after subtracting the values of the ws counter
from the w3 counter. Finally, for ¢; the algorithm first subtracts the values of the
w3 counter from the w4 counter, and then applied the weighted fraction model,
since ¢; is not interested in the first 100 transactions of wy.
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Fig. 6. Example of query answering for TiTiCount+.



We can now demonstrate the advantage that the subtraction operation pro-
vides to TiTiCount+ for producing estimates with significantly improved accu-
racy, when compared to TiTiCount. Using the same example as above, assume
that all the items in the interval [1,400] have the value x, and all the items in
the interval [401,990] have the value y. Suppose, a query comes that asks for
the frequency of value y in interval [1,400]. In this case, TiTiCount will use just
the wy counter with the weighted fraction model, returning an answer of 200.
On the other hand, TiTiCount+ will subtract the contents of the ws counter
from those of the wy counter, and correctly return 0 as an answer. Evidently,
this advantage of TiTiCount+ is magnified when the distribution of the values
in the data stream change over time.

5 Experimental Evaluation

We implemented our proposal and conducted a series of experiments to evaluate
the efficiency of our techniques in a variety of settings. Apart from the three
algorithms we describe in this paper, we also implemented algorithm Linear
to compare against our approach. Linear is similar to TiTiCount, except that
instead of tilted time window intervals, it uses window intervals of fixed size.

In our experiments we used both synthetic and real datasets. The synthetic
datasets we used were generated according to a Zipfian distribution with Zipf
parameter 1.1, unless noted otherwise. We generated datasets with up to 100
million items, with both stationary and non-stationary distributions. The real
datasets we used were as follows.

— kosarak [1]: It consists of anonymized click-stream data of a Hungarian online
news portal, expressed as a sets of integers. It has about 8 million individual
items.

— retail [4]: It contains retail market basket data from an anonymous Belgian
store. This dataset has about 0.9 million individual items.

We implemented all our algorithms in C using the gce compiler under Linux
Fedora Core 5. The experiments were run on a dual Intel Xeon 2.8Ghz machine.

5.1 Evaluating the Accuracy

In the first experiment, we compare the algorithms NaiveCount, TiTiCount, and
TiTiCount+ in terms of the accuracy of the results they provide. We measure
recall, defined as the percentage of the true frequent items that are found by
the algorithm, and precision, defined as the percentage of items identified by
the algorithm that are truly frequent. We ran experiments using several query
window intervals, where in each interval we were looking for the frequent items
(¢ = 0.005). In Figure 7, we report the results for nine of these queries (the
results for the rest of the queries we tried were similar). The queries we used as
test cases are listed in Table 2 (we report the boundaries of the query window



Table 2. Query window intervals used as test cases.

n=>50000 n=60000 n=70000
No. ¢2 . thee |No. t2 . td .. |No. t1 . thee
1 5000 45000| 4 5000 55000{ 7 20000 45000
2 35000 45000{ 5 35000 55000{ 8 40000 55000
3 25000 40000f 6 5000 50000| 9 40000 65000

intervals). All experiments used a batch size b = 1,000, they were repeated 15
times, and results were averaged.

Figures 7(a) and 7(b) show the recall and precision for the three algorithms,
when run over a dataset with a stationary distribution. We observe that all three
algorithms have virtually perfect recall rates. However, precision varies. T%7Ti-
Count and TiTiCount+ average precision rates close to 90%, with TiTiCount+
performing slightly better. The performance of NaiveCount is notably worse,
averaging a mere 45%.

In Figures 7(c) and 7(d), we show the results of the same experiment, when
run over a dataset with time-variant distribution. In this case, the stream was
generated by concatenating several small datasets. These datasets were all gen-
erated by sampling a Zipfian distribution, but each one of them had a different
set of frequent items.

These experiments represent a more challenging setting for our algorithms,
and the results demonstrate the qualitative difference among them. TiTiCount+
is consistently the best performer among the three, with significantly better per-
formance than TiTiCount in several cases. The NaiveCount algorithm performs
very poorly in terms of precision, which explains its high recall rates.

The reason TiTiCount+ produces even more accurate results than Tt TiCount
for the time-varying dataset is because the TiTiCount algorithm relies solely on
the weighted fraction mechanism to arrive at frequency estimates. Evn though
this is an improvement over the NaiveCount algorithm, this mechanism works
well only for stationary distributions, where the item frequencies remain rela-
tively stable across different window intervals. In contrast, T:TiCount+ using
the subtraction mechanism can effectively alleviate this problem and produce
better estimates. This explains the large difference in performance observed in
test cases 7 — 9.

We also performed tests by varying the skew parameter of the Zipfian dis-
tribution. The trends in these experiments are similar, and we omit them for
brevity. For the remainder of the discussion, we do not consider the NaiveCount
algorithm.

In the following experiment, we tested the performance of the algorithms as
a function of the size of the query window interval, and we also compare them
to Linear. We use Linear only as an indication of how good the performance
of our algorithms would be if they had enough memory to use fixed- instead
of tilted-time window intervals. For our experiment, batch size b = 1,000, and
number of windows K = 11. This means that our algorithms can answer queries
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Fig. 7. Performance on time varying and non-varying data distributions.

about item frequencies for the past 1,000,000 transactions. In order for Linear
to be able to answer the same class of queries, we have to use 1000 windows
(for window size equal to b), which requires two orders of magnitude more space
than our algorithms. We also compared against LinearConst, which the Linear
algorithm that is given the same amount of space as our algorithms (resulting
in a window size of 100, 000).

The experiment was run on the kosarak dataset, using 120 randomly gener-
ated queries following a Gaussian distribution (mean 9N/10, stddev N/8). Fig-
ures 8(a) and 8(b) depict the results of the experiment for recall and precision,
respectively. The graphs show that TiTiCount+ outperforms TiTiCount across
the entire range of query sizes. It is interesting to note that while TiTiCount
exhibits a steady recall rate across the experiment, T4 TiCount+ improves its per-
formance as the size of the queries increase. This happens because larger queries
are more effectively managed by the subtraction mechanism of TiTiCount+.

As expected, LinearConst performs the worst (its somewhat high precision
numbers are explained by the low performance in recall), and Linear is almost
always the winner in both metrics. Note though, that the performance of T77Ti-
Count+ is very close to Linear, which demonstrates the effectiveness of the
subtraction mechanism.

5.2 Finding Top-k Items

In some situations, it is desirable to know the top-k most frequent items in a
stream, or their cumulative frequency. Our algorithms can be adapted to deter-
mine those values. In this experiment, we tested TiTiCount+ for the accuracy
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Fig. 8. Performance with respect to query width (dataset: kosarak, batch
size b = 1, 000).

of the estimated frequencies of the top-k items, and compared its results to the
exact answers.

Similar to the previous experiment, we ran random queries of different sizes,
asking for the cumulative frequencies of the top-k items, for several values of
k. The results are illustrated in Figure 9, for both real datasets. The top-k
items were correctly identified in all cases. The graphs show that the cumulative
frequencies reported by TiTiCount+ were consistently very accurate (less than
0.05% error for our experiments).
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Fig. 9. Top-k items: Estimated and actual cumulative frequencies.

5.3 Scalability

In order to evaluate the scalability of the proposed algorithms, we ran experi-
ments to measure the update times of TiTiCount and TiTiCount+. The update



time is the time required to update the internal data structures every time a
new transaction arrives, including shifting operations We tested the algorithms
with data streams of 100 million transactions, and we report the cumulative
update time in Figure 10. The reported times are averages over five independent
runs. The results show that both algorithms scale linearly with the number of
transactions, with TiTiCount+ being slightly less efficient, because of the higher
worst case cost of the shift operation that it implements.

Scalability
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Fig. 10. Scalability: Variation in update time with increasing number of data
items.

6 Related Work

In the recent years, numerous studies have focused on problems related to
streaming data, ranging from practical applications to theoretical questions [16,
24]. There is a wealth of work on the problem of identifying frequent items in
streaming data. The Frequent (FREQ)[18] and the Lossy Counting (LC)[23] al-
gorithms maintain a number of counts, which are pruned as new items arrive
in the data stream. Other algorithms, such as Combinatorial Group Testing
(CGT) [11], Count-Min (CM)[10], CCFC [7] and hCount (HC) [17] are based on
sketches. The sketches are designed so that they provide accurate results for the
frequent item discovery problem, while requiring limited memory resources.

The important difference between these works and our approach is that we
want to be more flexible in identifying frequent items, placing more importance
on recent frequent items. For mining recent frequent items, an intuitive approach
is to use time-decaying approximations. This technique has been used in several
diverse areas, such as online time series summarization [25,5], streaming data
clustering [3], and data warehousing [8].

Other works have studied the problem of efficiently identifying and maintain-
ing frequent itemsets over streaming data [6,9,20]. In this case, we are interested
in sets of items that appear frequently together. Specialized techniques and al-
gorithms have been developed for the solution of this problem. Some of these



works are also based on sliding windows [21], or tilted time windows [14], in
order to focus on the transactions in the recent past of the data stream. The
FP-Stream approach [14] uses a tilted timeframe similar to our work. However
it makes use of the FP-Tree structure, which has been specifically designed for
itemsets, rather than items. An efficient implementation of the above approach
for the problem we solve in this study is not straightforward. Moreover, in our
work we describe novel shifting schemes for the tilted timeframe, which are used
by TiTiCount+ in order to deliver significant performance improvements.

7 Conclusions

The problem of frequent item identification has attracted lots of attention in the
past years, and has found many interesting applications across diverse domains.
This work is motivated by the need of many real-world applications to identify
frequent items in the recent past of a data stream, rather than over the entire
history.

In this paper, we propose novel algorithms for the discovery of recent frequent
items in a data stream. The proposed algorithms are based on the sketching
technique, and are very flexible in that they are designed to answer queries for
frequent items in ad hoc window intervals in the recent past of the data stream.
Based on our observations, we also describe extensions of the basic algorithm that
can significantly improve the accuracy of the query results, while maintaining
the same memory usage and at negligible additional processing cost.

We have evaluated the performance of the proposed techniques on real and
synthetic data streams. The results show that the algorithms can efficiently
operate using few space and time resources, while maintaining a high quality
approximation in query answering.
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