Web Prefetching Using Partial Match Prediction

Themistoklis Palpanas Alberto Mendelzon
themis@cs.toronto.edu mendel@cs.toronto.edu
Department of Computer Science
University of Toronto
10 King’s College Road, Toronto

Ontario, M5S 3G4, CANADA

December 19, 1998

Abstract

Web traffic is now one of the major components of Internet traffic. One of the main directions
of research in this area is to reduce the time latencies users experience when navigating through
Web sites. Caching is already being used in that direction, yet, the characteristics of the Web cause
caching in this medium to have poor performance. Therefore, prefetching is now being studied in
the Web context. This study investigates the use of partial match prediction, a technique taken
from the data compression literature, for prefetching in the Web. The main concern when employing
prefetching is to predict as many future requests as possible, while limiting the false predictions to a
minimum. The simulation results suggest that a high fraction of the predictions are accurate (e.g.,
predicts 18%-23% of the requests with 90%-80% accuracy), so that additional network traffic is kept

low. Furthermore, the simulations show that prefetching can substantially increase cache hit rates.

1 Introduction

One of the main directions of research in the Web is to reduce the time latencies users experience when

navigating through Web sites. The work in this area originated from relevant research in operating

systems, where the aim is to reduce file system latencies [1]. Caching is a technique that is already
being used in the Web domain. Caches reduce latencies, because they allow fast retrievals of potentially
frequently accessed documents.

However, recent studies [14, 9] indicate that the benefits from this technique are rather limited.
The vast number of documents available in the Web, the quick rate of their change, and the diverse
needs across users and over time, are the main factors that cause Web caching to perform poorly. Thus,
another method that was first applied in operating systems, prefetching, is now being studied in the Web
context. When prefetching is employed, Web pages that the user is likely to access in the near future
are transferred to her cache without being requested. If the user does request one of the prefetched
pages, it will already be in the local cache, thus, reducing the latency to minimum. Prefetching is
complementary to the caching mechanism. It may take place while the 1/O system is idle, and if the
predictions are accurate enough the performance of the cache can be significantly improved.

This work investigates the applicability of multiple high-order Markov models for doing prefetching
in the Web. Specifically, an algorithm that is also employed in the compression context, Prediction by
Partial Match, is used to predict the users’ future requests to a particular Web site. A trace-driven
simulation emulates the network traffic with the additional (i.e., the prefetched pages) workload, the
behaviour of the clients’ browsers and their caches under the new scheme, and explores the characteristics
of the prediction algorithm in this new environment. This study evaluates the costs and benefits of
employing this technique, when different parameters of the model vary. The experiments show that
18%-23% of the requests can be predicted with 90%-80% accuracy, while the cache hits increase by up
to 6.5 times. These results demonstrate that the algorithm can be efficiently tailored to suit the new
environment, and deliver considerable benefits to the users, while achieving better performance than
other approaches.

The remainder of this document is organized as follows. The theoretical model, and the implications
of employing it to the Web environment are discussed in Section 2. Section 3 describes the simulation
framework. The results of the simulations are discussed in Section 4. Section 5 presents the related

work. The last section summarizes the work, and suggests directions for future research.

2 Prediction Model

In order to do successful prefetching, a model that describes the users’ request patterns is essential. Such
models, that may be used to drive a prefetching system, can be found in the compression literature.
Previous work [7] indicates that the idea of applying techniques used in compression algorithms for
making predictions is fruitful. Compressors are building a model of the data they are operating on in
order to be efficient. In general, these models generate a probability distribution for the elements in
the data, which is subsequently used to achieve effective coding. According to this scheme, data with
high probability to occur are encoded with few bits, and infrequently occurring data with many bits.
Therefore, an accurate model significantly improves the performance of the coding.

Likewise, in prefetching, the pages that are most likely to be requested next are prefetched. Thus,
if a compressor can effectively compress a data sequence that means the model it is using accurately

describes the data, and can be used for making predictions.

2.1 Context Modeling

As advocated earlier, the prediction model that a compressor uses is crucial for its efficacy. Research
in the compression community has shown that the algorithms employing context modeling (for general
purpose compression) tend to achieve superior performance [2].

Context models comprise a family of techniques that use the preceding few characters in order to
calculate the probability of the next one. The simplest way to predict which character will follow a
string is by selecting the one with the highest fixed probability. In this case the previous characters
are ignored. A more sophisticated way of computing the letter probabilities is to take into account the
preceding symbols. Evidently, the predictions are more accurate when they are produced with respect
to some context. The length of a context is its order. So, if the m preceding symbols are used to
determine the probability of the next character this is an order-m model.

Prediction by Partial Match (PPM) [4] is one of the context models that have been proposed in the

literature, and upon which our work is based. A PPM compressor uses multiple high-order Markov

models to store the contexts. Then, the algorithm uses the high-order contexts to make predictions,

when these contexts are available. Otherwise, the predictions are based on the lower orders.

2.2 Building the Model

In the Web context the elements of the model are access events to particular Web pages (in the same
server for our case), and the contexts correspond to sequences of such events. Therefore, if A, B, and
C' are three pages (all of them residing in the same Web server) the context { ABC'} denotes that these
three pages have been accessed in that specific order by at least one of the clients.

An order-m prefetcher maintains m + 1 Markov predictors! which correspond to contexts of length
0 to m. One way of describing this model is by using a trie [12]. Thus, contexts of different lengths can
be mingled in a single structure.

The algorithm for constructing the prediction model is depicted in Figure 1.

An example describing the above procedure will give an insight into the way the model is constructed.
The example is illustrated in Figure 2. Assume that the model of order 2 is initially empty, and that the
sequence of accesses ABACDBC' A is introduced. In the very first step the only available context is the
order-0 context, which is represented by the dotted square surrounding the root node A (Figure 2.a).
Thus, the element A becomes the child of A, and at the same time the new order-1 context. The number
label associated with the node counts the occurrences of this context. Again, the dotted squares show
the current context of each order (Figure 2.b). When element B comes, all contexts are updated in
turn (Figure 2.c). The process continues in a similar fashion until the entire sequence is exhausted
(Figure 2.e).

The algorithm described above makes only a single pass over the data, does not require any bulk
processing, and there is no need for preprocessing either. Therefore, it can operate in real-time. The
model can be updated as information on new user requests comes in, and at the same time provide

predictions concerning the future accesses.

'An order-k Markov predictor is a scheme which calculates the conditional probability p of accessing page P, given that
the previous accesses were to pages {P1, P>, ..., Px} in that order. More formally, the predictor computes the probability
p(P|PkPk_1 P Pl)

Objective: Build a prediction model based on the access patterns of the users.
Input: The trie structure T, representing the prediction model of order m

constructed so far, and a set S of events deriving from the same user.
Output: The updated prediction model.

current_context[0] :=root node of T;
for length j=1 tom
current_context[j]:=NULL;
for every event R in §
for length j=m down to 0 {
if current_context[j] has child-node C representing event R {
node C occurrence_count:=occurrence_count+1;
current_context[j+1] :=node C;
¥
else {
construct child-node C representing event R;
node C occurrence_count:=1;
current_context[j+1] :=node C;
¥

current_context[0] :=root node of T;

Figure 1: Algorithm for building the prediction model.

An interesting point is that in the case where predictions from different contexts are merged, subtle
variations in the pattern sequences can be captured. In the model of Figure 2.e for example, assume
that a specific user has already seen page D followed by B, and that the next two accesses will be for
pages A and C. Both of these pages can be prefetched, since they are predicted by the contexts {B}
and {DB} respectively. Consequently, no matter whether the actual request sequence is {DBAC?} or

{DBC A}, it can potentially be predicted by the model.

3 Simulation Model

In order to estimate the performance of the algorithm a simulation model is used. The simulation
is trace-driven, i.e., a real Web server log file is employed to emulate the requests of the clients, and
to assess the operational behaviour of the prefetching system. An overview of the architecture of the

simulator is depicted in Figure 3. The dispatcher is the module responsible for the coordination of the

Figure 2: Structure of the model when inserting the sequence ABACDBCA.

other components of the system.

3.1 The Prediction Engine

This component constructs and updates the prediction model according to the requests issued by the
users, and offers predictions independently to each client.

The traces pertaining to different clients should not be intermingled when building the model, since
this would lead to a distorted view of the actual access patterns. In addition, the model should differen-
tiate between discrete series of accesses even if they belong to the same user. The model tries to capture
the above characteristics by introducing the notion of browsing sessions. A browsing session Sy is a set
of requests, {Ry, Ry,..., R;, ..., R,}, where R; represents an entry from the log (carrying information
about the client, the request and the time she made it, and any error codes). Each request R; in the
set is constrained to belong to the same client ¢, i.e., R;.host = ¢ for 1 < 7 < n. In addition, there is

a total ordering in the set, R;.time < R;4q.teme for 1 < ¢ < n, and a time window is used to group

log

dispatcher prediction
engine
client]

Figure 3: The architecture of the simulation model.

S

ez for 1 <2 < n. Therefore, requests from discrete clients

requests in sessions, R;y1.time — R;.time <t

correspond to different browsing sessions, and a session ends when the relevant user has been idle for

S

s ax Would be in the order of few minutes. The model

more than 5, time units®. A typical value for ¢
does not solve the problem of identifying different users behind the same proxy server. Nevertheless,
prefetching can be beneficial for them as well.

It is important to note here that when building the model not all of the log file entries are taken
into account. Obviously, requests for non-existent pages or requests that result in any other error do
not contribute to the model. In addition, pages generated by C'GI programs cannot be prefetched since
they usually involve user selections that normally take place just before the request of the specific page.
Finally, all the requests for the inlined images are also ignored. It is evident that when a user issues a
request for some document, subsequent requests for all the embedded images will follow.

The prediction engine selects which pages to prefetch based on the occurrence count associated with
each node in the model. In addition, the occurrence count of a certain node divided by the count of the
father node yields the percentage of times that this particular path was followed among all the possible
ones. This fraction also enables the prediction engine to set a confidence threshold, below which no
pages are selected.

As discussed in the previous section, the strategy of combining predictions from contexts of multiple

lengths may prove useful. The outline of such an algorithm is given in Figure 4. Each context of the

2The s superscript in the time window length stands for the server, where the prediction engine is located. Later on, a
similar time window will be introduced for the simulation of the clients.

model produces predictions independently, and may be associated with a different level of confidence.

Then, all the predictions are merged into a single set, and duplicates are removed.

Objective: Predict the next request, given the prediction model, the previous requests,
and the confidence threshold for each order of the model.

Input: The trie structure T, representing the prediction model of order m; a set
of the last k requests, R;, 0 <7 < k < m; and the confidence threshold for each
order, ¢;4[7], 0 < 7 < m.

Output: A set P of predicted pages.

(initialization is not actually a separate phase; current contexts are updated as new re-
quests arrive)

for length j=1 to k

current_context[j]:=node of depth j, representing the access

sequence {R[k-j+1],..., R[k]};

P:=NULL;
for length j=k down to 1

for every child-node C of current_context[j]

if (occurrence_count of C)/(occurrence_count of parent) >= c_th[j]
P:=P+C;

remove duplicates from P;

Figure 4: Algorithm for making predictions, using multiple orders and different confidence thresholds.

3.2 The Client

This module simulates the client side of the system. It receives the page actually requested, as well as
any additional pages sent by the prefetcher, and stores them in its cache (implemented using the LRU
replacement policy).

At any time during the simulation there may exist many instances of the client module running, each
one associated with a different client. These instances correspond to the active clients. A client Cy is
termed active if the last request it issued to the Web server is within a window of ¢, .. time units of the

present (simulation) time. Formally, let client Cy be associated with the requests {Ry,..., R, }, issued

C

at times R;.time, ..., R,.time. This client is considered active if timep,csens — Ry time <15 .

When a client becomes inactive its cache is emptied of all its contents. The intuition for this scheme

is that pages originating from a particular server do not have infinite lifetime in the client’s cache. This

behaviour is simulated by emptying the cache at specific time intervals.

4 Results

All the simulations presented herein were driven by the access log files pertaining to the Web server of
the Department of Computer Science of the University of Toronto [8§].
Three quantities, expressed in percentages, are used to evaluate the performance of the prefetching

system:

Usefulness of predictions: The number of prefetched pages that the users requested divided by the

total number of requested pages.

Accuracy of predictions: The number of prefetched pages that the users requested divided by the

total number of prefetched pages.

Network traffic: The volume of network traffic when prefetching is employed divided by that in the

non-prefetching case.

A prefetching system aims at maximizing the first two metrics, and at the same time at minimizing
the last one. It is obvious that these objectives are conflicting. The more pages are prefetched, the
more probable it is for some of them to be accessed. Though, at the same time the return of value is
lower (i.e., accuracy is decreasing), and the increase in network traffic is high. Thus, there is a trade-off

among these quantities that the prefetching algorithm should take into account.

4.1 Trace Characteristics

The log file used in the experiments spans a time period of five days, and contains 211,300 user requests,
originating from 14,007 unique hosts. As mentioned earlier, only the successful HTML and text requests

are taken into account, leaving 86,000 requests. From these, the first 29,650 (i.e., the first two days)

are used as training data in order to build the prediction model, and the rest to simulate a real system
with prefetching.

In order to appraise the navigation patterns of the users as perceived by the prediction model, it is
useful to know how many pages they request from the Web server before they leave. This information

will also help in the fine-tuning of the prefetching algorithm. Figure 5 depicts the average number of

2

2 6 T T T T T

s all pages <—
5 distinct pages -+--
1] 5 - -
1%

Q

n

j=2

£

g 4 4
2

o

g ap -
[2]

D

[}

=

O 2r 7]
14

G

3 1t .
£

>

z

S 0 I I I I I

§ 0 500 1000 1500 2000 2500 3000

Maximum Browsing Session Idle Time (sec)

Figure 5: Mean number of page requests per browsing session, as a function of the maximum browsing
session idle time.

pages requested in a single session, as the maximum browsing session idle time varies. The two curves
represent the results for the cases where only the distinct pages in each session are taken into account,

or all of them. The standard deviation for these experiments is reported in Table 1.

all pages distinct pages
mean | std. dev. || mean | std. dev.
3.7 5.9 3.5 5.6
4.3 7.2 4.0 6.3
4.5 7.9 4.2 6.8
4.7 8.2 4.3 7.0
4.8 8.7 4.3 7.1

Table 1: Arithmetic mean and standard deviation for the number of page requests per browsing session.
Results reported for maximum browsing session idle time set to 5, 15, 25, 35, and 45 minutes.

The results indicate that most of the users tend to request only a few pages (< 3) during a single

10

session, although there exist sessions with significantly higher numbers of requested pages. This obser-
vation implies that many users either are not really interested in navigating in the site, or they know
exactly where to find the information they want. Therefore, prefetching will not be beneficial for them,
and should be avoided.

Note that these results should not be interpreted as an exact description of the users’ access behaviour.
Nevertheless, they still represent the way the prediction model captures the navigation patterns of the

users.

4.2 Experimental Results

3

The subsequent paragraphs illustrate and discuss the outcome of the simulations®. Each experiment

investigates the influence of a single parameter at a time on the performance of the system. At the end,

the best values obtained from each experiment are combined.

4.2.1 Varying the Number of Previous Requests

As the previous requests parameter increases, the number of prefetched pages decreases (Figure 6). The

T T T T
Order 3 <— Order 3 <—

T T
N Order 3_#=-%
Order 4 -+- N Order 4 -+- 0.62 Orderd 3"
1.35 R, Order5 -8-- | Order5 -8-- | rder5-<8--
N Order 6 - Order 6 - 06 | ~Order 6 x|
: R
e g 03 058
g - g 0.56
< & 0.28 3
g 3 £ 0.54
2 8
=} 0.26 0.52
05
024 | 2
0.48 &
11 0.22 0.46

1 1
"o 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
Previous Requests Previous Requests Previous Requests

(a) (b) ()
Figure 6: Varying the number of previous requests.

prefetcher is only making predictions for clients that exhibit an interest in the Web site and do not leave

after the first requests. This results in more accurate predictions, yet, the predicted requests are fewer.

®For a more elaborate and complete presentation of the experimental results the interested reader should refer to [17].

11

4.2.2 Varying the Confidence

Similar

Network Traffic

cause fewer predictions to be made, thus, reducing the network traffic.

patterns are observed when

Order 3 <—
Order 4 —+-
Order5 -8--
Order 6 -

0 0.1

0.2 0.3 0.4
Minimum Confidence

0.5 0.6

(a)

Useful Predictions

Order 6 -

0.1

0.2 0.3 0.4
Minimum Confidence

(b)

0.5 0.6

Figure 7: Varying the confidence.

Accuracy

confidence increases (Figure 7). Larger

values for this parameter

Order 3 <—

0.5

0.2 0.3 0.4
Minimum Confidence

0.5 0.6

(c)

However, the increment in

prediction accuracy is significant since it is only the highly probable pages that are prefetched.

4.2.3 Varying the Number of Predictions

A way to predict as many requests as possible is by allowing the maximum predictions parameter to

take large values, as represented in Figure 8.

Network Traffic

3 4 5
Maximum Predictions

(a)

Figure 8: Varying the number of predictions.

Useful Predictions

Order 3 <—

3 4 5
Maximum Predictions

(b)

Accuracy

0.5

0.45

0.4

0.3

0.25

The number of useful predictions increase (note that

Order 3 <—
Order 4 —+-
Order5 -8--
Order 6 -

3 4 5
Maximum Predictions

(c)

prefetching every possible page would result in a perfect figure for this metric), but the return of value

is minimal. The increase in traffic is dramatic, and the accuracy degrades quickly.

12

4.2.4 Varying the Client Cache Idle Time

The results displayed in Figure 9 correspond to a confidence setting of 0.2.

0.31

T T
Order 3 <—

T T
Order 3 <—

T T
Order 3 <—

e Order 4 —+- Order 4 —+- Order 4 —+-
1.205 | s Order5 -8-- 0.305 [Order5 -8-- Order 5 -8--
RS Order 6 -x o Order 6 - 0.62 - Order 6 - o
* - Q.
" e | P | —_—
g — oy 2 S 5 081 4
= A 3 R £
¥ 1195 R 4 g o295 - SN 4 E
5 t T 8
2 e z s - T S
z 2 R 06+ e b
z & B e —— +
119 1 =] 0.29 - EET Y 1 BT ARHAL - Mbtd S
— | 7|
1.185 [1 0.285 - | 059
118 1 1 1 1 1 1 1 1 0.28 1 1 1 1 1 1 1 1 0.58 1 1 1 1 1 1 1 1
2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Maximum Client Cache Idle Time (sec) Maximum Client Cache Idle Time (sec) Maximum Client Cache Idle Time (sec)

(a) (b) ()
Figure 9: Varying the client cache idle time.

As the maximum client cache idle time increases, network traffic and the number of useful predictions
diminish. At the same time accuracy remains nearly constant, which suggests that the aforementioned
reduction is due to an additional number of requests being serviced by the client cache, and not to
a service degradation. When client caches in the simulation are left to live longer, it becomes more

probable for a page already in the cache to be requested again.

4.2.5 Combining Predictions

The representation of the prediction model, which stores multiple context orders in the same structure,
offers the opportunity to combine the predictions from different orders.

Figure 10 compares the use of a constant confidence value with weighted confidence, for a model of
order 6. Note that in both cases predictions are made independently from each order of the model,
and are then combined into a single answer set. When weighted confidence is employed, higher order
contexts are trusted more, and are assigned a smaller confidence.

In the graphs of Figure 10 the horizontal lines represent the performance of the algorithm with
weighted confidence which for the orders 2 to 6 takes the values 0.8 to 0.5 (reducing in steps of 0.08).
This algorithm is compared with four others which use constant confidence with values from 0.5 up to

0.8. The results suggest that the weighted confidence approach tries to achieve good performance in all

13

11 - 0.28 T - 08 T T
constant conf. -— constant conf. -— constant conf. -—
weighted conf. -+~ 027 & weighted conf. -+~ | weighted conf. -+~

1.08 [4 0.78 4

0.26 - 4
£ 106 1 g oy 1 o o7 1
= =1 8
£ & our 1 3
z 3 g
g t0ap 1 % o023 | < onf]
=}
0.22 - 3
1.02 4 072 4
0.21 4
1 0.2 07
0.5 0.55 0.6 X 0.7 0.75 0.8 0.5 0.55 0.6 X 0.7 0.75 0.8 0.5 0.55 0.6 X 0.7 0.75 0.8
Minimum Confidence Minimum Confidence Minimum Confidence
(a) (b) ()
Figure 10: Constant and weighted confidence when combining predictions from different orders.

three metrics.

categories.

Indeed, it performs above the average of the four constant-confidence algorithms in all

In Figure 11 weighted-confidence algorithms using different maximum order models are compared.

The prediction models have orders ranging from 3 up to 6, while the weighted confidence is set to 0.8

Network Traffic

Useful Predictions
Accuracy

Figure 11: Varying the order of the model when combining predictions from different orders.

for the context of order 2 and reduces by 0.08 for each subsequent order. The results show that the

number of useful predictions increase along with the maximum order of the model, at the cost of the

accuracy.

4.3 Efficiency of the Algorithm

It is evident that the performance of the algorithm on any of the specified metrics will vary depending

on the parameters. Different settings may limit the algorithm to predict only the highly probable pages,

14

or relax the constraints and result in more page requests being predicted. Two such cases are presented
in Table 2. The first experiment predicts almost a quarter of the total number of requests issued to the
Web server, with an accuracy of 80%. The second one improves the accuracy to 90%, which causes the

number of predicted requests to shrink to less than one fifth.

mazx order | confidence | prev. requests || network traffic | useful pred. | accuracy
6 0.6-0.8 1 1.05 0.23 0.8
3 0.8-0.9 4 1.02 0.18 0.9

Table 2: Efficiency of the algorithm (using weighted confidence). The parameters common to both
experiments are maximum predictions 5 pages, client cache size 30 pages, browsing session idle time
600 seconds, and client cache idle time 5400 seconds.

4.3.1 Potential Predictions

In order to assess the ability of the algorithm to make predictions, it is useful to know how many
predictions can be done and how many of those were actually made. The potential predictions are
restricted by two factors. First, the initial request of each browsing session cannot be possibly predicted.
Second, the model cannot predict any sequence of requests that has not been observed before.

The histogram of Figure 12 shows the percentage of requests that can be predicted for the log file

20

16 B

14 + B

12 1

10 f

Number of Requests (%)

0
0 0.2 0.4 0.6 0.8 1
Confidence

Figure 12: Percentage of requests that can potentially be predicted.

used in this study. These are the requests of the form {AB}, where page B is accessed after page A,

15

and this pattern has occurred before. The total number of potential predictions (i.e., the sum of all the
bars in the histogram) accounts for only 60% of the requests.

The experiments presented in Table 2 indicate that the predictions made are actually more than
anticipated by the figures cited in the histogram. Indeed, taking into consideration the confidence
levels used in the experiments, the predictions are about 15% more than expected. Note that even this
estimate is pessimistic since the predictions in the simulations do not start right after the first access to
the server. This outcome is explained by the fact that in the experiments predictions are also derived

from high-order models, which usually exhibit greater confidence levels.

4.3.2 Cache Benefits

The simulations also show that prefetching can be used in a complementary fashion to the caching
technique. Figure 13 reports the cache hits for various cache sizes, with and without the use of prefetch-
ing. In the former case, the parameters of the algorithm were the same as in the first experiment of
Table 2. When prefetching is employed, the cache experiences up to 6.5 times more cache hits than
in the non-prefetching case. As Figure 13 shows, the relative benefits increase as the cache size gets

smaller.

cache with prefetching <—
20000 plain cache -+-- |

oo v//?/M'

10000 [f

Client Cache Hits

5000 |- T -

0 5 10 15 20 25 30 35 40 45 50
Client Cache Size

Figure 13: Cache hits with and without prefetching, for different cache sizes.

16

5 Related Work

In what follows we present an overview of the cache and prefetching techniques. Work in both the
operating systems and Web communities is cited, so as to observe the similarities and differences between

the two.

5.1 Operating Systems Context

Griffioen and Appleton [10] propose a predictive cache which prefetches file pages based on a probability
graph of past accesses. The nodes in the graph represent accessed files, while a directed weighted arc
from node A to node B expresses a metric for the probability of requesting file B within w requests
after file A. A trace-driven simulation revealed improvements in the time an application has to wait for
read operations to complete ranging from 22% to 51% compared with the non-prefetching case.

Curewitz et al. [7] claim that data compression techniques can be successfully used for prefetching.
An implementation of this idea, based on Prediction by Partial Match (PPM), is presented by Kroeger
and Long [13].

Lei and Duchamp [15] employ access trees to make predictions. Access trees record all files accessed
during one execution of each program. When an application is re-executed, the current activity is
compared against the saved access trees. If a similarity is detected, the files in the access tree are
prefetched. The trace-driven simulation shows a substantial reduction in applications latency, despite

the significant CPU overhead.

5.2 World Wide Web Context

Bestavros proposes a server-initiated protocol [3], which sends to the client —along with the requested
document— the server’s predictions. The predictions are produced by the closure of the matrix whose
(1,j) element represents the probability that document j will be requested within a certain time window
after the request of document 7.

Previous work on operating systems [10] has been the basis of Padmanabhan and Mogul’s research

17

[16] on prediction of future requests. A trace-driven simulation along with a linear model for the network
is used to test the algorithm. The results indicate that the benefits from prefetching are significant.
However, the increase in network traffic is considerable (an order of magnitude greater than the numbers
reported herein). The accuracy of the predictions is not reported.

Independently from our work, Jacobson and Cao [11] applied a version of the partial match prediction
technique for prefetching between proxies and low-bandwidth clients. This work shows that prefetching
can reduce latency by less than 10% (predicting 12% of the requests, and increasing traffic by 18%),
though, a significant part of this reduction is attributed to the caching effect of the prefetch buffer.
The experiments indicate that our algorithm has superior performance (in terms of the metrics we
discussed). Nevertheless, in our case the prefetching process is coupled with the server, as opposed to
the proxy.

A recent study attempts to determine bounds in the performance of proxy caching and prefetching
[14]. The authors performed a trace-driven simulation with infinite-size cache and complete knowledge
of future requests. The external latency between the proxy cache and the server accounts for 77% of
the total latency. Caching achieved a reduction of 26%), prefetching 57%, and the combination of both
60%.

Crovella and Barford [6] discuss the effects of prefetching on the network. A trace driven simulation
indicates that straightforward approaches to prefetching increase the burstiness of traffic. Instead,
the authors propose a transport rate control mechanism. The simulation denotes that rate-controlled
prefetching significantly improves network performance compared not only with the straightforward
approach, but also with the non-prefetching case, while delivering the requested documents on time.

Several commercial products promise to enhance the performance of browsers [5, 18, 19], as well.
However, the algorithms used are not sophisticated. They merely exploit the idle time of the client’s
network connection to prefetch all the links of the current page, or the user’s popular pages. Thus the

increase in network traffic is considerable.

18

6 Conclusions and Future Work

This work investigated the application of a multi-order context modeling technique for prefetching in
the Web domain. The special characteristics of the Web context were recognized, and the algorithm
was tailored to fit this new environment. Despite the heterogeneous nature of the users (their geo-
graphic origin, the reason they are visiting the Web site, the information they are looking for) which
imposes limitations on the performance of the prefetching system, the simulation still suggests that
the advantages of employing prediction are significant, and the performance is comparable or better to
similar approaches. A considerable fraction of the users’ requests can be predicted with high accuracy
(e.g., predicts 18%-23% of the requests with 90%-80% accuracy), thus, reducing retrieval latencies and
boosting the cache performance.

We are currently looking into the following ways of extending the work presented herein:
e Perform time simulations, in order to evaluate the time savings for the users.

e Introduce flexibility in the algorithm; cooperate with the network layer in order to make more

informed decisions.

e Incorporate an aging mechanism, which will allow the model to automatically respond to changes
in the user access patterns; a similar technique can be used to restrict the model’s memory

requirements.

References

[1] Mary Baker, Satoshi Asami, Etienne Deprit, John Ousterhout, and Margo Seltzer. Non-Volatile
Memory for Fast, Reliable File Systems. In International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 10-22, September 1992.

[2] T. C. Bell, J. C. Cleary, and 1. H. Witten. Text Compression. Prentice Hall, 1990.

[3] Azer Bestavros. Speculative Data Dissemination and Service to Reduce Server Load, Network
Traffic and Service Time in Distributed Information Systems. In International Conference on Data
Engineering, pages 180-189, New Orleans, LO, February 1996.

19

[4] John G. Cleary and lan H. Witten. Data Compression Using Adaptive Coding and Partial String
Matching. IEEFE Transactions on Communications, 32(4):396-402, 1984.

[5] Connectix Corp. http://www.connectix.com, March 1998.

[6] Mark Crovella and Paul Barford. The Network Effects of Prefetching. In IFFFE Infocom, San
Francisco, CA, USA, 1998.

[7] Kenneth M. Curewitz, P. Krishnan, and Jeffrey Scott Vitter. Practical Prefetching via Data
Compression. In ACM SIGMOD International Conference, pages 257-266, Washington, DC, USA,
June 1993.

[8] Department of Computer Science, University of Toronto. http://www.cs.toronto.edu, March 1998.

[9] Fred Douglis, Anja Feldmann, Balachander Krishnamurthy, and Jeffrey C. Mogul. Rate of Change
and other Metrics: a Live Study of the World Wide Web. In USENIX Symposium on Internet
Technology and Systems, pages 147-158, Berkeley, CA, USA, December 1997.

[10] James Griffioen and Randy Appleton. The Design, Implementation, and Evaluation of a Predictive
Caching File System. Technical Report CS-264-96, Department of Computer Science, University
of Kentucky, June 1996.

[11] Quinn Jacobson and Pei Cao. Potential and Limits of Web Prefetching Between Low-Bandwidth
Clients and Proxies. In Web Caching Workshop, June 1998.

[12] Donald E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-
Wesley, 1973.

[13] Thomas M. Kroeger and Darell D. E. Long. Predicting File System Actions from Prior Events. In
Winter USENIX Conference, 1996.

[14] Thomas M. Kroeger, Darrell D. E. Long, and Jeffrey C. Mogul. Exploring the Bounds of Web
Latency Reduction from Caching and Prefetching. In USENIX Symposium on Internet Technologies
and Systems, pages 319-328, San Diego, CA, USA, January 1997.

[15] Hui Lei and Dan Duchamp. An Analytical Approach to File Prefetching. In USENIX Annual
Technical Conference, pages 275-288, Berkeley, CA, USA, January 1997.

[16] Venkata N. Padmanabhan and Jeffrey C. Mogul. Using Predictive Prefetching to Improve World
Wide Web Latency. ACM SIGCOMM Computer Communication Review, 27(3):22-36, 1996.

[17] Themistoklis Palpanas. Web Prefetching Using Partial Match Prediction. Technical Report CSRG-
376, Department of Computer Science, University of Toronto, March 1998.

[18] PeakSoft Corp. http://www.peak.com, March 1998.

[19] Web3000 Inc. http://www.web3000.com, March 1998.

20

Contents
1 Introduction

2 Prediction Model

2.1 Context Modeling
2.2 Building the Model e
3 Simulation Model
3.1 The Prediction Engine L
3.2 TheClient L e e
4 Results
4.1 Trace Characteristics o L
4.2 Experimental Results o o
4.2.1 Varying the Number of Previous Requests
4.2.2 Varying the Confidence
4.2.3 Varying the Number of Predictions
4.2.4 Varying the Client Cache Idle Time
4.2.5 Combining Predictions
4.3 Efficiency of the Algorithm
4.3.1 Potential Predictions
4.3.2 Cache Benefits e

5 Related Work
5.1 Operating Systems Context e
5.2 World Wide Web Context e e

6 Conclusions and Future Work

11
11
12
12
13
13
14
15
16

17
17
17

19

