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ABSTRACT

Blocking methods are crucial for making the inherently quadratic
task of Entity Resolution more efficient. The blocking methods
proposed in the literature rely on the homogeneity of data and the
availability of binding schema information; thus, they are inap-
plicable to the voluminous, noisy, and highly heterogeneous data
of the Web 2.0 user-generated content. To deal with such data,
attribute-agnostic blocking has been recently introduced, follow-
ing a two-fold strategy: the first layer places entities into overlap-
ping blocks in order to achieve high effectiveness, while the second
layer reduces the number of unnecessary comparisons in order to
enhance efficiency.

In this paper, we present a set of techniques that can be plugged
into the second strategy layer of attribute-agnostic blocking to fur-
ther improve its efficiency. We introduce a technique that elimi-
nates redundant comparisons, and, based on this, we incorporate
an approximate method for pruning comparisons that are highly
likely to involve non-matching entities. We also introduce a novel
measure for quantifying the redundancy a blocking method entails
and explain how it can be used to a-priori tune the process of com-
parisons pruning. We apply our blocking techniques on two large,
real-world data sets and report results that demonstrate a substantial
increase in efficiency at a negligible (if any) cost in effectiveness.
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Algorithms, Experimentation, Performance
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1. INTRODUCTION

Entity Resolution (ER) is the process of automatically identify-
ing pairs of entities that correspond to the same real-world object.
In principle, ER is a task with quadratic time complexity, since
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each entity has to be compared with all others. Approximate ER
methods sacrifice effectiveness (i.e., the portion of detected entity
matches) to a small and controlled extent in order to enhance effi-
ciency (i.e., lower number of pair-wise comparisons). Among these
methods, data blocking is the most prevalent one: it clusters the
data into blocks, and handles the data inside each block separately,
instead of operating on the entire collection [2]. Blocking tech-
niques partition entities (or records) into blocks, such that potential
duplicates are placed in the same block with a high probability, and
the number of entities per block remains low.

Various blocking methods were proposed in the literature for
homogeneous information spaces. They typically associate each
record with a Blocking Key Value (BKV), and then operate ex-
clusively on the BKVs [2]. Some prominent examples are the
Sorted Neighborhood approach [4], the StringMap method [6], the
g-grams blocking technique [3], canopy clustering [7] and Suffix
Arrays approach [11]. An extension to this framework comprises
the iterative techniques; these are based on the principle that more
duplicates can be detected and more pair-wise comparisons can be
saved through the iterative distribution of identified matches to sub-
sequently (re-)processed blocks [5, 12]. The performance of these
methods depends on the fine-tuning of a wealth of application- and
data-specific parameters [11], a process that can be automated with
the help of machine learning algorithms, as demonstrated in [8, 1].
A major requirement of these methods is that the schema describing
the data at hand as well as the properties of its individual attributes
are know a priori. Inevitably, though, this fundamental assumption
is broken by the inherent characteristics of heterogeneous informa-
tion spaces (i.e., loose schema binding, noise, missing or incon-
sistent values, as well as an unprecedented level of heterogeneity),
turning them inapplicable.

To remedy this problem, more robust blocking methods with a
higher level of redundancy are required to ensure effectiveness in
the context of the voluminous, noisy, and highly heterogeneous
data of the Web 2.0 user-generated content. An example of such
a robust blocking approach is the recently introduced attribute-
agnostic blocking method [9], which deals with an important sub-
class of ER in heterogeneous information spaces: the Clean-Clean
Entity Resolution; that is, identifying the matching pairs of entities
among two large, heterogeneous, individually clean, but overlap-
ping collections of entities.

Attribute-agnostic blocking assumes no background knowledge
of the data at hand. Instead, it deals with heterogeneous informa-
tion spaces by disregarding their schemata and considering solely
the values of their entity profiles. In essence, it consists of two lay-
ers; the first one focuses on achieving high effectiveness by build-
ing blocks of low-level granularity: each block corresponds to a



specific token and contains all entities that have this token in one of
their attribute values. Thus, duplicate entities are highly unlikely to
have no block in common, as each entity is associated with multiple
blocks resulting (i.e., redundancy). The second layer encompasses
a set of methods that reduce the number of unnecessary and re-
dundant comparisons (i.e., repeated comparisons among the same
entities) of the resulting, overlapping blocks in order to enhance the
efficiency of the ER process.

In this paper, we introduce an innovative method that enhances
the second layer of attribute-agnostic blocking by eliminating the
redundant and unnecessary comparisons it entails. The key obser-
vation in our method is that we can estimate how likely it is for a
pair of entities to match, without having to explicitly compare them.
Pairs whose matching likelihood lies below a predefined pruning
threshold do not need to be compared, thus saving a large number
of unnecessary comparisons. The value of the threshold depends on
the level of redundancy that the underlying block-building method
(i.e., the first layer) entails. We also introduce a metric that ap-
propriately encapsulates redundancy levels and demonstrate how it
can be used to automatically fine-tune the pruning threshold with
a simple inspection of the data at hand. The main contributions of
this paper can be summarized as follows:

1. As a basis for our new method, we introduce an extension of
the attribute-agnostic method that allows the propagation of
all executed comparisons, in order to avoid repeating those
comparisons and eliminate redundancy (Section 2).

2. Building on comparisons propagation, we develop an ap-
proximation method for discarding comparisons between en-
tities with a very low probability to match (Section 3). We
also present a metric for rating the redundancy conveyed by
each blocking method, and explain how it can be used to set
the optimal threshold for comparisons pruning.

3. We report on the results of applying our modified blocking
method on two large, real-world data sets. The outcomes
of our experiments (Section 4) demonstrate a substantial in-
crease in efficiency, at a negligible cost in effectiveness.

The rest of the paper is organized as follows: Section 2 defines
the problem, and outlines the attribute-agnostic method we are ex-
tending. In Section 3, we present the additional steps we incor-
porate in the original method and introduce the modified attribute-
agnostic method. Section 4 reports the results of our experimental
evaluation, and, finally, Section 5 concludes the paper, briefly dis-
cussing our plans for future work.

2. PRELIMINARIES

In this section, we introduce and formally define the main no-
tions that lie at the core of our work and present an outline of the
blocking method we extend (i.e., attribute-agnostic blocking).

2.1 Blocking-based Entity Resolution

Central to our work are the notions of entities and of entity
profiles, which are used to represent them. To formally describe
them, together with the related notions of entity collection, blocking
schema, blocks and inner blocks, we adopt the definitions that were
introduced in [9]. For completeness, these definitions are summa-
rized below:

DEFINITION 1. An entity profile p is a tuple (id, A,), where A, is
a set of attributes {a} and id is the global identifier for the profile.
Each attribute a;€A, is a tuple (n;,v;), consisting of an attribute
name n; and an attribute value v;.

Note that this simple model supports not only structured data but
also tag-style annotations (represented by values with empty at-
tribute names) and even relationships between entities (represented
by entity identifiers as attribute values).

DerFINITION 2. An entity collection & is a tuple
(Ag, Vg, IDg, Pg), where Ar is the set of attribute names ap-
pearing in it, Vi is the set of values used in it, IDg is the set of
global identifiers contained in it, and PgCIDy is the set of entity
profiles that it comprises.

DEeriNiTION 3. A blocking scheme bs, . for an entity collection
& is defined by a transformation function f; : & — T and a set of
constraint functions fi : T X T + {true, false}. The transforma-
tion function £, derives the appropriate representation for block-
ing from the complete entity profiles of & or parts of them. The
constraint function fi is a transitive and symmetric function that
encapsulates the condition that has to be satisfied by two entities,
if they are to be placed in the same block b;.

Note that this definition is comprehensive enough to encapsulate
any blocking method, both for homogeneous and for heterogeneous
information spaces. For example, existing blocking methods use a
transformation function that extracts a BKV from an entity profile
and a set of constraint functions that define blocks on the equality
- or similarity - of the BKVs. Applying a blocking scheme bs; . on
an entity collection & yields a set of blocks B¢,. Its elements are
defined as follows: ,

DErFiNITION 4. Given an entity collection & and a blocking
scheme bs;., a block b; € Bf(, is the maximal subset of & - with
a minimum cardinality of 2 - that is defined by the transforma-
tion function f, and one of the constraint functions f of bs,.:
b; CE APy, pr € E: fi(fi(p1), fi(p2)) = true = py, py € b;.

In the following, we focus on an important subclass of the Entity
Resolution problem, namely the case of merging two duplicate-free
entity collections &; and &, (Clean-Clean ER). Applying a block-
ing scheme bs, . on the union of two entity collections & = &, U &,
yields a set of blocks Bf ixsz. In this context, a valid block has
to contain entities from both input entity collections. Each block
b; can be, thus, divided into two parts, b;; and b;,, which we call
inner blocks:

DEFINITION 5. For a block b; € Bfgx‘ga the inner block b (b;>)
is the subset of elements in b; that originate from the entity collec-
tion & (E): by ={peb;:pe&}fork=1,2.

The blocking-based Clean-Clean ER Jprocess consists of iterat-
ing over the resulting set of blocks B,a 12 in order to compare the
entities of their inner blocks between them. We use symbol m;; to
denote the match between profiles p; and p; that were identified to
describe the same real-world object. Thus, the output of a blocking
method is a set of matches, which we denote with symbol M.

To address the characteristics of heterogeneous information
spaces, redundancy-bearing blocking methods have been recently
introduced [11, 9, 12]: they associate each entity with multi-
ple, overlapping blocks, thus minimizing the likelihood of missed
matches and increasing effectiveness. Efficiency, on the other hand,
is significantly downgraded, due to the redundant comparisons be-
tween pairs of entities that appear in many blocks. Apparently, the
higher the redundancy conveyed by a blocking method, the lower
the efficiency of the ER process.

The level of redundancy a blocking method entails is propor-
tional to the number of blocks an entity is placed in, on average;



that is, the more blocks are associated with each entity, the higher
the overall redundancy. To formally express this relation, we intro-
duce the metric of individual Blocking Cardinality:

DEFINITION 6. Given an entity collection & and the set of blocks
BY,., their individual Blocking Cardinality (iBCY,) is defined as
the number of blocks b; € ch an entity p € & is placed on average:

ZpES |bi € By, : p € bl
1€l ’

where |E| denotes the size (i.e., number of entities) of the entity
collection &.

iBC%, =

In particular for the Clean-Clean ER, we employ an aggregate
measure of blocking cardinality in order to be able to directly com-
pare the redundancy of two different applications. We call this met-
ric overall Blocking Cardinality and formally define it as follows:

DErFINITION 7. Given two clean, overlapping entity collections

- & and &, - along with the set of blocks Bftlxsz, their overall
Blocking Cardinality (0BC?V?) is defined as the number of blocks

tec
b; € B,‘i{xgl an entity p € (E, U &,) is placed on average:

E1%E
ZpE(S]U&z) |b; € Br,lx > peb
1E1] + &2

E1XE;
oBC" =

Blocking cardinality - both individual and overall - takes values
in the interval [0, co), with higher values denoting higher levels of
redundancy. Values lower than 1 indicate blocking methods that
fail to place each entity in at least one block. A value equal to 1
corresponds to a blocking scheme that partitions an entity collec-
tion in non-overlapping blocks. Note that blocking cardinality is
defined with respect to a blocking method and an entity collection.
The reason is that the same blocking scheme can produce different
levels of redundancy when applied on different entity collections,
because they convey different quantities of information (i.e., num-
ber of name-value pairs per entity). This is particularly important
in the case of resolving two duplicate-free entity collections: the
blocking cardinality of each collection is different, depending not
only on their individual quantities of information, but also on the
amount of information these two collections have in common.

We build on an existing blocking method that achieves high ef-
fectiveness, with the aim of enhancing its efficiency, regardless of
the redundancy levels it conveys. Our focus is as follows:

ProBLEM 1. Given two heterogeneous, individually clean entity
collections &, and &,, detect the vast majority of the matches M
they contain as efficiently as possible (i.e., with the minimum num-
ber of pair-wise entity comparisons).

2.2 Attribute-agnostic Blocking

Attribute-agnostic blocking comprises five techniques, which are
divided into two strategy layers: the effectiveness tier and efficiency
tier. The former encompasses a technique for creating overlapping
blocks, namely Block Building. It considers only the attribute val-
ues of an entity profile, tokenizing them on their special characters.
Each token that appears in both input entity collections forms a
block, encompassing all the entities that contain it in their profile.
Thus, each entity is associated with multiple blocks, increasing the
effectiveness and the robustness of the method to noise.

The efficiency tier consists of four techniques that aim at safely
reducing the required number of pair-wise comparisons. They are
described in the following, in the order they are executed:

Block Purging. This step aims at removing oversized blocks:
these are blocks that contain a large number of entities,
which typically share other blocks, as well. Consequently,
the majority of the pair-wise comparisons these blocks en-
tail are redundant ones, having a negligible contribution to
effectiveness, but a disproportionately negative impact on ef-
ficiency. A conservative way of determining such blocks
is to examine whether they satisfy the following condition:
p - min(|&11, |Ea) < min(|b; ], 1bi2l), where p was experimen-
tally set to 0.005.

Duplicate Propagation. Since the given collections are individu-
ally clean, each entity matches with at most one entity of the
other collection. As a result, entities that have already been
identified as duplicates do not need to be compared with any
other entity. We can significantly increase the efficiency, by
sparing those comparisons that involve any of the matching
entities.

Block Scheduling. The earlier a pair of duplicates is identified, the
more comparisons are saved by duplicate propagation. Thus,
we can boost efficiency by examining those blocks first that
exhibit the best trade-off between cost (i.e., number of com-
parisons) and gain (i.e., expected number of matches). This
relation is encapsulated by a metric called block utility (w;),
which was estimated through a probabilistic analysis to be
equal to: u; = 1/max(|b;;l,|b;2l) [9]. Based on this defini-
tion, blocks are scheduled and processed in descending order
of their utility.

Block Pruning. Block Scheduling ensures that the lower a block is
placed in the processing queue, the less likely it is to contain
non-redundant matches (i.e., pairs of duplicates that share no
other block). This enables pruning a part of the “tail” of the
processing list without any considerable impact on effective-
ness. Block Pruning is based on the metric duplicate over-
head, which keeps track of the cost of finding new matches,
and terminates the ER process as soon as this cost exceeds a
threshold.

The thorough experimental evaluation of [9] verified that this
blocking framework is scalable, requiring an average of around 100
comparisons per entity. Though a quite satisfactory performance,
in this work we aim at further improving it.

3. REDUCING COMPARISONS

In this section, we present a series of techniques that enhance the
efficiency of attribute-agnostic blocking, at a controllable (if any)
cost in effectiveness. The development of the methods is inspired
by two observations. The first is that although duplicate propa-
gation is quite effective in improving the efficiency of the blocking
approach, it cannot prevent the repetition of comparisons that entail
non-matching entities. The second observation is that Block prun-
ing (i.e. discarding unpromising blocks) is quite coarse- grained,
since it stays on the block level. A more fine-grained assessment
and approximation holds the promise to lead to better pruning de-
cisions and higher flexibility.

We, therefore, developed two additional methods for further en-
hancing the efficiency of attribute-agnostic blocking. Both are
based on a common data structure, a type of “inverted index”,
which points from entities to the blocks they are contained in. The
first method constitutes an indirect form of Comparisons Propaga-
tion, which supersedes duplicate propagation by avoiding the rep-
etition of all types of comparisons, instead of just the comparisons



of identified matches; the second method - Comparison Pruning
- replaces Block Pruning by looking into individual comparisons
instead of entire blocks, when deciding where to prune. In addi-
tion, a third method - Block Enumeration - has been incorporated
into the approach, serving as a preparatory step that facilitates the
functionality of the other two.

Our work exclusively focuses on the second strategy layer, treat-
ing the first one as a black box. The modified efficiency tier consists
of the following steps (they are presented in the order they are exe-
cuted):

1. Block Purging®,
. Block Scheduling®,

. Block Enumeration,

2

3

4. Duplicate Propagation®,

5. Comparisons Propagation, and
6

. Comparisons Pruning.

The steps that are marked with * remain unchanged, and are im-
plemented and executed as described in [9]. In the following para-
graphs we elaborate on the functionality of the new steps.

3.1 Block Enumeration

This is a preparatory, but core step that forms the basis for the
operation of Comparisons Propagation and Pruning. It serves the
need of uniquely and efficiently identifying each block, so as to
facilitate the association of each entity with all the blocks that con-
tain it. Thus, Block Enumeration merely consists of assigning a
unique index to each block. For reasons explained below, this in-
dex is assigned based on the position of the block in the processing
list, as it is determined by Block Scheduling (this explains why this
step is placed right after scheduling). This procedure has a linear
complexity (i.e., O(|BE}X82 [)), both with respect to time and space.

Note that, from now on, symbol b; will denote that the corre-
sponding block is placed in the i-th position of the processing list.

3.2 Comparisons Propagation

The aim of this step is to completely eliminate redundant com-
parisons, without any impact on effectiveness. In other words, the
goal is to identify whether a pair of entities in block b; has already
been compared in another block b;, where j < i; in this case, we
do not need to compare it again in b;, thus saving an unnecessary
comparison.

A solution for this task was proposed in [10] in the form of
a generic method for eliminating redundancy, that is able to be
adapted and incorporated into any blocking scheme. However,
the authors did not investigate how it works in the context of the
attribute-agnostic method, i.e., whether it can significantly reduce
the required number of comparisons when combined with Block
Pruning. In this paper, we experimentally examine its functional-
ity inside the original attribute-agnostic method in order to decide
whether it alone suffices for covering the need for higher efficiency.
Most importantly, though, Comparisons Propagation serves in our
case as a basis for the next efficiency-enhancing technique.

The main idea behind Comparisons Propagation is to propagate
executed comparisons indirectly, without explicitly storing infor-
mation about them. To achieve this goal, we employ the shared
data structure that is depicted in Figure 1. It constitutes a hash ta-
ble, with the keys of its entries comprising the IDs of the entities of
the input collections (&, and &;). Each value consists of the list of
the indices of the blocks that contain the corresponding entity. The

(o )= o Mo He)
)= GG
(o ) = o Mo M)

Figure 1: The data structure in Comparisons Propagation.

employed block indices are those defined by Block Enumeration.
For efficiency reasons, the blocks ids are sorted in ascending index
order within individual lists. In this way, the overlap between the
block list of two entities can be identified in linear time (see below).
The sorting of the blocks has to be done only once (at construction
time), while the checking procedure is repeatedly executed, justi-
fying the investment in block list sorting.

Based on this data structure, a pair of entities is compared only if
the Least Common Block Index Condition holds, i.e., the lowest
common block index of these two entities is equal with the index of
the current block. This condition ensures that the current block is
the first one in the processing list that contains both entities. Oth-
erwise (if the former index is lower than the latter), the entities
have already been compared in another block, and the comparison
would be redundant. Consider, for example, the entities p; and p;
in Figure 1. They have two blocks in common, b, and bs. Their
least common block index is b, which means that the condition is
satisfied in their first common block, but not in the second. Thus,
we save the redundant comparison in block bs.

Checking this condition is linear in the number of blocks asso-
ciated with each entity. In the average case, though, it is equal
to Blocking Cardinality. The reason is that retrieving the value of
a specific key from a hash table is an operation of constant time
complexity, while the ordering of block indices enables the iden-
tification of the least common index by iterating over the two lists
in parallel. The time complexity for building this data structure is
linear with respect to the block set size (i.e., O(IBffCI)); its space
complexity, on the other hand, is linear with respect to the size of
the input entity collections, depending, of course, on the overall

level of redundancy, i.e., O(OBC;?(‘.X‘82 - (|&1] + 1&21)), in average.

3.3 Comparisons Pruning

The goal of this technique is to replace the last step of the origi-
nal attribute-agnostic method, namely Block Pruning. Similar to it,
Comparisons Pruning is an approximation technique that discards
selected comparisons in order to significantly improve efficiency, at
a controllable cost in effectiveness. Its main difference from Block
Pruning is that it operates on a lower level of granularity, thus being
able to take more accurate pruning decisions: Block Pruning treats
the set of comparisons within a block collectively, as it operates on
block level, while our new technique operates on the level of indi-
vidual comparisons, adjusting its pruning criterion to a particular
pair of entities.

In more detail, Comparisons Pruning decides, before comparing
a specific pair of entities, whether they are likely to match or not;
in case matching is not likely, the comparison is avoided (i.e., it is
pruned). The evidence for this decision is drawn from the overlap
between the corresponding lists of block indices. As explained in
Section 3.2, this information is already available through the data
structure maintained for Comparisons Propagation and is efficiently

accessed through the cheap search functionality of the hash table.
To estimate the overlap between two lists of blocks, we employ

the Jaccard similarity. In more detail, we call Entity Similarity -

ES;; the portion of common block ids between two entities p; and



pj, and define it as:

|pi-indices() N pj.indices()|

Y prindices() U p;.indices()

|pi.indices() N pj.indices()|

|pi.indices()| + |pj.indices()| — |p;.indices() N pj.indices()| ’

where py.indices() denotes the block indices associated with the
entity profile p;. The last part of this equation denotes that we
basically need to detect the number of common indices between
two entities, in order to estimate their Entity Similarity. The time
complexity of this operation is linear with respect to the number of
indices associated with them: due to their ordering, it suffices to
iterate over the two lists of indices just once (and in parallel).

To decide whether a pair of entities justifies its detailed compar-
ison, we compare their Entity Similarity with a threshold, ES i,
that denotes the minimum allowed similarity value; that is, the
comparison is executed only if this threshold is exceeded. The ac-
tual value of ES ,,;, is set in a generic way that considers the average
case, and is adapted to the redundancy inherent in the given block-
ing scheme and entity collection(s). More specifically, the formula
for deriving the value of ES ,;, is the following:

a - min(iBC!, iBCZ)

te

iBC,! + iBC;? = a-min(BC,, iBC.?)

[

ESmin (1)

where a takes values in the interval (0, 1] (i.e., it should be always
higher than 0, otherwise no comparison is pruned).

The rationale behind this threshold is the following: given a
blocking scheme bs, ., each profile of the entity collection & is
associated with iBCff blocks, on average; for two entities of &;
and &, to be considered similar enough, we demand that they share
a% of the minimum individual Blocking Cardinality. Apparently,
the higher the value of a, the higher the corresponding threshold
and, thus, the stricter the definition of similarity. For our purposes,
we consider a value of a = 0.25. As explained in the next section,
this is a conservative threshold, ensuring that comparisons are not
harshly pruned, and that effectiveness is not affected to a large ex-
tent. Note, also, that this threshold is easily computed through a
simple inspection of the input blocks, adjusting the functionality of
Comparisons Pruning to the data at hand with a minimum cost.

4. EXPERIMENTAL EVALUATION

In this section, we present a thorough experimental evaluation
of our suggested techniques on two real-world, large and heteroge-
neous information spaces. All methods were fully implemented in
Java 1.6, employing the Lucene search engine library for the block-
ing functionality!. All experiments were performed on a server
with Intel Xeon 3.0GHz, running Linux with kernel version 2.6.18.

4.1 Experimental Setup

Data Sets. In the course of our thorough experimental study,
we employed the two data sets that were used in [9] in order to
directly compare the original method with its enhanced version.
Their technical characteristics are summarized in Table 1.

The first data set (D,,.s) consists of a collection of movies
shared among IMDB and DBPedia. It contains around 50,000
movies, split almost equally between the two entity collections.
Note, however, that the quantity of information each collection
conveys is quite different: the DBPedia movies are described by
7 name-value pairs, on average, while the IMDB ones consist of

]http ://lucene.apache.org

Dimovies Dinfoboxes

DBPedia IMDB | DBPedia; DBPedia;
Entities 27,615 23,182 1,190,734 2,164,058
Name-Value Pairs 186,013 816,012 | 17,453,516 36,653,387
Avg. Profile Size 6.74 35.20 14.66 16.94
iBC 8.27 39.81 14.78 15.71
Duplicates 22,405 892,586
Blocks 40,430 1,210,262
oBC 22.52 15.38

Table 1: Overview of the evaluation data sets.

35 pairs, on average. This results in proportionally different levels
of redundancy, with the former collection exhibiting 5 times less
individual blocking cardinality that the latter one.

The second data set (D, fopoxes) consists of two different ver-
sions of the DBPedia Infobox Data Set?; they contain all name-
value pairs of the infoboxes in the articles of Wikipedia’s english
version, extracted at specific points in time. The older collection,
DBPedia,, is a snapshot from October 2007, whereas DBPedia,
dates from October 2009. The large time period that intervenes be-
tween the two collections renders their resolution challenging, as
only 25% of all name-value pairs is shared among them [9]. As
expressed by their average profile sizes, however, their individual
quantities of information are similar, resulting in a small difference
in their individual blocking cardinalities.

It is worth noting here, that, although D;,sopoxs is much larger
than D,ies (2.35 million entities described by 54 million name-
value pairs in comparison to 50 thousand entities and 1 million
name-value pairs), the latter entails a considerably higher level of
redundancy. As denoted by their overall blocking cardinality, each
entity of D, 1S placed in 22.5 blocks, on average, whereas each
entity of Dj,fopoxes 15 associated with just 15.4 blocks (on average).
Below, we explain how this affects the performance of our method
on the individual data sets.

Metrics. We follow [1, 11, 8, 9] and use two established met-
rics for blocking techniques. The first one is Pair Completeness
(PC), which denotes the portion of matches existing in the data set
that are identified as duplicates by the blocking method. It is com-
puted as follows: PC = dm/gm, where dm stands for the number
of detected matches, and gm represents the number of ground-truth
matches. It takes values in the interval [0, 1], with higher values
indicate higher effectiveness of the blocking method. The second
metric is Reduction Ratio (RR), which expresses the reduction a
blocking method achieves in the number of pair-wise comparisons
with respect to those required by the baseline method. It is defined
as follows: RR = 1 — mc/bc, where mc stands for the number of
comparisons the considered method entails, and bc expresses the
number of comparisons of the baseline method. RR takes values in
the interval [0, 1] (for mc < bc), with higher values denoting higher
efficiency. The baseline method for estimating RR 1is the original
attribute-agnostic method, presented in [9].

4.2 Performance Comparison

This section contains a series of experiments we conducted in
order to investigate whether introducing Comparisons Propagation
in the original attribute-agnostic method suffices for highly efficient
results. To this end, we created a modified attribute-agnostic ver-
sion merely by adding Comparisons Propagation between Dupli-
cate Propagation and Block Pruning, which in the remaining text
we will call Modified Version. We compare this method with the
original one and the method presented in Section 3, which com-
prises both Comparisons Propagation and Pruning with the ES ,;,

2http ://wiki.dbpedia.org/Datasets



Method Compar. Duplicates PC RR Method Compar. Duplicates PC RR
Attribute-agnostic  1.03 x 10° 22,268 99.39% - Attribute-agnostic  1.12 x 108 838,760 93.97% -
Modified Version ~ 2.39 x 103 22,268 99.39%  76.79% Modified Version ~ 9.80 x 107 853,720 95.65% 12.53%
Comp. Pruning 1.09 x 10 21,194 94.59%  89.59% Comp. Pruning 5.42x 107 851,108 95.35%  51.56%

(@) Dyovies data set.

(b) D;,, foboxes data set.

Table 2: Comparison of the performance with respect to PC and RR between the original attribute-agnostic method, its Modified Version that
encompasses Comparisons Propagation and the method of Section 3 (marked as Comp. Pruning).
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(b) Djyfoboxes data set.

Figure 2: Sensitivity analysis of the ES,i, threshold with respect to both metrics, PC and RR. The vertical, dotted lines correspond to the actual

value of ESy,i, for ¢ = 0.25 in Formula 1.

threshold corresponding to a = 0.25 (this method is noted as Com-
parisons Pruning in the following). The results of our experimental
study are depicted in Tables 2(a) and (b) for the data sets D, s and
Dy foboxes> Tespectively.

We can easily notice that both new methods significantly out-
perform the original one with respect to efficiency, while incurring
no negative impact on effectiveness - in most of the cases. In fact,
only Comparisons Pruning over D, exhibits a significantly -
but moderately - lower value for PC by 4.8%. This is probably re-
lated to the very low individual Blocking Cardinality of DBPedia
movies: they are placed in just 8 blocks, on average, and the re-
quirement of sharing at least 2 blocks (i.e., a = 0.25) with a poten-
tial match of IMDB movies turns out to be high for many of them.
On the other hand, the higher levels of individual Blocking Cardi-
nality in Dj, fopoxes allow for a slight, but considerable improvement
(around 1.5%) in its PC for both methods.

The difference in the performance of the two novel methods is
worth further analysis. First of all, we can see that the Modified
Version has quite different behavior in the two datasets we are con-
sidering: in D,,,,;.s, it has a considerably high RR, that is close to
that of Comparisons Pruning, while the RR in Dj,opoxes remains
at low levels. Apparently, this can be explained by the higher
levels of redundancy in the former data set, as explained above.
Phenomenally, though, the Modified Version outperforms Compar-
isons Pruning with respect to effectiveness, while their difference
with respect to efficiency is not as high as one would expect: the
RR of the former method is lower by 13% and 39% for D,,,5y;.s and
Dy fopoxes> respectively. In practice, however, Comparisons Pruning
involves in both cases approximately half the comparisons of the
Modified Version: if we computed the RR of Comparisons Pruning
with respect to the latter method, its values would be around 50%
for both data sets. Thus, we believe that its slightly lower PC in
both data sets is worth the effort. Besides, the final value of PC
remains around 95% in both cases.

Last but not least, note that dividing the actual number of com-
parisons required by Comparisons Pruning by the total size of the
input collections yields for both data sets 10 comparisons, on aver-
age, per entity. This is an order of magnitude lower than the 100
comparisons that were required by the original method [9].

4.3 Threshold Sensitivity Analysis

We also analyzed the performance of Comparisons Pruning for
the following range of valid values for the parameter ES ,;,: 0.01 <

ES ,uin < 13, for both data sets. The goal is to verify that the method
of threshold setting we presented above provides a conservative
trade-off between effectiveness and efficiency. In addition, we in-
tend to identify interesting patterns in the variation of the method’s
performance. The results of this evaluation are depicted in Fig-
ures 2 (a) and (b) for Dysies and Dj,popoyes, respectively. We can
clearly notice the trade-off between efficiency and effectiveness, as
the higher the value of ES,;, (x-axis), the lower the PC and the
higher the RR.

The vertical, dotted lines in both figures correspond to the sim-
ilarity threshold for a = 0.25; for D,y this results in ES ,;, =
0.04, while for D;, opoxes it corresponds to ES ,,;,, = 0.14. As noted
above, it is interesting that both lines intersect the line of PC at
95%. There is no pattern with respect to RR; instead, there is a
discrepancy in efficiency gains between the two diagrams for low
values of the threshold (i.e., in the beginning of the x-axis). More
specifically, we notice that in the case of the D,,,,;; very small de-
creases in PC result in large gains in RR (around 80%). In the case
of D, fopoxes, however, the value of RR remains 0 for small decrease
in PC, and only raises to 50% (approximately) for larger values of
ES ,in. This can be explained by the higher levels of redundancy
that Dy, entails, in comparison to D, opores: as demonstrated in
Table 1, the former has an overall Blocking Cardinality of 22, while
the latter of just 15. Thus, the step of Comparisons Propagation
conveys much higher comparison savings for the former data set
than for the latter. This is a strong indication that the performance
of our method with respect to efficiency depends on the redundancy
of the involved data sets.

Another interesting pattern that can be drawn from these experi-
ments is the intersection point of the PC and the RR lines: in both
cases it is around 90% of the y-axis. This means that by reducing
PC to 90% we spare 90% of the original comparisons. However,
this performance is achieved for different values of a (a = 0.28 for
D,yovies and a = 0.43 for Dy, sopores). This is another indication that
the method might require some parameter adaptation for different
applications.

Last but not least, we can notice that the PC and the RR lines
of D,gvies change in a smoother way than those of Dj,ropoxes- In
particular, the RR line of the latter consists of parts with negligi-
ble increase, followed by sharp rises. This should be attributed
to the different values of the individual Blocking Cardinalities of

3ES pin = 01is meaningless in our case - it does not discard any comparison.
For similar reasons also values below 0.01 were discarded.



the involved entity collections: the minimum iBC of Dy fopores 18
much lower than that of D,,,,;s; thus, small changes in ES ,,;, have
a higher impact on Comparisons Propagation for D,,,;.s, Whereas
for D, opoxes 1arge variations are required to exhibit the same level
of changes.

5. CONCLUSIONS

In this paper, we extended the attribute-agnostic method, coined
in [9], in order to achieve significant reductions in the number
of comparisons required per entity. First, we incorporated Com-
parisons Propagation into the original framework and proved that
it considerably enhances the overall performance, leaving though
enough space for further improvement. To this end, we replaced
the last step of the initial method (i.e., Block Pruning) with Com-
parisons Pruning: an approximation method that works at a lower
level of granularity, and results in better pruning decisions. The
optimal, conservative threshold for this procedure is determined in
relation to Blocking Cardinality, a novel measure we introduced
for estimating the redundancy of a blocking method, not only with
respect to an individual entity collection, but also with respect to
a pair of collections that are to be resolved. The results of our
thorough experimental evaluation verified a significant increase in
efficiency (by an order of magnitude), while Recall is maintained
at high levels (over 95%).

In the future, we plan to further enhance the efficiency of our
method, through the incorporation of parallelization techniques.
More specifically, we plan to adapt it to the high-performance
framework of MapReduce. We also intend to extend our method in
order to be able to handle the Dirty-Dirty case of Entity Resolution
(i.e., the identification of matching entities among two overlapping
entity collections, which contain duplicates in themselves, as well).
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