
1

Entity Data Management in OKKAM

Themis Palpanas
1
, Junaid Chaudhry

2
, Periklis Andritsos

1
, Yannis Velegrakis

1

1University of Trento

2Ajou University

Abstract

In the recent years, we are witnessing an increasing interest

in the Semantic Web and the relevant technologies, which

can have a significant impact in the enterprise environment

of information and knowledge management. An important

observation is that the entity identification problem lies at

the core of many semantic web applications. In this paper,

we examine the special requirements of storage and

management for entities, in the context of an entity

management system for the semantic web. We study the

requirements with respect to creating and modifying these

entities, as well as to managing their evolution over time.

Finally, we propose a conceptual model for the

representation of entities, and discuss related research

directions.

1. Introduction

The Semantic Web (SW) is an evolving extension of

the WWW, in which the meaning of data and services

is defined by attaching semantic concepts to them,

making it possible for applications and machines to

make sense of the web content [2].

One of the major problems that have emerged

through the SW effort is the problem of uniquely

identifying entities1 [3]. The entities play a major role

1 In the rest of this paper, we will use the term entity to

refer to individuals, particulars, and instances. This

notion of entity is quite liberal, and includes things like

products, organizations, associations, countries, events,

publications, hotels, people, etc. It may also include

fictional objects (e.g., Pegasus), objects from the past

(e.g., Plato), or abstract objects (e.g., Gödel’s

Theorem).

for the SW since they represent the atomic objects of

reference and reasoning. Nevertheless, we currently

face the problem of identifying and referencing these

entities, which prohibits us from moving to the next

step towards the goal of the SW, that of reasoning

about entities. The problem derives from the fact that

different users, or systems, assign and use different

identifiers for the same real-world entity. As a result,

we cannot effectively reason about this entity, exactly

because it is not consistently being assigned the same

identifier.

The entity identification problem is also relevant to

information and knowledge management in the

enterprise environment. Its successful solution can help

in two directions. First, it will enable the efficient

management of information within an enterprise,

overcoming the present difficulties in consolidating

and integrating all the data about a single entity that are

scattered across several repositories. Second, it will

allow the enterprise to effectively correlate the

information it owns about an entity, with relevant

information that lies outside the boundaries of the

enterprise, thus, delivering significantly richer

knowledge management opportunities.

We claim that the entity identification problem is at

the core of the semantic web effort. Along with the

problem of assigning global identifiers to entities in the

semantic web also come the problems of managing

these identifiers throughout the entire lifetime of the

entities. Giving efficient solutions to the above issues

is the goal of OKKAM [3], a web-scale system for

assigning and managing unique, global identifiers to

entities in the WWW.

In this study, we discuss requirements for the

storage and management of entities, and propose a

conceptual model for entity representation.

2

1.1 Background

In this section, we give a brief overview of the

OKKAM system (a more detailed presentation can be

found elsewhere [3]), which we will use as the basis

for our discussion. Note however, that our discussion is

relevant to any system for entity identification

management.

The overall goal of OKKAM is to handle the

process of assigning and managing unique identifiers

for entities in the WWW. These identifiers are global,

with the purpose of consistently identifying a specific

entity across system boundaries, regardless of the place

in which references to this entity may appear (see

Figure 1).

Figure 1: Schematic of OKKAM system and interactions.

The OKKAM system has a repository for storing the

entity identifiers along with some small amount of

descriptive information for each entity. The purpose of

storing this information is to use it for discriminating

among entities. Entities are described by a set of

attribute-value pairs, where the attribute names and the

potential values are user-defined (arbitrary) strings.

Clients interact with the system through the

OKKAM Services layer. Clients can be both human

users and applications. There are two types of

interaction. First, clients may inquire about the

identifier of an entity by querying the system for

results that satisfy a set of attribute values describing

this entity. If the entity exists in the repository, the

system returns its identifier. Second, clients may insert

a new entity in the system, by providing a set of ad hoc

attribute-value pairs that characterize this entity. The

system returns the newly assigned identifier.

As shown in Figure 1, the end result is that all

instances of the same entity (i.e., mentioned in

different systems, ontologies, web pages, etc.) are

assigned the same OKKAM identifier. Therefore,

entity identity resolution becomes trivial, and is done

without any further interactions with OKKAM.

1.2 Related Work

There has been lots of work on rule-based reasoning

for data partitioning and placement techniques [6][7].

Fred et al. [1] propose a storage infrastructure that

effectively takes into account not only disk read and

writes, but also data creation and deletion. Various

techniques that employ different strategies have been

proposed for efficiently storing different versions of

data objects [24][25]. Versioning has also been studied

in the context of semi-structured documents [26], and

efficient query answering algorithms have been

proposed [27].

When entities are created and modified, we are

interested in keeping track of information related to the

provenance of the entity data stored in the repository

[22]. An important issue in data providence is its

characterization. That is, to find the answers of

questions like “why is a piece of data in the output?”

and “where is this piece of data copied from?”.

Buneman et al. [23] target these issues and propose a

framework for addressing them. Chapman et al. [29]

propose efficient strategies for reducing the provenance

storage size.

Several works have focused on the important

problems of record linkage and record matching

[8][11][19]. Other studies have focused on the problem

of how to efficiently support the above operations in

the context of relational database systems [14][16].

Duplicate detection through record linkage has also

been studied [10][18]. These approaches are based on

different flavors of clustering algorithms. Benjelloun et

al. [9] propose three algorithms for solving the entity

resolution problem, namely, G-Swoosh, R-Swoosh,

and F-Swoosh. These algorithms take into account the

characteristics of the match and merge functions, and

can also provide approximate results.

2. Entity Data Management Requirements

We now discuss the requirements for entity data

storage and management, in the context of a large,

distributed repository of entities for the semantic web.

3

2.1 Representing Entity Content

The OKKAM system is designed to store arbitrary

entities, referring to very diverse domains, including

(but not limited to) persons, buildings, documents, and

products. As such, the representation of the entities in

the system has to be flexible in order to accommodate

the requirements of all the different domains. Note that

in OKKAM we are merely interested in assigning and

managing unique ids to entities, which means that we

do not need to represent all the known information

about an entity, but rather only a small amount of data

that can help us discriminate this entity from all the

rest. Nevertheless, the set of data that need to be stored

can vary drastically among entities.

2.2 Creating and Modifying Entities

The creation of new entities can be initiated through

one of the following two ways: an automatic OKKAM-

ization process, or a manual interface-based method.

When a document is parsed, entities are identified

using an automatic entity identification process that is

part of the OKKAM-ization process. When new

entities are created, we have to check if these entities

already exist in the system. If the entity is unique, it is

assigned a unique identifier, and stored in the system.

Once the entity has been added to the system, it is

subject to updates. New attributes may be added to the

description of the entity, or the values of existing

attributes may change (e.g., when the information is

outdated). If the description of an entity changes, we

once again have to check if this entity is a duplicate of

another entity stored in the repository of the system.

2.3 Data Provenance

When entities are created and modified, we are

interested in keeping track of information related to the

provenance of the entity data stored in the repository

[22]. This includes information related to the source of

the corresponding data, the owner, and creation and

modification times of an entity’s attributes. The above

information can potentially be very useful for other

algorithms operating on the entities in the repository,

such as matching and merging.

The information on data lineage can refer to each

entity as a whole, or be more fine-grained, and refer to

each individual attribute of every entity in the

repository. The latter alternative results in a much more

detailed view of how all the entity data was inserted in

the repository, but also leads to higher space

requirements and management cost. Efficient

techniques for reducing the storage cost have been

proposed in the literature [29], and similar approaches

could also be used in OKKAM.

2.4 Versioning of Entities

Regular updates of the attributes describing an entity

lead to the creation of different versions of the same

entity. The user should be able to query across different

versions of the entity or in some cases, search the

changes that have been performed on an entity over a

certain period of time. The possibility of having

different versions of the same entity raises some

efficiency questions, along the dimensions of storage

space, query answering and matching mechanisms, and

indexing structures.

2.5 Merging Entities

As more and more entities are added in the system,

it may be the case that the same entity is represented by

multiple instances in the repository. We would like to

employ techniques able to detect these situations, and

merge the duplicate entries. Ideally, we would like to

use online algorithms to identify duplicates at the time

when new entities are inserted in the system (or when

an old entity is updated and becomes a duplicate of

another existing entity), rather than delegating this

responsibility to an offline algorithm that would have

to scan the entire entity repository to discover the

duplicates. Evidently, the latter option is

computationally more expensive than the former, and

cannot deliver results equally fast.

3. Proposed Approach

In what follows, we briefly outline the directions

that we will pursue related to entity representation.

3.1 Entity Representation Conceptual Model

In OKKAM, we represent an entity E as a tuple <P,

M>, where P is the profile of the entity (i.e.,

description), and M are the metadata for the entity.

In the current version of the system, we store in M

information on the owner of the entity E, its creation

and last modification times, the number of times E was

matched and selected as a result to a client query, and

the last time E was selected by a client. The above

metadata are used to support complex algorithms for

the other functionalities offered by OKKAM, such as

entity matching.

4

The profile P = <eid, t, A, R> contains all the

information that describes the entity. This information

is as follows.

 eid: Entity identifier assigned by OKKAM.

 t: Semantic type of entity (e.g., one of the high-

levels classifications in Wordnet).

 A: Set of attributes describing characteristics of the

entity.

 R: Set of external references that refer to this

entity.

In the next paragraphs, we describe in more detail

the sets A and R.

The set A is composed of a set of arbitrary, used-

defined attributes that describe the entity. For example,

if the entity is a person, possible attributes are name,

date of birth, and nationality. Note that this set of

attributes can be different for every entity, even for

entities in the same domain. An attribute A from the set

A is a tuple of the form A = <n, v, veid, MA>,

containing the following information.

 n: Name of attribute.

 v: Value of attribute.

 veid: Entity identifier assigned by OKKAM for the

entity described by v (e.g., if v = “Trento” then

veid = eidTrento).

 MA: Metadata for attribute A.

The attribute metadata, MA, refer to the metadata of a

specific attribute A of a specific entity E. Similarly to

the entity metadata, the metadata in MA include

information on the owner of the attribute A, its creation

and modification times, the number of times, as well as

the last time A was referenced in a client query,

whether A can be displayed as a result of a query (e.g.,

it may be the case that A can only be displayed within

the domain of an enterprise, but not to the general

public), and the natural language that A is expressed in.

The set R is used to store information about the

relationships of the entity with other entities in

OKKAM (if we know that it is identical to another

entity stored in the system), or outside OKKAM (if

there exists another id assigned to the entity by another

system). A reference R from the set R is a tuple of the

form R = <c, p, MR>, containing the following

information.

 c: Category of reference (e.g., ontology).

 p: URL pointing to the external reference.

 MR: Metadata for reference R.

The reference metadata, MR, refer to the metadata of

a specific reference R of a specific entity E, and store

information on the time R was last checked (i.e., the

latest time we know this reference was valid), and

whether R can be displayed as a result of a query.

3.2 Processing of Usage Patterns

The way the users access the system and interact

with it may determine various aspects of the

representation of an entity. Consider the following

example. Assume that many users search for an entity

with attributes A1 and A2, and always select entity E1,

which is the only entity in the repository that contains

attribute A1 in its profile. If E1 does not contain A2 as

well, we may choose to add it to the profile of E1,

because many users refer to E1 using A2.

Alternatively, assume that the query for entities with

attributes A1 and A2 returns n entities, E1, E2, … , En,

that satisfy the search conditions, but the interested

users always select entity Ek, 1 ≤ k ≤ n. In this case, we

may choose to increase the importance of entity Ek, so

that it ranks first for the particular query.

In both the above situations, we are interested in

monitoring the data streams relevant to the usage

patterns of the system. By monitoring and analyzing

the way users interact with OKKAM, we can

determine which entities, or profile attributes, are

relevant to specific queries or to certain contexts, and

update the profile or the metadata of these entities, in

order to produce more relevant search results. The

above kind of processing has to happen in an online

fashion, be flexible enough to allow effective and

efficient data analysis of the incoming data streams

[5][28], and evolve over time by supporting time-

decaying representations of the streaming data [4].

3.3 Repository Adaptation

The results of the usage patterns monitoring

techniques are also relevant to the repository evolution

process. One of the important aspects of this process is

the entity merging operation, which takes place when

we discover that two entities in the repository represent

the same real-world entity.

As we already mentioned, when merging entities, it

is important to consider the type of values at hand, i.e.,

numerical vs. categorical with their corresponding

measures. Adopting techniques like BIRCH [20] for

numerical data, and LIMBO for categorical data [21],

we may perform the assessment of similarity among

entities very efficiently as these algorithms promise

linear complexity as the size of the input increases.

The greatest advantage of employing techniques as

the ones mentioned above is that we get to summarize

the input data set, i.e. the OKKAM entities, in

summaries that retain as much of the initial information

as possible. We plan to extend the construction of

5

summaries so that a) they can handle numerical and

categorical data at the same time, and b) can be used

effectively with streaming data. Once again, amnesic

representations [4] will play a crucial role as entities

and their properties evolve over time.

4. Conclusions

The web is quickly moving towards the direction of

adding semantics to the online information, and using

these semantics for enabling a vastly richer range of

applications and user-experiences. In this paper, we

argue for an entity naming system, where unique

identifiers for entities are assigned and managed. We

examine the special requirements of representing

entities, and present relevant research directions.

Acknowledgements

This work was partially supported by the FP7 EU

Large-scale Integrating Project OKKAM - Enabling a

Web of Entities (contract no. ICT-215032). For more

details, visit http://www.okkam.org.

References

[1] Fred Douglis, John Palmer, Elizabeth S. Richards, David

Tao, William H. Tetzlaff, John M. Tracey, and Jian Yin,

"Position: Short Object Lifetimes Require a Delete-

Optimized Storage System," 11th ACM SIGOPS European

Workshop, September 2004.

[2] Nigel Shadbolt, Tim Berners-Lee, Wendy Hall: The

Semantic Web Revisited. IEEE Intelligent Systems 21(3):

96-101 (2006).

[3] Paolo Bouquet, Heiko Stoermer, and Daniel Giacomuzzi.

OKKAM:. In WWW2007 Workshop i3: Identity,

Identifiers and Identification, May 2007.

[4] Themis Palpanas, Michail Vlachos, Eamonn J. Keogh,

Dimitrios Gunopulos, Wagner Truppel: Online Amnesic

Approximation of Streaming Time Series. ICDE 2004: 338-

349.

[5] Themis Palpanas, Vana Kalogeraki, Dimitrios Gunopulos:

Online Distribution Estimation for Streaming Data:

Framework and Applications. SEBD 2007: 430-438.

[6] E. Pierre. Introduction to ILM: A tutorial.

http://www.snia.org/, 2004.

[7] C. Johnson. ILM Case Study: Complete Data Lifecycle

Management Solution. http://www.snia.org/, 2004.

[8] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, Vassilios S.

Verykios: Duplicate Record Detection: A Survey. IEEE

Trans. Knowl. Data Eng. 19(1): 1-16 (2007).

[9] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su,

S.E. Whang, and J. Widom. Swoosh: A Generic Approach

to Entity Resolution. To appear in VLDB Journal, 2008.

[10] P. Singla and P. Domingos, “Multi-Relational Record

Linkage,” Proc. KDD-2004 Workshop Multi-Relational

Data Mining, pp. 31-48, 2004.

[11] S. Sarawagi and A. Bhamidipaty, “Interactive

Deduplication Using Active Learning,” Proc. Eighth ACM

SIGKDD Int’l Conf. Knowledge Discovery and Data

Mining (KDD ’02), pp. 269-278, 2002.

[12] S. Tejada, C.A. Knoblock, and S. Minton, “Learning

Domain- Independent String Transformation Weights for

High Accuracy Object Identification,” Proc. Eighth ACM

SIGKDD Int’l Conf. Knowledge Discovery and Data

Mining (KDD ’02), 2002.

[13] W.W. Cohen, “Data Integration Using Similarity Joins and

a Word-Based Information Representation Language,”

ACM Trans. Information Systems, vol. 18, no. 3, pp. 288-

321, 2000.

[14] N. Koudas, A. Marathe, and D. Srivastava, “Flexible String

Matching against Large Databases in Practice,” Proc. 30th

Int’l Conf. Very Large Databases (VLDB ’04), pp. 1078-

1086, 2004.

[15] D. Dey, S. Sarkar, and P. De, “Entity Matching in

Heterogeneous Databases: A Distance Based Decision

Model,” Proc. 31st Ann. Hawaii Int’l Conf. System

Sciences (HICSS ’98), pp. 305-313, 1998.

[16] S. Guha, N. Koudas, A. Marathe, and D. Srivastava,

“Merging the Results of Approximate Match Operations,”

Proc. 30th Int’l Conf. Very Large Databases (VLDB ’04),

pp. 636-647, 2004.

[17] T. Dasu, T. Johnson, S. Muthukrishnan, and V.

Shkapenyuk, “Mining Database Structure; or, How to Build

a Data Quality Browser,” SIGMOD, 2002.

[18] Dong, X., Halevy, A., and Madhavan, J. 2005. Reference

reconciliation in complex information spaces. SIGMOD,

2005.

[19] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A.

Saita, “Declarative Data Cleaning: Language, Model, and

Algorithms,” VLDB, 2001.

[20] Tian Zhang, Raghu Ramakrishnan, and Miron Livny.

BIRCH: An Efficient Data Clustering Method for Very

Large Databases. In SIGMOD, 1996.

[21] Periklis Andritsos, Panayiotis Tsaparas, Renee J. Miller,

and Kenneth C. Sevcik. LIMBO: Scalable Clustering of

Categorical Data. In EDBT, 2004.

[22] Wang Chiew Tan: Provenance in Databases: Past, Current,

and Future. IEEE Data Eng. Bull. 30(4): 3-12, 2007.

[23] P. Buneman, S. Khanna,On Propagation of Deletions and

Annotations through Views. T. PODS 2002.

[24] Douglas S. Santry, Michael J. Feeley, Norman C.

Hutchinson, Alistair C. Veitch, Ross W. Carton, Jacob Ofir:

Deciding when to forget in the Elephant file system. SOSP

1999: 110-123.

[25] Mallik Mahalingam, Chunqiang Tang, Zhichen Xu:

Towards a Semantic, Deep Archival File System. FTDCS

2003: 115-121.

[26] Shu-Yao Chien, Vassilis J. Tsotras, Carlo Zaniolo: Efficient

schemes for managing multiversionXML documents.

VLDB J. 11(4): 332-353 (2002).

[27] Shu-Yao Chien, Vassilis J. Tsotras, Carlo Zaniolo, Donghui

Zhang: Supporting complex queries on multiversion XML

documents. ACM Trans. Internet Techn. 6(1): 53-84

(2006).

[28] Ferry Irawan Tantono, Nishad Manerikar, Themis

Palpanas: Efficiently Discovering Recent Frequent Items In

Data Streams. SSDBM (2008).

[29] Adriane P. Chapman, H.V. Jagadish, Prakash Ramanan:

Efficient Provenance Storage. SIGMOD 2008.

http://www.okkam.org/
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/v/Vlachos:Michail.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Keogh:Eamonn_J=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Gunopulos:Dimitrios.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/t/Truppel:Wagner.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Kalogeraki:Vana.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Gunopulos:Dimitrios.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/v/Verykios:Vassilios_S=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/v/Verykios:Vassilios_S=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/v/Verykios:Vassilios_S=.html

