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ABSTRACT 

 

With the growing complexity of data acquisition and processing methods, there is 

an increasing demand in understanding which data is outdated and how to have it as 

fresh as possible. Staleness is one of the key, time-related, data quality 

characteristics, that represents a degree of synchronization between data originators 

and information systems possessing the data. However, nowadays there is no 

common and pervasive notion of data staleness, as well as methods for its 

measurement in a wide scope of applications. 

Our work provides a definition of a data-driven notion of staleness for 

information systems with frequently updatable data. For such a data, we demonstrate 

an efficient exponential smoothing method of staleness measurement, compared to 

naïve approaches, using the same limited amount of memory, based on averaging of 

frequency of updates. 

We present experimental results of staleness measurement algorithms that we run 

on history of updates of articles from Wikipedia. 

Keywords: Data quality, information quality, data freshness, exponential 

smoothing, data quality measurement. 

1. INTRODUCTION 
Growing diversity of data sources and technologies makes solutions for data 

synchronization problems more and more complex. Nowadays, data is created, 

processed, and eventually consumed by the time when it can be already obsolete. 

The dynamics of today’s world raise new challenges for data management, one of 

which is having data fresh at instant of its consumption. 

Since the notion of “data freshness” (or “staleness”, as the opposite) is not 

ubiquitous among researchers, in the next section we will first give a motivating 

example where such a notion, as a time-related quality dimension, is crucial. 

Necessary limitations on possible approaches for data staleness measurement are 

followed by a description of an information system that may incorporate an 

approach we will present later in the paper. 

http://disi.unitn.it/~bouquet/index.php


1.1 MOTIVATION AND OUTLINE OF THE WORK 
While there are numerous works on data caching and synchronization, including 

those that consider system-driven data freshness issues (see Section 2), there are 

underexplored aspects such as understanding and measuring data-driven quality 

dimensions relevant to time. In particular, when users are the only source of data, 

system-driven aspects cannot help us as much to detect if a data element1 is fresh, 

since those aspects deal with management of data rather than with interpretation of 

its nature. We will demonstrate this statement in our following examples involving 

use cases of getting insights from articles of Wikipedia and from entries representing 

real world entities in an information system called Entity Name System ( [1], [2], 

[3]). 

In this work, scope of interest in Wikipedia analysis lays in analysis of its 

articles’ revisions history, or series of updates of high frequency which is about 0.3 

to 3 updates per day. The lower limit of the update rate is driven by characteristics 

of the algorithms we explore in this work (Section 5) while the upper boundary is 

dictated by the natural limitations of Wikipedia of having insignificant number of 

articles with high update rate throughout selected evaluation interval (we selected 

history for about 8 years – see details in Section 6). Hence, we target to deal with 

articles of least 1000 revisions per their lifetime. 

Updates to Wikipedia may result not only from legitimate updates from users, but 

also from robotic or vandalism actions, which are presumed by openness of this 

resource. Even different viewpoints on the same aspect may result in updates. In our 

work, we consider all those kinds of updates as a part of an “eco-system”, where 

those events are natural with respect to provided resources and corresponding data 

alteration rules. Hence, we can build a model that will predict an update of a data 

element based on history of updates, but not reasons for them. Given that, one can 

apply our approach to data-driven staleness measurement in other information 

systems operating with data-driven updates. 

One of main questions we want to answer is How stale is an article now? For 

example, given an extraction from revision history of article from Wikipedia “List 

of web application frameworks” (Figure 1), a disruption of nearly daily updates for 

more than 2 years may indicate a staleness issue of the article.  

 

                                                 
1
 Data element is an abstraction that denotes attributes (“name-value” pairs) or entities (aggregated 

set of attributes of notions like person, place, event, abstract object, etc.). 



Article from Wikipedia:

"List of web application frameworks"

...

<timestamp> 2009-03-07T21:47:06Z </timestamp>

<timestamp> 2009-03-09T17:27:34Z </timestamp>

<timestamp> 2009-03-10T13:06:07Z </timestamp>

<timestamp> 2009-03-11T15:23:59Z </timestamp>

<timestamp> 2011-04-08T12:38:57Z </timestamp>

<timestamp> 2011-11-15T06:22:26Z </timestamp>

Revision history:

 
Figure 1. Example of potential data staleness issue in an article from 

Wikipedia. 

Note, that from the other hand, for the measurement of staleness we want to 

account its semantics as close to real world as possible. In the example above, it 

would be improbable, that somebody forgot about updates of a popular article on 

Wikipedia. Thus, for a reader inquiring on how fresh the article is, we want a 

measurement method resulting in “2 days stale” on 2009-03-14, but “fresh” a month 

or more after last day in a series of updates in 20092. 

Since we want to know at any time how stale is a data element, we impose the 

following a strict limitation on the required memory budget, and consequently on 

the use of the revision history. We want to measure data staleness without storing 

and analyzing even a (recent) part of update history, but considering it indirectly 

with help of a few variables. Those variables must represent update history 

concisely, at the same time been adequate for the measurement accuracy. In this 

work, we will show how we accomplish such a requirement with an exponential 

smoothing method, comparing it to averaging methods. 

Without a limitation on time-series representation, our solution for the problem 

becomes infeasible in real time information systems that must convey to end users 

staleness measures of millions of entities, with at least thousands of timestamps 

each. In fact, the problem would fall into another extensively explored problem area 

– analysis and prediction of time-series with performance optimization aspects. 

An example demonstrating not only need for staleness measurement and 

exposure it to end user, but also its potential propagation to an information system, 

is an Entity Name System (for the rest of this paper, we will refer to it as ENS, or 

simply, repository) developed within OKKAM3 project. ENS aims at management 

of global unique identifiers for entities on the web, storing description of those as 

sets of attribute name and value pairs for each entity. Users of the system can 

modify the repository at any time. Usually, this event reflects updates that took place 

                                                 
2
 Naturally, a measure of staleness in this case is relevant only soon after interruption of updates (on 

2009-03-11), but not even a month after it: the interruption was due to a new status of the original 

item – redirecting article. 
3
 http://www.okkam.biz 



for corresponding entities in the real world, but as we mentioned before, in this work 

we study a set of updates as is, without delimiting reasons for them. 

The questions in staleness measurement in the ENS are similar: How stale is each 

attribute of each entity? Given a staleness measure, Should an attribute be updated? 

The latter question is out of scope of the current work, but it is of particular interest 

for data synchronization issues, whenever a system like ENS will decide to 

synchronize some entities with such a source like Wikipedia (which may already 

have data staleness measured, as we mentioned in the example before). In fact, some 

works for data caching and synchronization presuppose presence of either fresh data 

at sources or its degree of staleness (see Section 2) that can serve for decision on 

which source to query. 

By calculating with help of statistical methods when user (as a source of truth) 

should have updated data element, we can estimate its degree of staleness. Based on 

such estimation, one can distribute resources of an information system in such a way 

to keep the repository partially or entirely as fresh as needed, by means of various 

synchronization techniques. 

In summary, our contributions in this work are the following: 

- we define a data-driven notion of staleness and show how it satisfies key 

requirements for data quality metrics; 

- we demonstrate different approaches for staleness measurement without 

analyzing historical timestamps of updates, but considering them indirectly via as 

many as three variables; 

- for analysis of revision history from Wikipedia, we implemented staleness 

measurement algorithms based on averaging and exponential smoothing methods. 

 

The rest of this paper is organized as follows. In Section 3 we will first set a data-

driven notion of staleness that is based on existing state of the art (Section 2). After 

that, we will provide a satisfiability analysis of our notion to base data quality 

requirements (Section 4), and demonstrate different approaches to measure data 

staleness (Section 5). Section 6 shows experimental results of those approaches 

implemented and tested on a Wikipedia update metadata, with comparative analysis 

of their predictive accuracy. Concluding remarks are presented in Section 6.1. 

2. RELATED WORK 
In spite of the fact that time-related data quality dimensions have been studied by 

computer scientists ( [4] explored how to ensure required currency level of 

materialized views) even before main data quality research in this area began ( [5], 

[6]), they still lack a comprehensive measurement methodology that can be applied 

in practice. 

Though both academics and practitioners find a time-related quality dimension 

among the most important ones [7], there is still need in common understanding and 

defining ubiquitous notions of those. Because of this fact, such time-related quality 

terms as freshness, timeliness, currency, up-to-dateness, age, staleness, obsolescence 



may be used to denote the same quality problems (up to antonymous equivalence). 

Bouzeghoub and Peralta [8] have presented a structured view of some of those terms 

in the table below. 

Table 1. Freshness factors and metrics according to [8]. 

Factor Metric Definition 

Currency Currency The time elapsed since data was extracted from 

the source (the difference between query time 

and extraction time). 

Obsolescence The number of updates transactions/operations 

to a source since the data extraction time. 

Freshness rate The percentage of tuples in the view that are up-

to-date (have not been updated since extraction 

time). 

Timeliness Timeliness The time elapsed from the last update to a 

source (the difference between query time and 

last update time). 

Though Bouzeghoub and Peralta [8] studied freshness-related metrics, they have 

concentrated on analysis of definitions of data freshness in literature. Measurement 

of those metrics was out of their scope. 

Heinrich et al. [9] is one of recent works where authors focus on evaluation of 

time-related data quality metrics, elaborating a set of corresponding requirements for 

them. We discuss satisfiability of our notion of data-driven staleness metric to those 

requirements in Section 4. 

Authors of other related works (expanded list of the notions, definitions and 

measurement methods of those works see in Appendix 1) measure data freshness 

using known update rate of a monitored element [10]. In [11] they study 

incorporation of a freshness parameter into OLAP queries processing. The more 

recent work of Guo et al. [12] presented an integration of currency and consistency 

requirements of users into SQL queries; Labrinidis and Roussopoulos in [13] 

proposed an algorithm that allows users to get data based on their performance and 

freshness preferences. Qu and Labrinidis [14] introduced Quality contracts as a way 

to express user preferences for speed of data delivery vs. delivery of fresh data; in 

[15] authors propose a model that allows user to specify freshness constraints and 

read out-of-date data within a serialized transaction. For example, if prices for an 

item at an auction change, user may want to get quick response with old prices if 

staleness of the data will not be beyond a specified threshold. In our work, instead of 

aiming at satisfaction of user freshness preferences expressed in user queries, we 

measure current staleness of monitored elements based on prediction of the most 

recent updates that should have taken place in the past. 



Golab et al. [16] define the notion of data staleness (“a difference between time t 

and the timestamp of the most recent tuple in table T”) and study this quality 

measure for scheduling of updates for a real-time warehouse, focusing on 

management aspects of data synchronization between two systems, rather than on 

data-driven characteristics we pursue in this paper. 

Definition of freshness and approaches to measure it for data replication was 

given by [17], where authors study a problem of maintaining a cache at required 

level of currency, consistency, completeness and presence (defined by users). Cho 

and Garcia-Molina [18] have shown how web crawler should update its cache to 

keep it as fresh as possible. Xiong et al. [19] described how to plan updates for data 

objects with known validity intervals. Akbarinia et al. [20] showed an approach to 

keeping replicated data in P2P systems consistently updated and fresh; in [21] 

authors demonstrate lazy replication technique with freshness guarantees by 

processing timestamps. In one of the most recent works, Xiey et al. [22] provide a 

method to ensure that outsourced database system correctly performs update 

operations (and hence, has data fresh). For this purpose, they have a twofold 

approach: adding timestamps to data signatures or adding fake operations of insert, 

delete or update. Afterwards they check for correctness of execution by an 

outsourced DB processing data modified by either of the two above-mentioned 

ways. Following the defined notion of freshness, we abstract from data freshness 

guarantees driven by system properties (choice of the most fresh sources, assurance 

that sources execute update operation correctly, etc.). 

In this work, we study the nature of data staleness that is a data-driven 

characteristic that depends on data element’s frequency of updates. It does not 

depend on system properties that are usually considered in works studying data 

replication and caching techniques.  

Cho and Garcia-Molina [23], [24] gave the most relevant notions that we can 

adapt in our work. They study a problem of keeping a cache of web data as fresh as 

possible by means of discovery update rate of web data and defining a strategy to 

query the data. 

In the next section, we show how our data-driven notion of staleness 

comprehends necessary semantics of existing system-driven notions of freshness 

and age elaborated by Cho and Garcia-Molina ( [23], [24]). 

3. NOTION OF DATA STALENESS 
Quantitative measurement of a data quality (DQ) dimension requires strict notion 

defined. Due to diversity of application areas, there is no coherent view on notions 

of DQ dimensions even in a DQ community. This section aims at a deeper analysis 

(started in Section 2) of notions for time-related DQ dimensions presented so far. In 

particular, we will inspect notions of “freshness” and “age” that we found to be the 

most relevant ones to the goals of our work. 

Cho and Garcia-Molina [23], [24] define freshness as a binary measure that 

indicates whether a data element e from the real world is synchronized with its copy 



in information system. Another quality indicator employed in their works is age that 

has the following semantics: age of fresh data is always zero while age of non-fresh 

data continuously and linearly grows starting from synchronization disalignment 

point (i.e., when a copy of a data element is not synchronized anymore). Thus, age 

measures time elapsed from synchronization disalignment point until instant of 

measurement.  

One of major differences in notions of DQ measures between work of Cho and 

Garcia-Molina and ours is in definition of disalignment point. They study 

correspondence of a local copy of web data to its “real-world state” on a remote 

system, while in our work we do not have a remote system to query the data updates. 

We rather consider users that may update the data at any time.  

From the other hand, both “freshness” and “age” in [23] served for studying best 

strategies to keep cache of web data fresh. In our work, we consider a different 

problem, namely prediction of next updates of each monitored data element without 

analysis of history of updates (revisions). As we mentioned before, the history, 

nevertheless, must be considered indirectly. Thus, for enabling measurement of data 

staleness, in our work we define it via linear function corresponding to that of age 

defined by Cho and Garcia-Molina [23], but with their semantics of freshness. 

3.1 DEFINITION OF DATA STALENESS MEASURE 
Ideally, a data-driven notion of staleness should not consider the fact of 

synchronization between systems, but it will rather approach to derive a measure of 

correspondence (in time) of a data element’s value to its real world’s instance. In 

reality, it is often too hard or just impossible to get real-world’s value. Hence, we 

consider user updates, which potentially represent alterations in the real world, but 

in any case, those updates represent changing web data we want to study in this 

work. 

We suppose that whenever a system misses update that has to take place, it will 

have data element that does not correspond to the real world. Instant of such a 

missing update we call potential synchronization disalignment point. To measure 

staleness of a data element e at current time      we have to find potential 

synchronization disalignment points of that element, in respect to its real updates 

(e.g., made by users to our system) and those predicted by an algorithm. 

Whenever predicted (P) update will precede the corresponding prospective real 

(R) one, there is a possibility of presence of staleness. In this case, data staleness 

     

  of element e at current time      can be measured as difference between 

current time      and time of predicted update    
 ; otherwise, if predicted update 

will take place on or after current instant, staleness will remain zero: 

     

  {
        

             
 

             
  (1)  



Graphical examples of two possible cases of staleness measurement (according to 

eq. 1) are shown in Figure 2, where diamonds represent real updates, whether they 

already took place (solid lines) or they are potential future ones (dotted lines). 
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Figure 2. Possible cases of staleness measurement (eq. 1):  

a) instant of measurement (tcur) falls between predicted and real updates;  

b) instant of measurement precedes both predicted and real updates. 

4. REQUIREMENTS FOR TIME-RELATED QUALITY 

METRICS  
There are various requirements for DQ metrics from researches of the field. 

Heinrich et al. [9] have gathered a coherent set of key requirements for time-related 

metrics. Among those are (R1) normalization, (R2) interval scale, (R3) 

interpretability, (R4) aggregation, (R5) adaptivity and (R6) feasibility. In the 

following subsections, we will describe each of these requirements, and demonstrate 

satisfiability to each of them of our notion and approach to measurement of data 

staleness. We will also demonstrate compliance of our notion to principal 

requirements for DQ dimensions outlined by Pipino et al. [25]. 

4.1 NORMALIZATION 
One may need normalization of a data quality metric while operating with 

different metrics, instead of a sole one needed for our examples (Section 1.1). Data 



values normalization in this context means mapping of all possible measurement 

values of a data quality metric to interval [0,1]. 

We can get normalized measure of staleness via exponential function as follows: 

       

  {
           

              
 

             
  (2)  

with values ranging from 0 (absolutely stale data element) to 1 (the best possible 

quality of data element on the dimension of staleness), according to [25]. 

Equation 2 is a generalized formula for automated calculation of normalized 

staleness values, where value of 0 is reachable at infinity. In the applications that are 

enforcing update policies, state of “absolute stale data” is reachable at a finite time. 

For example, consider a system where each user must change own password every 6 

months. Those passwords without been updated during more than 6 months, are not 

valid in the system, and can be treated as absolute stale elements. However, such 

cases are outside of scope of our work, since policy enforcement and data 

invalidation is covered to a higher extent by another quality dimension – validity. 

4.2 INTERVAL SCALE 
To support interpretability of quality measurement results for their comparison 

with measurements of other dimensions, those results should support interval scale 

property. This means that the same interval should denote the same quality 

improvement or degradation.  

This property is supported by our (non-normalized) definition of staleness due to 

its linearity: difference of an element’s staleness between values 3 and 4 (days) 

means the same as the one between 6 and 7 (days). 

Note, that interval scale function may differ from the linear function (eq. 1), or be 

impossible to pursue in some cases – normalization is one of those for our notion. 

Hence, depending on application, staleness measurement function may be either 

normalized (to facilitate comparison between quality metrics), or interval scaled (for 

better interpretation of the results). 

4.3 INTERPRETABILITY 
Easiness of interpretability of measurement results by end-users is also important 

for definition of a quality metric. For example, when an analyst has data with 

freshness metric equals to 0, does it mean to have fresh data at hand? What about 

freshness equals to 10 (suppose, we do not stick to the notion proposed in [23])? Is it 

even fresher? Similar issues may arise with the notion of age: e.g., with age A(e) = 

0, we cannot undoubtedly speak about positive or negative data characteristic 

because of a semantic meaning of “age” that mostly corresponds to a neutral notion 

of “period of time” [26]. Unless specific notion of freshness or age is communicated 

to the end-user, interpretation of that may be ambiguous. To reduce such an 

ambiguity, we came with a notion that comprehends time-related characteristics of 

data, simplifying its perception by end user.  



Considering the abovementioned example, with staleness     , we speak about 

absence of (a time-related) negative feature, while      clearly indicates problems 

with data. Hence, from a user perspective, the notion of data staleness satisfies the 

requirement of interpretability, suggested by [27]. 

4.4 AGGREGATION 
While measuring quality metric at one level, it is important to get aggregate value 

at higher one(s). For example, having result of staleness measurement for attribute 

“name”, how it will influence staleness of a corresponding entity, table and entire 

database? 

We define aggregation property at database level as ratio of weighted sum of all 

measures of staleness of all measured data elements (attributes, entities, etc.) in a 

database, to their amount: 

    
∑              

      
 (3)  

where importance rate      represents weight of an element e in a database.  

Definition of importance rate depends on its application and context. Since in this 

work we focus on measuring data staleness dimension, for simplicity reasons we 

consider normalized number of queries for a data element as its measure of 

importance. 

4.5 ADAPTIVITY 
Usually, to interpret measurements of quality metrics, those metrics should be 

adopted for a given context. While this is true only for some metrics, as [5] noted, 

most of them are context-independent and can be objectively evaluated without such 

an adaptation.  

By definition, staleness is one of those objective metrics. However, as we have 

mentioned before, one can enforce adaptability of low-level measurement results for 

higher-level DQ assurance goals. For example, data administrator may set a warning 

if attribute’s staleness reaches a certain threshold, and may set an automated request 

for update if staleness will reach even higher threshold. 

4.6 FEASIBILITY 
Techno-economical requirements of applications where quality measurement 

takes place, imply feasibility of getting the results. For example, getting a measure 

of reputation of an external source may be infeasible in some cases. 

As we will show in the next section, our approach for getting staleness measure 

relies on parameters that are essential and normally easy to get for a data element at 

a source system – total number of updates, timestamps of first and last update, etc. 



5. APPROACHES TO DATA STALENESS 

MEASUREMENT 
In the previous sections, we have established a data-driven notion for quality 

dimension of staleness (Section 3) and properties, that the corresponding 

measurement methodology should possess (Section 4). In this section, we will 

demonstrate examples of possible approaches to measure data staleness under given 

constraints on variables for representation a history of updates (Section 1.1).  

In particular, in Section 5.3 we will present an exponential smoothing method 

that indirectly considers (by means of a few representative variables) history of 

updates. This approach is preceded by two naïve ones, enhanced averaging method 

and shifting window, that directly calculate instant of predicted update    
  for eq. 1. 

In Section 6, the naïve approaches serve as a baseline to compare accuracy of 

prediction results of the proposed methods. 

5.1 ENHANCED AVERAGING METHOD 
Consider a data element e that has nearly periodic updates committed by users of 

an information system. We call such updates “real” ones (as opposed to “modeled” 

that are approximations of real updates, extrapolated by a measurement algorithm, 

and “predicted” that is a sole next update from time of measurement, forecasted by 

the algorithm). 

According to eq. 1, to measure data staleness      

  of element e at current time 

     (or another test point), we need to have an instant of time of predicted update 

   
 , that most probably should have taken place for e in the period between instant 

of last update and     . 

For periodically updatable data element, this task seems to be straightforward. 

Number of all updates committed to a data element up to the test point     , gives us 

an average update rate during past time interval. By adding (extrapolating) one more 

period, we can have an instant of potential update    
 , and hence,      

  (see Figure 

3). 
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Figure 3. Example of prediction of element’s update by enhanced averaging 

method. 

Since this method provides averaging of updates given that we have timestamp of 

last update (in addition to lifetime elapsed and total number of updates), we called it 

enhanced averaged-based method. 

Formally, we define instant of predicted update as following: 

   
       

  
 

  
 (4)  

or, substituting update rate    with number of updates    during element’s 

lifetime from its creation   
  to its last update      

 , we have: 

   
       

  
     
    

 

  
 

     
           

 

  
 (5)  

This allows us to obtain the final formula for staleness measurement of a data 

element e by means of enhanced averaging method: 

     

  {
     

     
           

 

  
            

 

             
 

 (6)  

Hence, to measure data staleness using this naïve method we would need to store 

3 variables for each data element: instants of first and last updates   
 ,      

  and total 

number of its updates   . 

In spite of the fact that most of web data we operate with, is following Poisson 

distribution (showed by [23]), entities with aperiodic or irregular updates motivates 

us to consider more accurate prediction methods that have to account such 

irregularities. Those methods, from the other hand, must be at least as efficient (in 

terms of variables per data element) and accurate as the enhanced averaging method. 

5.2 SHIFTING WINDOW 
One of the simplest methods that account entities with aperiodic updates without 

boosting number of variables to feed the measurement algorithm, is shifting 

window.  



A key advantage of this method is in localizing periods with different frequencies 

of updates   
    

    within certain intervals – windows (Figure 4). Shifting window 

can be seen as a refinement of the averaging method described before (Section 5.1) 

in such a way, that prediction of next update considers only recent updates (of 

current window) rather than older ones, unless current window has a few of them, as 

we will show later. 
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Figure 4. Irregular updates delimitation by shifting window. 

In this work, we focus on implementation of this method with window of fixed 

size, rather than on analysis of window size itself (which may also require from a 

data analyst manual processing of history of updates of entities of the same type). 

Hence, we will take a shifting window of fixed length       , instances of which will 

sequentially cover entire lifetime of each data element under staleness measurement, 

as in Figure 4.  

From the definition of this method it is obvious, that in most cases with web data 

even a few windows per lifecycle of an entity should improve accuracy of staleness 

measurement (as we mentioned, we target entities with update rate of order at least 

1000 per lifecycle). From the other hand, computational resources and intervals with 

sparse updates dictate upper limit on number of windows for each application. 

Assigning time periods   {     } that correspond to each of these windows, 

we will operate with time stamps indicating start of each of such window        
{               }. 

For each window of current period  , we keep tracking number of updates 

committed since instant of start of the window        and until current (or test) 

instant     . This gives us current frequency of updates in current window of period 

t:  

      
  

      
 

           
 (7)  

 However, as we mentioned before, until there are enough updates in the 

beginning of each window, we cannot realistically estimate its expected update 

frequency. Hence, we set a threshold of three updates for each window. This 

threshold triggers calculation of current window’s update rate as follows. Until we 



have sufficient updates in current window (      
   ), we consider previous 

window’s update frequency also as current one; otherwise, current update frequency 

is calculated as ratio of committed updates in the current window to elapsed time 

from instant of start of the window to current instant: 

      
  {

    
        

   

      
 

           
       

   
 (8)  

Combining eq. 1 for case         
  with eq. 4 and eq. 8 (given that       

    ), 

we have: 

     

  

{
 
 

 
      (     

  
           

      
 )           

   

     (     
  

 

    
 )           

   

 (9)  

As one can see, this method requires the following variables: 1) number of 

updates in current window       
 , 2) previous window’s update rate     

  and 3) 

time of last update      
 . Hence, this methods turns out to be as efficient in terms of 

required variables, as enhanced averaged-based method. 

Note, that since we operate with entities of the same high order of update 

frequency (see Section 1.1), we can adjust boundaries of all shifting windows 

                for all data elements, with precision of order  . In fact, such an 

adjustment can reduce only length of        that we treat as time of entity 

initialization. Thus, we can store and track all boundaries for shifting windows for 

entire data repository, instead of individual elements. 

For the entities with high update rate, we may not necessarily need a precise 

calculation of predicted instant of update. Instead, we can try to operate with small 

intervals, within which a method will predict presence or absence of update(s). The 

next section demonstrates implementation of this idea via exponential smoothing 

method. 

5.3 EXPONENTIAL SMOOTHING 
As we mentioned before, staleness measurement with help of shifting window 

uniformly considers all updates within a window of size       . In this section, we 

will show how one can exponentially account a wider (up to entire lifecycle) scope 

of updates, reducing potentially unnecessary precision of prediction for each next 

update instant for elements of high order of updates that we deal with. 

Among a wide variety of exponential smoothing methods [28], we focus on the 

N-N methods, which do not consider trend and seasonality of time-series. We 

adjusted one of those methods for prediction of presence of an update during time 

period. This method is similar to shifting window method (Section 5.2), but with 

much finer granularity with respect to update frequency. 



One of key elements in measuring data staleness with exponential smoothing 

method is a time interval that for better reflection of its semantics we called 

Predictable Time Interval (PTI). Such an interval is an equivalent of shifting 

window of granularity of order of updates. This means that, on average, for each 

update event there should be a few PTI’s. 

For all updates in each PTI we assign exponentially growing weights, indicating 

importance of those in prediction of future updates (see Figure 5), and hence, 

measuring current staleness value (we will give more details on the weights later on 

in this section). 

W, weight 

of updates

t

updates

| PTI |

 
Figure 5. Example of exponential growth of weights associated with updates 

in each PTI. 

The choice of length of those intervals depends on foreseen update rate of 

observed data element, which can be also estimated based on historical analysis of 

entities of same type. Hence, one can approach to calculation of Predictable Time 

Interval length as follows: 

      

∑   

   
∑  

   
      

    
 

       
    (10)  

where 
∑  

   
 is average lifetime of elements in a set; 

∑  

   
 is expected average 

number of updates of elements in a set during their lifetime;   is an average update 

rate of elements of a set;       is a precision coefficient, indicating required 

granularity of a predictable time interval. This coefficient depends on application, 

and to a higher extent, on expected update frequency of data.  

Since our ultimate goal is measurement of data staleness, which is a data 

characteristic that can be useful in a decision making, we impose the following 

empirical granularity limits on rate of PTIs (or “tick size”) to frequency of updates. 

From one side, a frequency of updates higher than 2 per tick interval will deprecate 

value of the prediction result of the presented algorithms (in most predictions the 

algorithms will foresee an updatable tick). Accountability of the recent updates (a 



few ticks range) imposes the lower limit – we require for the input data to have no 

less than 1 update per 3 ticks, therefore setting          . Hence, for the groups 

of selected articles with update rates           (1000 to 7500 updates during 

about 6 years) the formula 10 suggests use of PTI intervals from about 8 to 49 hours. 

Now, we want to assign a weight to each PTI that will depend on all previous 

updates in each PTI, given that for prediction of the next update we consider more 

recent updates to a higher extent. In this way, we define averaged weighted linear 

combination of all updates of a data element e: 

     
      

              
               

    (11)  

where   
  is number of updates that element e had for time interval t (the most 

recent); α is a smoothing constant such that       (this constant drives scale of 

growth of weights, associated with each PTI). 

From eq. 11 we have the following recursive formula: 

     
               

      
  (12)  

We consider weighted linear combination of each PTI      
  as a probability that 

the next PTI will have an update. Whenever          
   , it shows us that the 

next time interval should have at least one update. The same prediction applies to 

     
   , which shows us that previous PTI accommodated more than one 

update.      
      indicates that next PTI most probably will not have an update. 

While measuring data staleness with this method, we also need for each PTI 

interval a staleness coefficient      that will indicate how stale a data element is (or 

it is not stale but fresh). This makes the method a perfect fit as a solution to our 

motivating example (Section 1.1), where we imposed a requirement for a 

measurement method that it should result in a corresponding element’s staleness 

value soon after last update. From the other hand, it should consider that element 

fresh if last update took place long time ago, compared to expected update rate of 

element. 

Staleness coefficient      has the following logic. As soon as predicted presence 

or absence of updates during the next PTI corresponds to real case,      equals to 0; 

in case of inconsistency between prediction and real case,      is increased by 1 if 

     
  suggests an update, unless it is not reset to 0 by presence of a real update 

event during past PTI – see Table 2. 



Table 2. Logical table for      staleness coefficient 

Presence of updates  

(prediction by      
  / real case) 

 

No / No        

No / Yes        

Yes / No              

Yes / Yes        

Using      staleness coefficient, we can get staleness value by the end of each 

PTI by its multiplication by length of Predictable Time Interval as follows: 

  
             (13)  

Figure 6 demonstrates on a sample history of updates, an instantiation of the 

exponential smoothing method, with α = 0.8. In this figure, we can see initial 6 

intervals (PTI’s) delimited on the timeline by instants       . Each rhombus in the 

figure denotes an update to an element. According to eq. (12), Table 2 and eq. (13), 

we calculate values of      
 ,      and eventually, staleness value   

 , at each 

instant of time        (setting 0 as corresponding initial values at the first step). 
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Figure 6. Example of staleness estimation with exponential smoothing method. 

As one can see, in terms of stored variables, this method is as efficient as those 

presented in this section before: it requires 3 individual variables for measurement of 

data staleness, namely 1) weighted linear combination for previous time interval 

       
 ; 2) number of updates for current interval   

  and 3) staleness coefficient 

    . The rest of required variables (     ,  , boundaries of PTI’s) one can set 

common for entire data repository, or individual for some of data elements, 

depending on availability of resources and a given task.  



In the next section we will demonstrate that exponential smoothing method gives 

the most accurate update prediction results (and hence, more accurate staleness 

measurement at equal other conditions) with fewer errors for entities with aperiodic 

updates.  

6. PREDICTIVE ACCURACY EXPERIMENTAL 

COMPARISON  
In our experiments, we compared the best predictive accuracy of the approaches 

proposed in Section 5, given the least error rates of each of the method with different 

values of the corresponding parameters (tick size, shifting window size and α 

coefficient). In particular, we measured how often a method can correctly predict 

every next update of each article, and how many errors it makes. By erroneous 

prediction we consider presence of non-predicted update and absence of a predicted 

one. In the table Table 3 one can see a summary table representing cases of correct 

and erroneous predictions accountability in our analysis methodology. 

Table 3. Accountability of correct and erroneous predictions of updates with 

respect to the real ones. 

  Real update 

  present absent 
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te
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OK Error 

n
o
 

Error n/a 

As one can see from their description, enhanced averaged-based approach and 

shifting window can predict a precise instant of update, while exponential smoothing 

method predicts presence of an update in an interval. To compare predictive 

accuracy of those methods, in our experiments we have adopted the two former 

approaches for prediction of next update during a time interval (predictable time 

interval, PTI) of the same length that exponential smoothing method will use. 

As a dataset, we took revision history of articles in English from Wikipedia4, 

covering around 3.8 million items from January 16, 2001 to December 01, 2011 (we 

used for reference purposes a time-series5 representing metadata of articles till May 

12, 2009; in particular, it helped us to verify motivating example we gave in Section 

1.1). As we intended to explore the algorithms targeted to deal with a data that is 

getting updates at high frequency (at least 1000 updates per lifecycle, which is at 

most 11 years for the Wikipedia’s dump we analyzed), we selected groups of articles 

with the following number of revisions (number of articles in each group is given in 

                                                 
4
 http://dumps.wikimedia.org/enwiki/20111201/enwiki-20111201-stub-meta-history.xml.gz 

5
 http://download.wikimedia.org/enwiki/20090512/enwiki-20090512-stub-meta-history.xml.gz 



parentheses): 1000±10 (no. 601), 1500±10 (191), 2000±10 (95), 2500±10 (54), 

3000±10 (19), 3500±10 (15), 4000±10 (16), 4500±10 (14), 5000±10 (2). Articles of 

these groups we used as an input data for exploration of properties of the described 

algorithms. Due to the natural limitations of Wikipedia (among all articles, there is 

significant decline of number of those with a few thousands revisions), we also 

selected articles with revisions 7500±150 (no. 5) that we used for extrapolation and 

confirmation of the results at higher update rates. 

For more competitive comparison of the results from the presented algorithms, 

we want to align articles revision histories lengths, i.e., eliminate recently (close to 

the final point of the revision metadata taken) created articles that fell into one of 

our groups, therefore, making update density of each group of articles more equal. 

For example, Figure 7 represents updates distribution of two sample articles of the 

same update rate – 5000. Among those two kind of articles we are interested the 

most to experiment with the one having wider distribution in time of the same 

number of revisions, and with less global peaks, which should potentially give more 

credit to those prediction methods that can adapt faster to varying update density 

(which shifting window and exponential smoothing will demonstrate in the 

following experiments). 

 
Figure 7. Yearly updates for two sample articles (A and B) of update rate 5000. 

Hence, in all the initially selected groups we filtered out articles with their first 

revision after 2006-01-01 (like article A in Figure 7). This allowed us to leave for 

the analysis the following number of items of their corresponding groups: 495 

(1000±10), 157, 83, 47, 15, 12, 13, 14, 1 and 3 (7500±150). 

Taking into account the empirical granularity limits mentioned before (no more 

than 2 updates per tick interval, but no less than 1 update per 3 ticks, where “ticks” 

is a variable parameter taken as 1 day for preliminary data selection purposes), we 

want to take out of the experiments a period of time when the least updatable group 

of the selected articles (1000) got revisions less than 1 per 3 days on average during 

one year. As our preliminary data analysis showed (Figure 8), before 2006-01-01 
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average number of updates among all the selected articles of update rate 1000 was at 

most 79 per year, while average yearly revisions for 2006 became about 180 for this 

group.  

Hence, for all the selected articles, we set the starting point to begin accounting 

the updates as January 01, 2006, when there were near 1 million articles in the 

Wikipedia (English part). 

 
Figure 8. Average yearly updates of the selected articles with the first revision 

no later than 2006-01-01. 

For the selected articles, leaving out updates prior to 2006-01-01 lets us having 

items with average number of revisions decreased by at most 12% of the 

corresponding groups’ size (882 for 1000±10, etc.), except for the control group 

7500±150 which got 5371 accountable updates on average. 

Hence, we got a period of revisions committed for the selected articles from 

2006-01-01 to 2011-12-01, which is about 71 months, or 2160 days, meaning that 

for the groups of articles 1000 to 7500 revisions we have on average           

updates per day. This drives us in getting corresponding tick sizes we can explore 

for the algorithms, coupled with their valid update ranges (see below).  

For the given range of frequencies of updates ( ), eq. 10 suggests use of tick sizes 

from about 8 to 49 hours. However, for more extensive studies of prediction 

accuracy of the algorithms presented in this work, we used an increased range in our 

experiments – from 6 to 72 hours. More specifically, we used the following values 

for tick sizes of 6, 12, 24, 48 and 72 hours. 

For each tick size, we want to account only valid range of updates. As we 

mentioned before, such validity is driven by the empirical granularity limits. For 

example, for a tick size 24 hours and lifetime of about 3000 days the valid range of 

updates would be from 1000 to 6000. For all the tick sizes see Table 4 for the 
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corresponding valid ranges of revisions and the ranges applicable to the groups of 

selected articles (1000 to 7500). 

Table 4. Validity periods for corresponding tick sizes. 

Tick size, 

hours 

Valid range of 

revisions 

Valid range of revisions 

in the selected groups 

6 4000 - 24000 4000 - 7500 

12 2000 - 12000 2000 - 7500 

24 1000 - 6000 1000 - 5000 

48 500 - 3000 1000 - 3000 

72 350 - 2000 1000 - 2000 

 

6.1 AVERAGING METHOD 
Having adopted implementation of the enhanced averaging prediction method 

(Section 5.1) for an interval prediction (ticks), we tested accuracy of the prediction 

on the entire dataset (articles with revisions ranging from N(e) = 1000 to N(e) = 

7500) with tick sizes from 6 to 72 hours. Leaving only valid ranges of update rates 

for each tick (Table 4), we got results presented in Figure 9. 

 
Figure 9. Error rates of enhanced averaging method. 

As one can see from the figure, throughout the entire range of updates, the best 

accuracy of this method is achievable for tick sizes from 6 to 48 hours. To compare 

predictive accuracy of this method with the other two, we will take the best accuracy 

curve which includes error rate at tick size of 24 hours for articles with revisions 

N(e) = 1000, 48 hours for N(e) = 1500, 12 hours for N(e) = 2000, etc. 
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6.2 SHIFTING WINDOW 
We have explored shifting window method (Section 5.2) over a wide range of 

values of shifting window parameter, coupled with the set of defined above tick 

sizes. As the range of values of shifting window parameter we took the following 

values: 0.5, 1, 2, 3, 6, 12 and 24 months. As we will show later, this range and 

granularity of step is sufficient enough to find the best prediction performance of 

this method to compare it with performance of others. 

Initially, for each value of shifting window, we obtained prediction error rate 

while accounting corresponding validity intervals of each tick size (Table 4). Figure 

10 represents one of such graphs for window size of 1 month. 

 
Figure 10. Error rates of shifting window method with window size of 1 month. 

For further analysis, we need to see which tick size values give the best 

prediction results for this method throughout entire range of update rate groups 1000 

to 7500. In fact, for all window sizes from 0.5 to 24 months, only ticks from 6 to 24 

hours drove this method to the least prediction errors, as on Figure 10. Now, to 

compare the best accuracy among entire range of shifting window sizes for these 3 

tick sizes, we will take each of those ticks and explore behavior of the method in the 

corresponding update rate groups.  

Figure 11 represents error rates for tick size of 6 hours, for all shifting windows 

from 0.5 to 24 months. 

20%

25%

30%

36%

41%

1000 1500 2000 2500 3000 3500 4000 4500 5000 7500

P
re

d
ic

ti
o

n
 e

rr
o

r 
ra

te
 

N(e), number of updates 

Tick size 72 h

Tick size 48 h

Tick size 24 h

Tick size 12 h

Tick size 6 h



 
Figure 11. Error rates of shifting window method for tick size of 6 hrs. 

As one can see, the best performance of this method for tick size of 6 hours was 

achieved with shifting window of sizes from 0.5 month (update rate 4000 and 4500) 

to 1 month (rate 5000) and 24 months (rate 7500). 

Similarly, for the other two tick size parameters (12 and 24 hours) error rate is 

represented on Figure 12 and Figure 13 for the corresponding valid intervals of 

update rate groups. 
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Figure 12. Error rates of shifting window method for tick size of 12 hrs. 

For both tick sizes of 12 and 24 hours this method demonstrates the best 

prediction for window sizes of 0.5, 6 and 24 months. 

 
Figure 13. Error rates of shifting window method for tick size of 24 hrs. 
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We should remind here, that for a group N(e) = 5000 we have only 1 article, 

which may cause the outlier behavior on Figure 11 and Figure 13. However, since 

this is the best approximation we could have from the Wikipedia, we accounted this 

group for our analysis, keeping in mind its nature. 

As one can see from the graphs, depending on a tick size and density of updates, 

this method gives the best results with a wide range of shifting window sizes. 

However, there is a common trend of better prediction accuracy with window size of 

0.5 month for lower update rates (up to N(e) of 4500, 3000, 1500 for tick sizes of 6, 

12 and 24 hours correspondently), and window size of 24 months for higher update 

rates. 

To compare the best prediction performance of this method with the other two, 

we will take minimal error at each group of update rate, combining graphs for each 

tick size shown above, from Figure 11 to Figure 13. The results of such a 

comparison are given in Section 6.4. 

6.3 EXPONENTIAL SMOOTHING 
For the exponential smoothing method (Section 5.3) we will first explore a wide 

range of α parameter (which defines speed of gradually “forgetting” about recent 

updates). For this experiment, we took α = 0.01, 0.05, 0.1, 0.2, …, 0.9. 

As a result, the best performance of this method was achieved with either some of 

the selected tick sizes (Figure 14) or all of them (Figure 15). 

 
Figure 14. Error rates of exponential smoothing method with parameter 

α=0.05. 
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Figure 15. Error rates of exponential smoothing method with parameter α=0.9. 

As study of the predictive accuracy of this method for each tick size revealed, 

only α from 0.01 to 0.5 led to the least error rates. In the following graphs we 

omitted error rates for α = 0.6 and higher for a better visualization of the results. 

On the corresponding valid update rate interval for a tick size of 6 hours 

exponential smoothing demonstrated the best performance with α = 0.01 and 0.05 

(Figure 16). 

 
Figure 16. Error rates of exponential smoothing method for tick size of 6 hrs. 

For the other tick sizes (from 24 to 72 hours) the best performance of this method 

was normally achieved for α = 0.01, 0.05 and 0.5 (Figure 17, Figure 18, Figure 19 

and Figure 20). For tick size of 24 hours usage of α = 0.1 gave the least errors for 

group of rate 5000 as well.  

19%

24%

28%

33%

1000 1500 2000 2500 3000 3500 4000 4500 5000 7500

P
re

d
ic

ti
o

n
 e

rr
o

r 
ra

te
 

N(e), number of updates 

Tick size 6 h

Tick size 12 h

Tick size 24 h

Tick size 48 h

Tick size 72 h

10%

15%

20%

25%

30%

4000 4500 5000 7500

alpha 0.01 alpha 0.05 alpha 0.1 alpha 0.2 alpha 0.3 alpha 0.4 alpha 0.5



 
Figure 17. Error rates of exponential smoothing method for tick size of 12 hrs. 

 
Figure 18. Error rates of exponential smoothing method for tick size of 24 hrs. 
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Figure 19. Error rates of exponential smoothing method for tick size of 48 hrs. 

 
Figure 20. Error rates of exponential smoothing method for tick size of 72 hrs. 

Having identified parameters for the best prediction accuracy of exponential 

smoothing (depending on update rate group and a tick size used), we want to 

compare the best possible prediction accuracy of this method with the other two, 

combining the lowest error rate of this method at each update frequency group 

(Figure 16 to Figure 20). 

6.4 EXPERIMENTAL RESULTS COMPARISON 
To compare predictive accuracy of the three algorithms presented in this work, 

we took the lowest boundary of error rate of each of them, explored with range of 

possible values of parameters specific for the corresponding algorithm (tick size, 

size of shifting window and α coefficient). As a result, for each algorithm we got the 

best predictive accuracy for every update rate group of the selected range – from 

1000 to 7500 (revisions per lifecycle). Comparing these results (Figure 21), we can 
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see that throughout the entire range of revision frequencies, except for group N(e) = 

1000, exponential smoothing method gives the best prediction results. However, 

outperformance of enhanced averaging methods over shifting window on some 

groups of articles (3500, 5000 and 7500) is an interesting observation which may 

result from the exhaustive trend of articles at higher update rate on Wikipedia, and 

as a result, intolerance for possible specifics of revision history trend of a few 

articles in an update group. 

 
Figure 21. Algorithmic minimal error rates for the selected. 

Average error rates by the corresponding prediction methods – enhanced 

averaging, shifting window and exponential smoothing – were observed as 24.2%, 

23.6% and 16.1% correspondently, which is expected from design of the presented 

algorithms.  

6.5 SUMMARY OF EXPERIMENTAL EVALUATION 
Requiring the same number of variables for representation of update history of 

each data element (article from Wikipedia), exponential smoothing method predicts 

each next update (for N(e) > 1000 during about 6 years) more accurately than the 

averaging methods (enhanced averaging and shifting window) adopted for interval 

prediction. This fact is expected and can be explained by recency of significant 

updates for the former method, which allows accounting both global trends and local 

outliers. 

The overall trend of exponential smoothing method to predict updates more 

accurately is due to its ability to gradually account them; from the other side, this is 

because of memoryless nature of the latter (averaging) methods – they neither store 

distribution of previous updates nor learn how they evolve. 
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7. CONCLUSIONS 
In this paper, we studied nature of a data-driven notion of staleness, based on 

current state of the art and existing requirements for data quality metrics. After 

setting a proper notion, we described algorithms for data staleness measurement that 

are suitable for an information system acquiring data with aperiodic updates of high 

frequency (about           updates per day). 

In particular, we presented an efficient (in terms of memory and CPU resources, 

and compared to naïve averaging approaches) exponential smoothing method to 

measure data staleness. Depending on accuracy of required prediction and available 

resources, one can expand this approach to consider trends, outliers, seasonality and 

other factors required for a given task. 

In our experiments, we have explored prediction accuracy of this method, 

comparing it with the averaging algorithms presented in this work as well. The 

results demonstrate the best achievable prediction accuracy for articles of various 

update frequency and the corresponding parameters required for that. As a 

consequence, these results can serve as a basis for selection of a required method for 

prediction of updates, and hence, measuring a time related data-driven characteristic 

of staleness. In particular, for stochastically changing and frequently updatable web 

data, represented by revision history of selected articles from Wikipedia, exponential 

smoothing method presented in this work gives a basis for development of a 

staleness measurement algorithm for a custom application. Alternatively, it can 

serve as a ready-to-go approach. 

Having staleness measurement mechanism of data at hand, one can either 

communicate the staleness level of data elements, or set necessary synchronization 

techniques with external data sources in such a way that own data would satisfy 

requirements imposed by a time-related quality dimension identified for an 

application. 
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APPENDIX 1. TIME-RELATED NOTIONS, DEFINITIONS AND MEASUREMENT 

METHODS FROM THE RELATED RESEARCH WORKS 
Notion, scope 

(System or/and 

Data) 

Definition Measurement 

Freshness 

(up-to-dateness) 

(S) 

A state of correspondence of data in a replica 

(web cache) to the data in the source [18] 
“freshness represents the fraction of up-to-date pages in the local collection” 

Freshness 

(staleness, lateness, 

tardiness) 

(S) 

“freshness of a data stream is the maximum 

timestamp of any of its tuples that have arrived 

at the warehouse by time t.” 

“data staleness – the difference between the 

current time and the timestamp of the most 

recent tuple in a table.” 

“(system) lateness (or tardiness) – the difference 

between the completion times of late tasks and 

their deadlines” 

[16] 

                    

where                is the maximum timestamp of any tuple in table T at time t 

Freshness 

(up-to-dateness) 

(S) 

Freshness (up-to-dateness) is a state of 

correspondence of data in a replica to the data in 

the source table [15], [21] 

N/A: the work [15] presents a method of usage of existing freshness constraints in user queries; in [21] 

freshness requirements are specified by users 

Freshness 

(up-to-dateness) 

(S) 

Freshness: “the outsourced data is up-to-date, 

that is, all database update operations have been 

correctly carried out by the service provider” 

[22] 

N/A: the work presents a method to ensure correctness of update operations made by outsources 

database 

Freshness 

(staleness, up-to-

dateness) 

(S) 

Availability of updates for a replicated web 

database makes its fresh data stale (or out-of-

date), until completion of application of the 

updates [14] 

“staleness can be measured by the number of unapplied updates, as well as the time differential or value 

distance between the current and the most up-to-date data items” 

Freshness 

(staleness) 

(S) 

 “(a data object) is stale when an update for it 

has arrived, but not yet executed” [13] 

“AWebView (a fragment of a web page)    is stale, if    is materialized and has been invalidated, or if 

   is not materialized and there exists a pending update for a parent relation of   . A WebView    is 

fresh, otherwise.” 

         {
                              
                              

 

Freshness 

(temporal validity) 

(S) 

“A real-time data object is fresh (or temporally 

valid) if its value truly reflects the current status 

of the corresponding entity in the system 

environment” [19] 

N/A: given data validity intervals (which are “defined based on the dynamic properties of the data 

object” and they are also “application-dependent”), the work demonstrate a deferrable algorithm for a 

processor scheduling updates from sensors. 

Freshness index 

(up-to-dateness) 

(S/D) 

“reflects how much the data has deviated from 

the up-to-date version” [11] 

N/A: “freshness index reflects how much the data has deviated from the up-to-date version. Intuitively, a 

freshness index of 1 means that the data is up-to-date, while an index of 0 tells us that the data is 

‘infinitely’ outdated” 



Delay freshness 

index 

(S/D) 

“reflects how late a certain cluster node is as 

compared to the up-to-date OLTP node” [11] 

     
    

     
 

where      is the commit time of the last propagated update transaction on an OLAP node c,       is the 

commit time of the most recent update transaction on the OLTP node 

Freshness 

(age) 

(S/D) 

Freshness, age, up-to-dateness: a state of 

correspondence of data in a replica to the data in 

the source (real-world counterparts). 

Freshness is the fraction of the local database 

that is up-to-date. 

[23], [24] 

Freshness of a database S at time t: 

       
 

 
 

where M is up-to-date elements, and N is total number of element in the database. 

Freshness of a data element ei at time t: 

        {
                             
              

 

Age of a data element ei at time t: 

        {
                             

                                      
 

Volatility/shelf life 

(D) 
“How long the item remains valid” [29], [30] N/A: “a quality parameter value [e.g., volatility] is the value determined by the user” 

Web data 

Freshness 

(age, volatility) 

(S) 

“freshness measures how much updated are data 

for a specific task” [31] 

Freshness = max{0, 1-(age/volatility)} 

“age suggests how old are data, captures the time interval between the creation or actualization of data 

and the time at what user receives data; volatility measures the frequency with which data change over 

time” 

Age 

(D) 

“the time difference between when the real-

world event occurred and when the data was 

entered” [29] 

Age is the time difference between when the real-world event occurred and when the data was entered 

Age 

(D) 

“Age measures how long ago information was 

recorded” [32] 
Age is the time difference between when data was recorded and instant of measurement 

Currency 

(age) 

(S) 

“refers to the age of the primitive data units used 

to produce the information products” [29] 

“The currency measure is a function of several factors: when the information product is delivered to the 

customer (Delivery Time); when the data unit is obtained (Input Time); and how old the data unit is 

when received (Age).” 

Currency = (Delivery Time - Input Time) + Age 

(Delivery Time - Input Time) represents how long the data have been in the system 

Age is the time difference between when the real-world event occurred and when the data was entered  

Currency 

(up-to-dateness) 

(D) 

"it is easy to tell if the data are updated" [33] N/A 

Currency level  

(S) 

“Currency level is defined as the degree to 

which data are up-to-date in a given operational 

database” [34] 

                                 

is a currency level of the i-th functionality of the j-th channel [of a multichannel information system] 

Currency 

(D) 

“when the data item was stored in the database” 

[30] 
N/A: “a quality parameter value is the value determined by the user” 

Currency 

(age) 

(D) 

“Currency measures the degree to which the 

data is recent and up to date.” 

 

More specifically, currency is: 

Currency measurement reflects the age, the time lag between present time and the last update of the data 

item. 



“The age of data items – the time lag between 

last update and present time” [Data 

Characteristics Observed]; 

“The extent to which the data items in the 

dataset are recent” [Impartial Interpretation]; 

“The extent to which outdated data damages 

utility” [Contextual Interpretation] [35] 

Currency 

(staleness, up-to-

dateness) 

(S) 

A state of correspondence of data in a replica to 

the data in the source table [12] 

Currency, staleness: linearly growing function with lower limit as d, an update propagation delay, and 

upper limit as d+f, where f is an update propagation interval. Authors show how a boundary on currency 

B (given by user) one can include into SQL queries, enforcing execution of queries on local replica or 

remote source table. Figure below “Synch cycle and data currency” taken from the paper demonstrates 

this: 

 
Currency 

(up-to-dateness) 

(S) 

A state of correspondence of data in a replica to 

the data in the source table [17] 

Currency of a copy of a database snapshot is measured by its staleness value, i.e., by the time elapsed 

from the instant when the source got update(s) which has not been propagated to the copy, to the instant 

of measurement. 

Currency 

(freshness, 

staleness) 

(S) 

Notions of currency, freshness, staleness relate 

to a state of correspondence of data in a replica 

to the data in the source; 

current replica is such a replica with the latest 

updates [20] 

N/A: the scope of the paper is getting replicas with the latest updates rather than measuring their 

currency or freshness metrics 

Timeliness 

(age) 

(D) 

“The metric for timeliness shall deliver an 

indication (not a verified statement under 

certainty) whether an attribute value has 

changed in the real world since its acquisition 

and storage within the system or not.” [36], [37], 

[38] 

           
 

                                              
 

“This quotient serves as a metric, which quantifies if the current attribute value is outdated.” 

“…if the mean attribute update time is 0 (i.e. the attribute value never becomes out of date), timeliness is 

1 (attribute value is up-to-date). If on the other hand attribute age is 0 (i.e. the attribute value is acquired 

at the instant of quantifying DQ) we get the same result. For higher values of mean attribute update time 

or attribute age the result of the metric approaches 0. I.e., that the (positive) indication (the attribute 

value is still corresponding to its real world counterpart) decreases.” [36] 

 

                                      

“           denotes the probability that the attribute value is still valid.” [37], [38] 

(age(w, A) denotes the age of the attribute [A] with value w, which is computed by means of two factors: 

the instant when DQ is quantified and the instant of data acquisition; decline(A) of attribute A’s values 

can be determined statistically) 



Timeliness 

(currency, 

volatility) 

(D/S) 

“… timeliness of an information product is 

dependent upon when the information product is 

delivered to the customer” [29] 

Timeliness = {max[(l-currency/volatility), 0]}
S
 

The exponent s is a parameter that allows us to control the sensitivity of timeliness to the currency-

volatility ratio. Timeliness ranges from 0 (“the data is unacceptable from the timelines viewpoint”) to 1 

(“the data meets the most string timeliness standard”) 

Timeliness 

(currency, 

volatility) 

(D/S) 

“can be characterized by currency (when the 

data item was stored in the database) and 

volatility (how long the item remains valid)” 

[30] 

N/A 

Timeliness 

(S) 

“extent to which the age of the data is 

appropriate for the task at hand” [10] 
N/A: timeliness is measured based on update information that is provided by the information source 

Timeliness 

(D) 

“In our model, timelines refers only to the delay 

between a change of the real-world state and the 

resulting modification of the information system 

state” [39] 

N/A: authors provide ontological foundations to further measure data quality dimensions 

Time-to-Deliver 

(S) 

“The time-to-deliver an IP [information product] 

(or any component data) is defined as the time to 

completely generate the IP from any processing 

stage in the IPMAP [a set of modeling 

constructs to systematically represent the 

manufacture of an IP]” [40] 

Time-to-Delivery = ∑                 (a.1)  

Expected mean time at stage x                    ⁄    (a.2)  

Variance in time at stage x      
           

    ⁄    (a.3)  

Probability (completing stage x) =          ∑                         (a.4) 

 

Where    is mean time at stage x;   ,   , are the optimistic and pessimistic time estimates at stage x. 

These time estimates are assumed to follow a Beta distribution. The expected mean time and variance at 

stage x are computed based on the Beta distribution using equations a.2 and a.3. The normalized 

probability is specified by equation a.4. 

Timeliness 

(age) 

(D) 

“The extent to which the age of the data is 

appropriate for the task at hand.” [33] 
N/A 

Timeliness 

(relevancy, 

availability) 

(D/S) 

“An additional [to the notion of timeliness in 

[30]] meaning of timeliness is whether 

information, relevant or not, was available in 

time to be useful” [32] 

N/A 

 


