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Abstract

Clio is a management system for heterogeneous data that couples a traditional database management
engine with additional tools for managing schemas (models of data) and mappings between schemas.
In this article, we provide a brief overview of Clio and place our solutions in the context of the rich re-
search literature on data integration and transformation. Clio is the result of an on-going collaboration
between the University of Toronto and IBM Almaden Research Center in which we are addressing both
foundational and systems issues related to heterogeneous data, schema, and integration management.

1 Introduction

Heterogeneous data sets contain data that have been represented using different data models, different structuring
primitives, or different modeling assumptions. Such sets often have been developed and modeled with different
requirements in mind. As a consequence, different schemas may have been used to represent the same or related
data. To manage heterogeneous data, we must be able to manage these schemas and mappings between the
schemas.

The management of heterogeneous data is a problem as old as the data management field itself. However, its
importance and the variety of contexts in which it is required has increased tremendously as the architectures for
exchanging and integrating data have increased in sophistication. Traditionally, heterogeneous data sets were
managed within a federated architecture where a virtual, global schema (or view) is created over a set of het-
erogeneous sources (or local schemas) [HM85]. A mapping (in this case a set of view definitions) is established
between each source and the global view. The mapping may define each component of the global schema in
terms of the source schemas (global-as-view or GAV), or alternatively, the mapping may define the components
of each source schema in terms of the global (local-as-view or LAV) [LRO96]. A federated architecture is ap-
propriate for closely-coupled applications where queries on the virtual global view can be answered using data
stored in the sources [Len02]. Notice that in federated systems, data is only exchanged at run-time (that is,
query-time). However, the Web has inspired a myriad of more loosely-coupled, autonomous applications where
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data must be shared, but where run-time coupling of the applications is not possible. These applications include
data grids and peer-to-peer applications [BGK�02]. In such applications, data must be exchanged, replicated, or
migrated. To accomplish this, mappings between pairs of schemas are established (between a source and target
schema). However, unlike in more integrated federated environments, the target data must be materialized so
that target queries can be answered locally (even when the source data is unavailable). Furthermore, this target
data must reflect the source data as accurately as possible. In federated environments, no such exchange of
data is required. In general, we would like to build and manage schema mappings that permit both virtual data
integration (as in federated environments) and the exchange of data between independent cooperating peers.

The architecture of Clio is described elsewhere [MHH�01]. In this work, we focus on the specific solutions
employed within Clio as they relate to schema and mapping management. We consider our solutions to old,
well-established research problems such as generating schema correspondences [BLN86] (more recently called
schema matching [RB01]) and data integration [Len02]. We also identify new foundational and systems issues
related to the problem of exchanging data between heterogeneous schemas. In Section 2, we describe our
solutions for creating and managing schemas. We consider the creation and management of correspondences
between schemas (Section 3) and how correspondences can be used to create mappings (Section 4). Finally, we
present our solutions for using mappings in both data integration and data exchange settings.

2 Creating and Managing Schemas

For the purposes of this overview, a schema is a set of structuring primitives (predicates) and a set of constraints
(logical statements) over these primitives. Within Clio, we use a nested-relational model over which a powerful
set of constraints, including nested referential constraints, can be expressed.

A schema is a model of a data set and it is the primary vehicle we use for both querying the data and
understanding the data. To manage heterogeneous data sets, each modeled by a different schema, we create
mappings between their schemas. Within Clio, schemas are the primary vehicle for understanding and creating
this mapping. Many data management solutions assume that we are given a schema that accurately reflects the
data. Yet, often, this is not the case. We may be using data from a legacy database management system with little
support for representing schemas, particularly constraints. Alternatively, we may be using data from a system
where the data and schema are managed by different loosely-coupled, or perhaps uncoupled, software tools. So
the data may be dirty and the schema may not be an accurate model of the data.

To overcome these challenges, we provide data mining tools for discovering constraints (and approximate
constraints) that hold on a specific data set [Vil02]. Given a schema, we mine the data (within the given struc-
ture) for constraints. For example, in the expenseDB schema depicted on the left side of Figure 1, we could
mine the data to discover the two inclusions �� and ��. These inclusions represent the fact that in the given
database instance, all grant.grantee values are a subset of company.cid. An inclusion is a candidate
inclusion dependency. However, from a single database instance, we cannot determine whether the inclusion
will continue to hold as the data changes. In addition, we may discover that an approximate inclusion holds from
grant.sponsor to company.cid (not shown in the Figure) indicating that most sponsors are companies.
Constraint mining looks to find a set of constraints (logical statements) that hold on a given data set and struc-
ture. The set of predicates used in these constraints is fixed – that is, the set of predicates corresponds exactly to
the set of tables (or nested tables) defined in the schema.

Schemas are the result of a data design process (performed by a human designer or by an automated tool).
The choices made in data design are known to be highly subjective. A schema is inherently one out of many
possible choices for modeling a data set. To understand and reconcile heterogeneous data, we may need to
understand (and explicitly represent) some of the alternative design choices. Our current research focuses on the
development of schema discovery techniques for finding such alternative designs.

Consider again the expenseDB schema of Figure 1. Suppose that some but not all values in grant.grantee
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Figure 1: Two example schemas: expenseDB (left) & statDB (right).

are in company.cid, so that no inclusion holds between the attributes of grants and companies. Instead,
grant.granteemay be a combination of companies, non-profit foundations and government agencies. (To
keep our example simple, assume that foundations and government agencies are each modeled by a separate
relational table.) Furthermore, suppose the grants given by companies (almost) always have a PI, while
those given by both foundations and governmentAgencies never have a PI (the grants are given to an
institution, not to an individual). These facts suggest that an alternative design for this information would be to
horizontally decompose the grants table into three tables: companyGrants, foundationGrants, and
governmentGrants. Such a decomposition is suggested because each subgroup of tuples shares structural
characteristics (the presence or lack of a PI along with three distinct inclusion relationships into the three tables
companies, foundations and governmentAgencies) that the group as whole does not share. We are
developing mining algorithms to help find such decompositions by identifying groups of data that share common
structural characteristics.

Our work can be distinguished from other structure mining techniques, including Bellman [DJMS02], in
that we are searching for models that best fit the data. However, like Bellman we are performing a form of
schema and data analysis. Such analysis can be very valuable in practice for large schemas that are hard for a
DBA to fully understand. The tool can help a user abstract away the specific (given) design choices and better
understand the schemas and the data they structure.

3 Creating and Managing Correspondences

To integrate or reconcile schemas we must understand how they correspond. If the schemas are to be inte-
grated, their corresponding information should be reconciled and modeled in one consistent way. If data is to
be exchanged (or translated) between two schemas, we must first understand where two schemas overlap or cor-
respond. Methods for automating the discovery of correspondences use linguistic reasoning on schema labels
[BHP94] (including ontologies and thesauri) and the syntactic structure of the schema [RB01]. Such methods
have come to be referred to as schema match operators. The output of a schema match is an uninterpreted cor-
respondence relation between elements of two schemas [RB01]. As such, a match can be viewed as a similarity
join [Coh00] between two relations containing the names or descriptions (types, annotations, properties, etc.) of
two separate schemas [RB01].

Within Clio, we make use of correspondences between attributes or atomic elements [NHT�02]. Our work
uses not only attribute labels but also syntactic clues in the data itself to classify attributes and suggest attribute
correspondences. We analyze data values and derive a set of characteristic features. We then use a classifier
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to group attributes with similar features. Through experimentation, we have derived a small set of domain-
independent features that capture most of the structural information embedded in the attribute data. For the two
example schemas of Figure 1, our techniques will, for example, suggest the attribute correspondences �� through
��. Correspondence �� is suggested not solely based on the name similarity between attribute labels, but rather
because the data values within these two attributes have similar characteristics (for example, the range of the
amounts is similar and they perhaps have many 0’s in them). The values themselves do not need to overlap,
rather they simply need to have similar characteristics.

Note that all of the correspondence techniques we have described make use of little, if any, semantic knowl-
edge about the data. Constraint annotations (for example, the declaration of an attribute as a key) may be used
as syntactic clues to suggest a correspondence (two key attributes are more likely to correspond than a key and
non-key attribute). However, these correspondence or matching approaches do not, in general, attempt to at-
tach a semantics or meaning to specific correspondences [RB01]. Many of the matching approaches return not
only attribute correspondences, but also correspondences between other schema components including relations.
These correspondences may be suggested by name similarity or by correspondences among attributes of the re-
lations. For example, the correspondences �� and �� suggest that company and org correspond. Similarly, ��
and �� suggest that grant corresponds to both fund and financial. Note however, that the techniques for
finding such “structure” correspondences are inherently dependent on the specific logical design choices made
in a schema (for example, the grouping of attributes into relations or the nesting of relations) [RB01]. Hence,
applying such a technique on a schema and an equivalent normalized version of the schema may yield different
results. Rather than relying on such syntactic structure correspondences, we use only attribute correspondences
and then apply semantic reasoning to derive a mapping [MHH00].

4 Creating and Managing Mappings

To be able to use correspondences to map data, we must associate a meaning to the correspondence relation.
Typically, this semantics is expressed as inter-schema constraints. Following this convention, we express the
mapping semantics as referential constraints. Since we are using a nested relational model, the mappings are
then nested referential constraints [PVM�02]. Each constraint in the mapping asserts that a query �� over the
source is associated with a query �� over the target. In Clio, we consider sound mappings [Len02] where the
association is a containment relation: �� � �� . Our mappings are generalizations of two common types of
mappings: GAV (global-as-view) and LAV (local-as-view) mappings [Len02]. In GAV, a query over the source
is asserted to be associated with a single relation of the target (global) schema. In other words, �� is restricted to
be a single relation. In LAV, a single source is asserted to be associated with a query over the target. So in LAV,
�� is restricted to be a single relation. The mappings produce by Clio have been referred to as GLAV since they
have neither the GAV nor the LAV restriction [FLM99].

To create a mapping, we must take a correspondence relation � over schemas � and � and create a set of
constraints, each of which has the form �� � �� . We have referred to this process as query discovery in that
we must discover the queries used in the mapping [MHH00]. Our approach is to use the semantics of the data
model to determine a set of source and target queries that produce sets of semantically related attributes. We
illustrate our approach with an example.

Consider the correspondences depicted in Figure 1. In creating a mapping for the financial relation, we
must determine which combinations of values from grant.amount,project.name and project.year
to use in creating financial tuples. It is unlikely that all combinations of values are semantically mean-
ingful. Rather, we can use the schema to determine that by taking an equi-join of grant and project
on grant.proj = project.name, we can create triples of grant.amount, project.name and
project.year values that are semantically related. The queries we use in our mappings are based on this
idea. We use the nested structure of the schema and constraint inference to determine a set of queries that each
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return a set of semantically related attributes.
Often, we will find alternative semantic relationships. For example, in addition to the foreign key join

between grants and projects on ��, it may also be possible to associate grants with projects that
are led by the grant.pi. We use carefully selected data values to illustrate and explain to a user the various
mapping alternatives [YMHF01].

5 Using Mappings

The mappings produced by Clio can be used for both data integration (where the target schema is virtual) and
for data exchange (where the target schema is materialized).

5.1 Data Integration

In data integration, we are given one (or more) source schemas and a single target (or global) schema. Mappings
are established between each of the source schemas and the target schema. The target schema is a virtual view
and as such is usually limited to have no constraints [Len02].1 Queries posed on the target are answered by
reformulating the query as a set of queries over the sources. Notice that the sound mappings that we produce do
not determine a unique target instance that satisfies the mappings for a given set of source instances. Hence, it
is not clear what the “right” answer to a query on the target is. The query semantics adopted most often in data
integration is that of computing the certain answers. An instance � of the sources will produce a set of possible
instances of the target � such that � and � collectively satisfy the mappings. The answer to a target query � is
then the intersection of ���� as � varies over all of these possible target instances. In data integration, a target
query is rewritten as a source query and the certain answers are computed using the source instances.

5.2 Data Exchange

A data exchange setting is very similar to that of data integration [FKMP03]. We are given a source schema (or
a set of source schemas), a target schema and a mapping (or mappings) between each source and the target. As
in data integration, mappings may not determine a unique target instance for a given instance � of the sources.
The problem in data exchange is to materialize a single target instance (among the set of all possible target
instances) that reflects the source data as accurately as possible. Furthermore, in data exchange, the target often
has constraints, so we are not guaranteed that any target instance exists that satisfies the mappings and the target
constraints. Given an instance � of the sources, a solution to the data exchange problem is a single target instance
� that satisfies the target constraints and such that � and � collectively satisfy the mapping. In data exchange,
we are faced with the problem of both determining if there is a solution to the data exchange problem and
determining which solution, that is, which target instance, is the best one to exchange.

To perform data exchange, we have given an algebraic specification of a special class of universal solutions
[FKMP03]. A universal solution has no more and no less data than needed in data exchange. In particular, for
relational schemas and for target queries � that are unions of conjunctive queries, then the certain answers for �
are exactly the tuples in ���� if and only if � is a universal solution. We are able to compute a canonical universal
solution efficiently for a large and practical set of target constraints and mappings. We have also investigated the
computational complexity of computing the certain answers in data exchange [FKMP03].

1Note that recent work has begun to consider constraints expressed on the target view [CGL�01].
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6 The Clio System

In our system, we provide support for creating mappings between combinations of relational or XML schemas
(including DTDs) [PHVM02]. In addition to mappings (the constraints described in Section 4), Clio also pro-
duces data translation queries. These source queries produce target data satisfying the constraints and (possibly
nested) structure of the target schema. If the source and target have different data content, then the transla-
tion queries may also invent values for non-null target attributes that have no correspondence to the source
[PVM�02]. For XML sources, these queries are produced in XQuery or XSLT. For relational sources, these
queries are produced in SQL (if the target is relation) or SQL with XML extensions (if the target is XML).
These translation queries are used for data exchange to produce a materialized target instance. They may also
be used for query composition in data integration settings.

Our technology is already being transferred into the DB2 product line. Clio has been used to create a
sophisticated query builder (SQL Assist) for relational schemas. In SQL Assist, a user specifies the schema
of the desired query (the attributes) and the tool suggests the query structure. Constraint reasoning is used
to suggest queries that are semantically meaningful. In addition, Clio is being used in an XML to relational
translator. The tool provides a default translation of an XML document into relations. A user may then modify
this relational schema to meet her own requirements. Clio automatically produces and maintains a translation
query as the target schema is modified.
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