
J Data Semant
DOI 10.1007/s13740-012-0001-1

On Modeling and Querying Concept Evolution

Siarhei Bykau · John Mylopoulos · Flavio Rizzolo ·
Yannis Velegrakis

© Springer-Verlag 2012

Abstract Entities and the concepts they instantiate evolve
over time. For example, a corporate entity may have resulted
from a series of mergers and splits, or a concept such as that
of Whale may have evolved along with our understanding of
the physical world. We propose a model for capturing and
querying concept evolution. Our proposal extends an RDF-
like model with temporal features and evolution operators.
In addition, we provide a query language that exploits these
extensions and supports historical queries. Moreover, we
study how evolution information can be exploited to answer
queries that are agnostic to evolution details (hence, evolu-
tion-unaware). For these, we propose dynamic programming
algorithms and evaluate their efficiency and scalability by
experimenting with both real and synthetic datasets.

Keywords Evolution · Possible worlds · Steiner Trees ·
RDF · Query Answering

1 Introduction

Conceptual modeling languages—including the ER Model,
UML class diagrams and Description Logics—are all
founded on a notion of entity that represents a thing in the
application domain. Although the state of an entity can

S. Bykau
University of Trento, Via Sommarive 14, Trento, Italy
e-mail: bykau@disi.unitn.eu

J. Mylopoulos
e-mail: jm@disi.unitn.eu

Y. Velegrakis
e-mail: velgias@disi.unitn.eu

F. Rizzolo
University of Ottawa, 800 King Edward St., Ottawa, Canada
e-mail: flavio@cs.toronto.edu

change over its lifetime, entities themselves are uniformly
treated as atomic and immutable. Unfortunately, this feature
prevents existing modeling languages from capturing phe-
nomena that involve the mutation of an entity into some-
thing else, such as a caterpillar becoming a butterfly, or
the evolution of one entity into several (or vice versa),
such as Germany splitting off into two Germanies right
after WWII. The same difficulty arises when we try to
model evolution at the class level. Consider the class Whale,
which evolved over the past two centuries in the sense that
whales were considered a species of fish, whereas today they
are known to be mammals. This means that the concept
of Whale-as-mammal has evolved from that of Whale-
as-fish in terms of the properties we ascribe to whales (e.g.,
their reproductive system). Clearly, the (evolutionary) rela-
tionship between Whale-as-fish and Whale-as-mammal is of
great interest to historians who may want to ask questions
such as “Who studied whales in the past 3 centuries?” We
are interested in modeling and querying such evolutionary
relationships between entities and/or classes. In the sequel,
we refer to both entities and classes as concepts.

In the database field, considerable amount of research
effort has been spent on the development of models, tech-
niques and tools for modeling and managing state changes
for a concept, but no work has addressed the forms of evo-
lution suggested above. These range from data manipulation
languages, and maintenance of views under changes [2], to
schema evolution [31] and mapping adaptation [28,40]. To
cope with the history of data changes, temporal models have
been proposed for the relational [38] and ER [16] models,
for semi-structured data [5], XML [36] and for RDF [17].
Almost in its entirety, existing work on data changes is based
on a state-oriented point of view. It aims at recording and
managing changes that are taking place at the values of the
data.

123

S. Bykau et al.

In this work, we present a framework for modeling the
evolution of concepts over time and the evolutionary relation-
ships among them. The framework allows posing new kinds
of queries that previously could not have been expressed.
For instance, we aim at supporting queries of the form: How
has a concept evolved over time? From what (or, to what)
other concepts has it evolved? What other concepts have
affected its evolution over time? What concepts are related
to it through evolution and how? These kinds of queries are
of major importance for interesting areas such as those dis-
cussed below.
History Modern historians are interested in studying the his-
tory of humankind, and the events and people who shaped it.
In addition, they want to understand how systems, tools, con-
cepts of importance, and techniques have evolved throughout
history. For them, it is not enough to query a data source for
a specific moment in history. They need to ask questions
on how concepts and the relationships that exist between
them have changed over time. For example, historians may be
interested in the evolution of countries such as Germany, with
respect to territory, political division or leadership. Alterna-
tively, they may want to study the evolution of scientific con-
cepts, e.g., how the concept of biotechnology has evolved
from its humble beginnings as an agricultural technology to
the current notion that is coupled to genetics and molecular
biology.
Entity Management Web application and integration sys-
tems are progressively moving from tuple and value-based
towards entity-based solutions, i.e., systems where the basic
data unit is an entity, independently of its logical representa-
tion [10]. Furthermore, web integration systems, in order to
achieve interoperability, may need to provide unique identi-
fication for the entities in the data they exchange [33]. How-
ever, entities do not remain static over time: they get created,
evolve, merge, split, and disappear. Knowing the history of
each entity, i.e., how it has been formed and from what, paves
the ground for successful entity management solutions and
effective information exchange.
Life Sciences One of the fields in biology focuses on the
study of the evolution of species from their origins and
throughout history. To better understand the secrets of nature,
it is important to model how the different species have
evolved, from what, if and how they have disappeared, and
when. As established by Darwin’s theories, this evolution is
very important for the understanding of how species came to
be what they are now, or why some disappeared.

Answering queries that are evolution unaware is a chal-
lenging task. The evolution information recorded in the
data is intensionally specifying a large number of possible
instances in a similar fashion to the one that probabilities in
a probabilistic database are defining possible worlds. Each
such instance, models a way that concepts associated through
some evolution path can be merged into one. The evaluation

of a query over an evolution database will have to take into
consideration all these possible instances (possible worlds).
In contrast to the case of probabilistic databases, the evolu-
tion relationships are forming a graph that can be used for
the efficient computation of answers across possible worlds.
To find all the answers, a connectivity discovery algorithm
needs to be executed, but algorithms of this kind have an
exponential cost.

More specifically, the contributions of this work are the
following: (i) We propose a conceptual model enhanced with
the notion of a lifetime of a class, individual and relationship,
(ii) We extend the temporal model proposed in Gutiérrez et
al. [17] with consistency conditions and additional constructs
to model merges, splits, and other forms of evolution among
concepts; (iii) We introduce an evolution-aware query lan-
guage that supports queries on the lifetime of concepts and
describe it formal semantics; (iv) We also describe the seman-
tics of an evolution unaware query language that is able to
retrieve concepts that may not be present in the instance but
can be formed dynamically through merges of concepts rep-
resenting different evolution phases; (v) We implement the
semantics of this query answering by generating on-the-fly
possible instances (similar to the concept of possible worlds
in probabilistic databases) where multiple concepts associ-
ated through evolution relationships have been collapsed into
one; (vi) We introduce the idea of finding a Steiner forest
as a mean of finding the optimal merges that need to be
done to generate the possible instances and present indexing
techniques for its efficient implementation; (vii) We describe
the architecture of the system we have developed that sup-
ports the above functionality; (viii) We describe a case study
involving concept evolution and perform a number of experi-
ments for evaluating our evolution-unaware query answering
mechanism.

Preliminary versions of these contributions have been pre-
sented in two earlier publications [4,37]. This paper extends
and refines our earlier work by the following contributions:
(a) We present an integrative framework of the evolution
management, i.e., both the modeling and query evaluation;
(b) We describe the system architecture of the implemen-
tation of our research ideas; (c) We discuss the evolution
discovery mechanism which is used to obtain a real data set
for our experiments (the trademark dataset).

The rest of the paper is structured as follows. Section 2
describes the motivating examples used in this work. In Sect.
3, we present our modeling framework for evolution-aware
queries. A formal semantics of query answering in the pres-
ence of evolution for queries that are evolution-unaware is
discussed in Sect. 4. Section 5 presents the architecture of
the system we have developed that incorporates the evolu-
tion-unaware evaluation methods. Two case studies which
involve evolution are described in Sect. 6. The description
of a number of experiments for evaluating our evolution-

123

On Modeling and Querying Concept Evolution

unaware query answering mechanism is shown in Sect. 7.
The related work is discussed in Sect. 8. Finally, we con-
clude the study in Sect. 9.

2 Motivating Scenarios

Consider a historian database that records information about
countries and their political governance. A fraction of the
database modeling a part of the history of Germany is illus-
trated in Fig. 1a. In it, the status of Germany at different times
in history has been modeled through different individuals or
through different concepts. In particular, Germany was an
empire until 1918 and a republic from 1919 to 1945. This
change is modeled by the multiple instantiations of Germany

relative to Empire and Republic. Shortly after the end of the
World War II, Germany was split in four zones1 that in 1949
formed East and West Germany. These two entities lasted
until 1990, when they were merged to form the republic of
Germany as we know it today. This entity is modeled through
the individual as Reunified Germany.

To model the validity constraints on the states of Germany
during different periods, we use a temporal model similar
to temporal RDF [17]. The model associates to each con-
cept a specific time frame. The time frames assigned to the
individuals that model different Germanies are illustrated in
Fig. 1 through intervals. The same applies to every prop-
erty, instance and subclass relationship. Note, e.g., how the
instantiation relationship of Germany to Empire has a tem-
poral interval from 1871 to 1918, while the one to Republic

has a temporal interval from 1918 to 1945. It is important
for such a database to contain no inconsistencies, i.e., situa-
tions like having an instantiation relationship with a temporal
interval bigger than the interval of the class it instantiates.
Although temporal RDF lacks this kind of axiomatization,
a mechanism for consistency checking needs to be in place
for the accurate representation of concepts and individuals in
history. Our solution provides an axiomatization of the tem-
poral RDF that guarantees the consistency of the historical
information recorded in a database.

Consider now the case of a historian who wants to study
the history of Germany. The historian may be interested, e.g.,
in all the leaders and constituents of Germany throughout
its history. Using traditional query mechanisms, the histo-
rian will only be able to retrieve the individual Germany.
Using keyword-based techniques, she may be able to also
retrieve the remaining individuals modeling Germany at dif-
ferent times, but this under the assumption that each such
individual contains the keyword “Germany”. Applying ter-
minology evolution [39], it is possible to infer that the four
terms for Germany, i.e., Germany, East Germany, West Ger-

many, and Reunified Germany refer to related concepts regard-

1 The information of the four zones is not illustrated in the Fig. 1.

less of the keywords that appear in the terms. Yet, in neither
case the historian will be able to reconstruct how the constitu-
ents of Germany have changed over time. She will not be able
to find that the East and West Germany were made by split-
ting the pre-war Germany and its parts, or that East and West
Germany were the same two that merged to form the Reuni-
fied Germany. We propose the use of explicit constructs to
allow the modeling of evolution in databases, as exemplified
in Fig. 1b introducing split, join and part-of relationships.

Consider the case when the user cannot formulate que-
ries using evolution constructs or if the conceptual model
that the user has in mind in terms of evolution granularity is
different from the one that actually exists in the data reposi-
tory. Normally, it will not be possible to answer any queries.
To better illustrate the problem, let us consider the history of
AT&T, a company that over the years has gone through a large
number of break-ups, mergers and acquisitions. We consider
a new evolution graph (see Fig. 2) for evolution-unaware
queries because it is more simple and has data peculiarities
which allow us to demonstrate the details of our approach.
The company was founded in 1925 under the name Bell Tele-
communication Laboratories (BTL). In 1984, it was split into
Bellcore (to become Telcordia in 1997) and AT&T Bell Lab-
oratories. The latter existed until 1996 when it was split into
Bell Labs, that was bought by Lucent, and to AT&T Labs. The
Lucent Bell Labs became Alcatel-Lucent Bell Labs Research
in 2006 due to the take-over of Lucent by Alcatel. Further-
more, due to the take-over of AT&T by SBC in 2005, the
AT&T Labs were merged with the SBC Labs to form the
new AT&T Inc. Labs. Despite being research labs of dif-
ferent legal entities, Lucent and AT&T Labs have actually
maintained a special partnership relationship. All these dif-
ferent labs have produced a large number of inventions, as the
respective patents can demonstrate. Examples of such inven-
tions are Voice over Internet Protocol (VoIP), the Automatic
Speech Recognition(ASR), the Peer-to-Peer (P2P) Video and
the laser. A graphical illustration of the above can be found
in Fig. 2 where the labs are modeled by rectangles and the
patents by ovals.

Assume now a temporal database that models the above
information. For simplicity, we do not distinguish among the
different kinds of evolution relationships (split, merger, and
so on). Consider a user who is interested in finding the lab that
invented the laser and the ASR patent. It is true that these two
patents have been filed by two different labs, the AT&T Bell
Labs and the AT&T Labs Inc. Thus, the query will produce
no results. However, it can be noticed that the latter entity is
an evolution of the former. It may be the case that the user
does not have the full knowledge of the way the labs have
changed or, in her own mind, the two labs are still considered
the same. We argue that instead of expecting from the user to
know all the details of how the concept has evolved and the
way the data have been stored, which means that the user’s

123

S. Bykau et al.

Fig. 1 The concepts of Germany, in a temporal model (a) and in our evolutionary model (b)

Fig. 2 The history of the
AT&T Labs.

conceptual model should match the one of the database, we
would like the system to try to match the user’s conceptual
model instead. This means that the system should have the
evolution relationships represented explicitly and take them
into account when evaluating a query. In particular, we want
the system to treat the AT&T Bell Labs, the AT&T Labs
Inc, and the AT&T Labs as one unified (virtual) entity. That
unified entity is the inventor of both the laser and the ASR,
and should be the main element of the response to the user’s
query.

Of course, the query response is based on the assumption
that the user did not intend to distinguish between the three
afore-mentioned labs. Since this is an assumption, it should
be associated with some degree of confidence. Such a degree
can be based, for instance, on the number of labs that had to

be merged to produce the answer. A response that involves
two evolution-related entities should have higher confidence
than one involving 4.

As a similar example, consider a query asking for all the
partners of AT&T Labs Inc. Apart from those explicitly stated
in the data (in the specific case, none), a traversal of the his-
tory of the labs can produce additional items in the answer,
consisting of the partners of its predecessors. The further this
traversal goes, the less likely it is that this is what the user
wanted; thus, the confidence of the answer that includes the
partners of its predecessors should be reduced. Furthermore,
if the evolution relationships have also an associated degree
of confidence, i.e., less than 100% certainty, the confidence
computation of the answers should take this into consider-
ation as well.

123

On Modeling and Querying Concept Evolution

3 Supporting Evolution-Aware Queries

This section studies queries which are agnostic to evolution
details, namely the evolution-aware queries. In particular,
first we introduce the temporal database (Sect. 3.1), second
we describe the evolution modeling technique (Sect. 3.2),
finally we provide a formal definition of the query language
(Sect. 3.3) and briefly talk about its evaluation strategy (Sect.
3.4).

3.1 Temporal Databases

We consider an RDF-like data model. The model is expres-
sive enough to represent ER models and the majority of ontol-
ogies and schemas that are used in practice [30]. It does not
include certain OWL Lite features such as sameAs or equiv-
alentClass, since these features have been considered to be
outside of the main scope of this work and their omission
does not restrict the functionality of the model.

We assume the existence of an infinite set of resources U ,
each with a unique resource identifier (URIs), and a set of lit-
erals L. A property is a relationship between two resources.
Properties are treated as resources themselves. We consider
the existence of the special properties: rdfs:type, rdfs:domain,
rdfs:range, rdfs:subClassOf and rdfs:subPropertyOf, which we
refer to as type, dom, rng, subc, and subp, respectively. The set
U contains three special resources: rdfs:Property, rdfs:Class

and rdf:Thing, which we refer to as Prop, Class and Thing,
respectively. The semantics of these resources as well as the
semantics of the special properties are those defined in RDFS
[41]. Resources are described by a set of triples that form a
database.

Definition 1 A database � is a tuple 〈U, L , T 〉, where U ⊆
U ,L ⊆ L, T ⊆ U × U × {U ∪ L}, and U contains the
resources rdfs:Property, rdfs:Class, and rdf:Thing. The set of
classes of the database � is the set C = {x |∃〈x, type, rdfs :
Class〉 ∈ T }. Similarly, the set of properties is the set P =
{x |∃〈x, type, rdfs : Property〉 ∈ T }. The set P contains the
RDFS properties type, dom, rng, subc, and subp. A resource
i is said to be an instance of a class c ∈ C (or of type c)
if ∃〈i, type, c〉 ∈ T . The set of instances is the set I =
{i |∃〈i, type, y〉 ∈ T }.

A database can be represented as a hypergraph called an
RDF graph. In the rest of the paper, we will use the terms
database and RDF graph equivalently.

Definition 2 An RDF graph of a database � is an hyper-
graph in which nodes represent resources and literals and the
edges represent triples.

Example 1 Figure 1a is an illustration of an RDF Graph.
The nodes Berlin and Germany represent resources. The edge

labeled part-of between them represents the triple 〈Berlin,part-

of,Germany〉. The label of the edge, i.e., part-of, represents a
property.

To support the temporal dimension in our model, we adopt
the approach of Temporal RDF [17] which extends RDF by
associating with each triple a time frame. Unfortunately, this
extension is not enough for our goals. We need to add time
semantics not only to relationships between resources (what
the triples represent), but also to resources themselves by pro-
viding temporal-varying classes and individuals. This addi-
tion and the consistency conditions we introduce below are
our temporal extensions to the temporal RDF data model.

We consider time as a discrete, total order domain T in
which we define different granularities. Following Dyreson
et al. [13], a granularity is a mapping from integers to gran-
ules (i.e., subsets of the time domain T) such that contigu-
ous integers are mapped to non-empty granules and granules
within one granularity are totally ordered and do not overlap.
Days and months are examples of two different granularities,
in which each granule is a specific day in the former and a
month in the latter. Granularities define a lattice in which
granules in some granularities can be aggregated in larger
granules in coarser granularities. For instance, the granu-
larity of months is coarser than that of days because every
granule in the former (a month) is composed of an integer
number of granules in the latter (days). In contrast, months
are not coarser (nor finer) than weeks.

Even though we model time as a point-based temporal
domain, we use intervals as abbreviations of sets of instants
whenever possible. An ordered pair [a, b] of time points,
with a, b granules in a granularity, and a ≤ b, denotes the
closed interval from a to b. As in most temporal models,
the current time point will be represented with the distin-
guished word Now. We will use the symbol T to represent
the infinite set of all the possible temporal intervals over the
temporal domain T, and the expressions i.start and i.end
to refer to the starting and ending time points of an interval
i . Given two intervals i1 and i2, we will denote by i1 	 i2

the containment relationship between the intervals in which
i2.start ≤ i1.start and i1.end ≤ i2.end.

Two types of temporal dimensions are normally consid-
ered: valid time and transaction time. Valid time is the time
when data are valid in the modeled world whereas transaction
time is the time when data are actually stored in the database.
Concept evolution is based on valid time.

Definition 3 A temporal database�T is a tuple 〈U, L , T,τ 〉,
where 〈U, L , T 〉 is a database and τ is function that maps
every resource r ∈ U to a temporal interval in T . The tem-
poral interval is also referred to as the lifespan of the resource.
The expressions r.start and r.end denote the start and end
points of the interval of r , respectively. The temporal graph

123

S. Bykau et al.

of �T is the RDF graph of 〈U, L , T 〉 enhanced with the tem-
poral intervals on the edges and nodes.

For a temporal database to be semantically meaningful,
the lifespans of the resources need to satisfy certain condi-
tions. For instance, it is not logical to have an individual with
a lifespan that does not contain any common time points with
the lifespan of the class it belongs to. Temporal RDF does
not provide such a mechanism, thus, we are introducing the
notion of a consistent temporal database.

Definition 4 A consistent temporal database is a temporal
database �τ = 〈U, L , T, τ 〉 that satisfies the following con-
ditions:

1. ∀r ∈ L ∪ {Prop, Class, Thing, type, dom, rng, subc,

subp} : τ(r) = [0, Now];
2. ∀〈d, p, r〉 ∈ T : τ(〈d, p, r〉) 	 τ(d) and

τ(〈d, p, r〉) 	 τ(r);
3. ∀〈d, p, r〉 ∈ T with p ∈ {type, subc, subp} : τ(d) 	

τ(r).

Intuitively, literals and the special resources and properties
defined in RDFS need to be valid during the entire lifespan
of the temporal database, which is [0, Now] (Condition 1).
In addition, the lifespan of a triple needs to be within the
lifespan of the resources that the triple associates (Condition
2). Finally, the lifespan of a resource has to be within the
lifespan of the class the resource instantiates, and any class
or property needs to be within the lifespan of its superclasses
or superproperties (Condition 3).

3.2 Modeling Evolution

Apart from the temporal dimension that was previously
described, two new dimensions need to be introduced to suc-
cessfully model evolution: the mereological and the causal.

Mereology [25] is a sub-discipline in philosophy that deals
with the ontological investigation of the part-whole relation-
ship. It is used in our model to capture the parthood relation-
ship between concepts in a way that is carried forward as
concepts evolve. Such a relationship is modeled through the
introduction of the special property part-of, which is reflex-
ive, antisymmetric and transitive. A property part-of is defined
from a resource x to a resource y if the concept modeled by
resource x is part of the concept modeled by resource y. Note
that the above definition implies that every concept is also
a part of itself. When x is a part of y and x �= y we say
that x is a proper part of y. Apart from this special seman-
tics, part-of behaves as any other property in a temporal data-
base. For readability and presentation reasons, we may use

the notation x
part-of−→ y to represent the existence of a triple

< x, part − of, y > in the set T of a temporal database �τ .

To capture causal relationships, i.e., the interdependency
between two resources, we additionally introduce the notion
of becomes, which is an antisymmetric and transitive relation.

For similar reasons as before, we use the notation x
becomes−→

y to represent the fact that (x, y) ∈ becomes. Intuitively,

x
becomes−→ y means that the concept modeled by resource

y originates from the concept modeled by resource x . We
require that τ(x).end < τ(y).start .

To effectively model evolution, we also need the notion of
a liaison. A liaison between two concepts is another concept
that keeps the former two linked together in time by means
of part-of and becomes relationships. In other words, a liaison
is part of at least one of the concepts it relates and has some
causal relationship to a part of the other.

Definition 5 (Liaison) Let A, B be two concepts of a tem-
poral database with τ(A).start < τ(B).start , and x, y con-

cepts for which x
part-of−→ A and y

part-of−→ B. A concept x (or y)

is said to be a liaison between A and B if either x
becomes−→ y

or x = y.

The most general case of a liaison is graphically depicted
in Fig. 3a. The boxes A and B represent the two main con-
cepts whereas the x and y represent two of their respective
parts. Figure 3b illustrates the second case of the definition
in which x and y are actually the same concept. Figure 3c
(respectively, (d)) shows the special case in which y (respec-
tively, x) is exactly the whole of B (respectively, A) rather
than a proper part of it.

To model the different kinds of evolution events that may
exist, we introduce four evolution terms: join, split, merge,
and detach.
[join] The join term, denoted as join(c1 . . . cn, c, t), models
the fact that every part of a concept c born at time t comes
from a part of some concept in {c1, . . . , cn}. In particular:

• τ(c).start = t;
• ∀x s.t. x

part-of−→ c : ∃ci s.t. x is a liaison between ci and
c, or x = ci , with 1 ≤ i ≤ n.

[split] The split term, denoted as split(c, c1 . . . cn, t), models
the fact that every part of a concept c ending at time t becomes
the part of some concept in {c1, . . . , cn}. In particular:

• τ(c).end = t;
• ∀x s.t. x

part-of−→ c : ∃ci s.t. x is a liaison between c and
ci , or x = ci , with 1 ≤ i ≤ n.

[merge] The merge term, denoted as merge(c, c′, t), models
the fact that at least a part of a concept c ending at a time t
becomes part of an existing concept c′. In particular:

123

On Modeling and Querying Concept Evolution

Fig. 3 Liaison examples

• τ(c).end = t;
• ∃x s.t. x

part-of−→ c′ and x is a liaison between c and c′.

[detach] The detach term, denoted as detach(c, c′, t), models
the fact that the new concept c′ is formed at a time t with at
least one part from c. In particular:

• τ(c′).start = t;
• ∃x s.t. x

part-of−→ c and x is a liaison between c and c′.

Note that in each evolution term, there is only one concept
whose lifespan has necessarily to start or end at the time of
the event. For instance, we could use a join to represent the
fact that different countries joined the European Union (EU)
at different times. The information of the period in which
each country participated in the EU is given by the interval
of each respective part-of property.

We record the becomes relation and the evolution terms
in the temporal database as evolution triples 〈c, term, c′〉,
where term is one of the special evolution properties
becomes, join, split, merge, and detach. Evolution proper-
ties are meta-temporal, i.e., they describe how the temporal
model changes, and thus their triples do not need to satisfy
the consistency conditions in Definition 4. A temporal data-
base with a set of evolution properties and triples defines an
evolution base.

Definition 6 An evolution base�E
T is a tuple 〈U, L , T,E,τ 〉,

where 〈U, L , T, τ 〉 is a temporal database, U contains a set
of evolution properties, and E is a set of evolution triples. The
evolution graph of �E

T is the temporal graph of 〈U, L , T, τ 〉
enhanced with edges representing the evolutions triples.

The time in which the evolution event took place does
not need to be recorded explicitly in the triple since it can
be retrieved from the lifespan of the involved concepts. For
instance, detach(Kingdom of the Netherlands, Belgium, 1831)
is modeled as the triple: 〈Kingdom of the Netherlands, detach,
Belgium〉 with τ (Belgium) .start = 1831.

For recording evolution terms that involve more than two
concepts, e.g. the join, multiple triples are needed. We assume

that the terms are indexed by their time, thus, the set of (inde-
pendent) triples that belong to the same terms can be eas-
ily detected since they will all share the same start or end
time in the lifespan of the respective concept. For instance,
split(Germany, East Germany, West Germany, 1949) is repre-
sented in our model through the triples 〈Germany, split, East

Germany〉 and 〈Germany, split, West Germany〉 with τ (East

Germany).start = τ(West Germany).start = 1949.
Note that the evolution terms may entail facts that are not

explicitly represented in the database. For instance, the split
of Germany into West and East implies the fact that Berlin,
which is explicitly defined as part of Germany, becomes part
of either East or West. This kind of reasoning is beyond the
scope of the current work.

3.3 Query Language

To support evolution-aware querying, we define a naviga-
tional query language to traverse temporal and evolution
edges in an evolution graph. This language is analogous to
nSPARQL [35], a language that extends SPARQL with nav-
igational capabilities based on nested regular expressions.
nSPARQL uses four different axes, namely self, next, edge,
and node, for navigation on an RDF graph and node label
testing. We have extended the nested regular expressions con-
structs of nSPARQL with temporal semantics and a set of
five evolution axes, namely join, split, merge, detach, and
becomes that extend the traversing capabilities of nSPARQL
to the evolution edges. The language is defined according to
the following grammar:

exp := axis | t − axis :: a | t − axis :: [exp] |
exp[I] | exp/exp | exp|exp | exp∗

where a is a node in the graph, I is a time interval, and
axis can be either forward, backward, e − edge, e − node,
a t − axis or an e − axis, with t − axis ∈ {self, next, edge,
node} and e− axis∈{join, split, merge, detach, becomes}.

The evaluation of an evolution expression exp is given by
the semantic function E defined in Fig. 4. E[[exp]] returns a
set of tuples of the form 〈x, y, I 〉 such that there is a path
from x to y satisfying exp during interval I . For instance,

123

S. Bykau et al.

Fig. 4 Formal semantics of
nested evolution expressions

in the evolution base of Fig. 1, E[[self :: Germany/next ::
head/next :: type]] returns the tuple 〈Germany, Chancellor,
[1988, 2005]〉. It is also possible to navigate an edge from
a node using the edge axis and to have a nested expres-
sion [exp] that functions as a predicate which the preced-
ing expression must satisfy. For example, E[[self[next ::
head/self :: Gerhard Schröder]]] returns 〈Reunified Germany,
Reunified Germany, [1990, 2005]〉 and 〈West Germany, West

Germany, [1988, 1990]〉.
To support evolution expressions, we need to extend

nSPARQL triple patterns with temporal and evolution seman-
tics. In particular, we redefine the evaluation of an nSPARQL
triple pattern (?X, exp, ?Y) to be the set of triples 〈x, y, I 〉
that result from the evaluation of the evolution expression
exp, with the variables X and Y bound to x and y, respec-
tively. In particular:

E[[(?X, exp, ?Y)]] := {(θ(?X), θ(?Y)) | θ(?X) = x and

θ(?Y) = y and 〈x, y, I 〉 ∈ E[[exp]]}

Our language includes all nSPARQL operators such as
AND, OPT, UNION and FILTER with the same semantics

as in nSPARQL. For instance:

E[[(P1 AND P2)]] := E[[(P1)]] �� E[[(P2)]]
where P1 and P2 are triple patterns and �� is the join on the
variables P1 and P2 have in common. A complete list of all
the nSPARQL operators and their semantics is given by Pérez
et al. [35].

3.4 Query Evaluation

The query language presented in the previous section is based
on the concepts of nSPARQL and can be implemented as an
extension of it by creating the appropriate query rewriting
procedures that implement the semantics of Fig. 4. Since our
focus in query evaluation strategies is mainly on the evolu-
tion-unaware queries, we will not elaborate further on this.

4 Supporting Evolution-Unaware Queries

In this section, we discuss the evolution-unaware queries. In
particular, we present the model of evolution in Sect. 4.1,

123

On Modeling and Querying Concept Evolution

then we show a number of query evaluation techniques start-
ing from naive ways and ending up with our solution (Sect.
4.2). In Sect. 4.3, we introduce the Steiner forest algorithm,
which constitutes the core of our evaluation strategy, along
with an optimization technique.

4.1 Modeling Evolution

To support queries that are unaware of the evolution rela-
tionships, we need to construct a mechanism that performs
various kinds of reasoning in a way transparent to the user.
This reasoning involves the consideration of a series of data
structures associated through the evolution relationships as
one unified concept. For simplicity of the presentation, and
also to abstract from the peculiarities of RDF, in what follows
we use a concept model [7] as our data model. Furthermore,
we do not consider separately the different kinds of evolution
events but we consider them all under one unified relation-
ship that we call evolve. This allows us to focus on different
aspects of our proposal without increasing its complexity.

The fundamental component of the model is the concept,
which is used to model a real world object. A concept is a
data structure consisting of a unique identifier and a set of
attributes. Each attribute has a name and a value. The value
of an attribute can be an atomic value or a concept identifier.
More formally, assume the existence of an infinite set of con-
cept identifiers O, an infinite set of names N and an infinite
set of atomic values V .

Definition 7 An attribute is a pair 〈n, v〉, with n ∈ N and
v ∈ V ∪ O. Attributes for which v ∈ O are specifically
referred to as associations. Let A = N × {V ∪ O} be the
set of all the possible attributes. A concept is a tuple 〈id, A〉
where A ⊆ A, is finite, and id ∈ O. The id is referred to as
the concept identifier while the set A as the set of attributes
of the concept.

We will use the symbol E to denote the set of all possi-
ble concepts that exist and we will also assume the existence
of a Skolem function Sk [19]. Recall that a Skolem func-
tion is a function that guarantees that different arguments are
assigned different values. Each concept is uniquely identified
by its identifier, thus, we will often use the terms concept and
concept identifier interchangingly if there is no risk of confu-
sion. A database is a collection of concepts, which is closed
in terms of associations between the concepts.

Definition 8 A database is a finite set of concepts E ⊆ E
such that for each association 〈n, e′〉 of a concept e ∈ E :
e′ ∈ E .

As a query language, we adopt a datalog style language.
A query consists of a head and a body. The body is a con-
junction of atoms. An atom is an expression of the form

e(n1 : v1, n2 : v2, . . . , nk : vk) or an arithmetic condi-
tion such as =,≤, etc. The head is always a non-arithme-
tic atom. Given a database, the body of the query is said
to be true if all its atoms are true. A non-arithmetic atom
e(n1 : v1, n2 : v2, . . . , nk : vk) is true if there is a concept
with an identifier e and attributes 〈ni , vi 〉 for every i = 1..k.
When the body of a query is true, the head is also said to
be true. If a head e(n1 : v1, n2 : v2, . . . , nk : vk) is true,
the answer to the query is a concept with identifier e and
attributes 〈n1 : v1〉, 〈n2 : v2〉, . . . , 〈nk : vk〉.

The components e, ni and vi , for i = 1..k of any atom in
a query can be either a constant or a variable. Variables used
in the head or in arithmetic atoms must also be used in some
non-arithmetic atom in the body. If a variable is used at the
beginning of an atom, it is bound to concept identifiers. If
the variable is used inside the parenthesis but before the “:“
symbol, it is bound to attribute names, and if the variable is
in the parenthesis after the “:“ symbol, it is bound to attribute
values. A variable assignment in a query is an assignment
of its variables to constants. A true assignment is an assign-
ment that makes the body of the query true. The answer set
of a query involving variables is the union of the answers
produced by the query for each true assignment.

Example 2 Consider the query:
$x(is Holder : $y) : −
$x(name :′ AT &T Labs I nc.′, is Holder : $y)

that looks for concepts called “AT&T Labs Inc.” and are
holders of a patent. For every such concept that is found, a
concept with the same identifier is produced in the answer
set and has an attribute isHolder with the patent as a value.

To model evolution, we need to model the lifespan of the
real world objects that the concepts represent and the evolu-
tion relationship between them. For the former, we assume
that we have a temporal database, i.e., each concept is asso-
ciated with a time period (see Sect. 3.1); however, this is not
critical for the evolution-unaware queries so we will omit
that part from the following discussions. To model the evo-
lution relationship for evolution-unaware queries, we con-
sider a special association that we elevate into a first-class
citizen in the database. We call this association an evolution
relationship. Intuitively, an evolution relationship from one
concept to another is an association indicating that the real
world object modeled by the latter is the result of some form
of evolution of the object modeled by the former. Note that
the whole family of evolution operators from Sect. 3.2 is
reduced to only one relationship.

In the next, with the abuse of notation, we re-introduce
the notion of evolution database with respect to the evolu-
tion-unaware queries. This allows us to focus only on the
parts of our data model which are essential to the evolu-
tion-unaware queries. In Fig. 2, the dotted lines between the

123

S. Bykau et al.

concepts illustrate evolution relationships. A database with
evolution relationships is an evolution database.

Definition 9 An evolution database is a tuple 〈E,Ω〉, such
that 〈E〉 is a database and Ω is a partial order relation over E .
An evolution relationship is every association (e1, e2) ∈ Ω .

Given an evolution database, one can construct a directed
acyclic graph by considering as nodes the concepts and as
edges its evolution relationships. We refer to this graph as
the evolution graph of the database.

Our proposal is that concepts representing different evolu-
tion phases of the same real world object can be considered as
one for query answering purposes. To formally describe this
idea, we introduce the notion of coalescence. Coalescence is
defined only on concepts that are connected through a series
of evolution relationships; the coalescence of those concepts
is a new concept that replaces them and has as attributes the
union of their attributes (including associations).

Definition 10 Given an evolution database 〈E,Ω〉, the coa-
lescence of two concepts e1 : 〈id1, A1〉, e2 : 〈id2, A2〉 ∈
E , connected through an evolution relationship ev is a new
evolution database 〈E ′,Ω ′〉 such that Ω ′ = Ω − ev and
E ′ = (E − {e1, e2}) ∪ {enew}, where enew : 〈idnew, Anew〉 is
a new concept with a fresh identifier idnew = Sk(id1, id2)

and Anew = A1 ∪ A2. Furthermore, each association 〈n, id1〉
or 〈n, id2〉 of an concept e ∈ E , is replaced by 〈n, idnew〉.
The relationship between the two databases is denoted as

〈E,Ω〉 ev−→ 〈E ′,Ω ′〉
The Skolem function that we have mentioned earlier

defines a partial order among the identifiers, and this par-
tial order extends naturally to concepts. We call that order
subsumption.

Definition 11 An identifier id1 is said to be subsumed by an
identifier id, denoted as id1

.≺ id if there is some identifier
idx �= id and idx �= id1 such that id = Sk(id1, idx). A con-
cept e1 = 〈id1, A1〉 is said to be subsummed by a concept
e2 = 〈id2, A2〉, denoted as e1

.≺ e2, if id1
.≺ id2 and for

every attribute 〈n, v1〉 ∈ A1 there is attribute 〈n, v2〉 ∈ A2

such that v1 = v2 or, assuming that the attribute is an asso-
ciation, v1

.≺ v2.

Given an evolution database 〈E,Ω〉, and a set Ωs ⊆ Ω

one can perform a series of consecutive coalescence opera-
tions, each one coalescing the two concepts that an evolution
relationship in the Ωs associates.

Definition 12 Given an evolution database D : 〈E,Ω〉 and
a set Ωs = {m1, m2, . . . , mm} such that Ωs ⊆ Ω , let Dm

be the evolution database generated by the sequence of coa-

lescence operations D
m1−→D1

m2−→, …,
mm−→Dm . The possible

world of D according to Ωs is the database DΩs generated
by simply omitting from Dm all its evolution relationships.

Intuitively, a set of evolution relationships specifies sets
of concepts in a database that should be considered as one,
while the possible world represents the database in which
these concepts have actually been coalesced. Our notion of
a possible world is similar to the notion of a possible worlds
in probabilistic databases [8]. Theorem 1 is a direct conse-
quence of the definition of a possible world.

Theorem 1 The possible world of an evolution database D :
〈E,Ω〉 for a set Ωs ⊆ Ω is unique.

Due to this uniqueness, a set Ωs of evolution relationships
of a database can be used to refer to the possible world.

According to the definition of a possible world, an evolu-
tion database can be seen as a shorthand of a set of databases,
i.e., its possible worlds. Thus, a query on an evolution data-
base can be seen as a shorthand for a query on its possible
worlds. Based on this observation, we define the semantics
of query answering on an evolution database.

Definition 13 The evaluation of a query q on an evolution
database D is the union of the results of the evaluation of the
query on every possible world Dc of D.

For a given query, there may be multiple possible worlds
that generate the same results. To eliminate this redundancy,
we require every coalescence to be well-justified. In par-
ticular, our principle is that no possible world or variable
assignment will be considered, unless it generates some new
results in the answer set. Furthermore, among the different
possible worlds that generate the same results in the answer
set, only the one that requires the smaller number of coales-
cences will be considered. To support this, we define a sub-
sumption relationship among the variable assignments across
different possible worlds and we redefine the semantics of
the evaluation of a query.

Definition 14 Let h and h′ be two variable assignment for a
set of variables X.h′ is said to be subsumed by h, denoted as
h′ ⊆ h if ∀x ∈ X : h(x) = h′(x) = constant , or h(x) = e
and h′(x) = e′, with e and e′ being concepts for which e′ .≺ e
or e = e′.
Given an evolution database D, let W be the set of its possible
worlds. The answer to a query q is the union of the results of
evaluating q on every database in W . During the evaluation
of q on a database in W , true variable assignments that are
subsumed by some other true variable assignment, even in
other possible worlds, are not considered.

It is natural to assume that not all possible worlds are
equally likely to describe the database the user has in mind
when she was formulating the query. We assume that the more
a possible world differs from the original evolution database,
the less likely it is to represent what the user had in mind.
This is also in line with the minimality and well-justification

123

On Modeling and Querying Concept Evolution

Table 1 A fraction of variable assignments for Example 3

$x $y Possible world Answer Cost

e1 P2P Video ∅ e1(isHolder:“P2P Video”) 0

Sk(e1,e2) P2P Video e1,e2 Not generated 1

Sk(e1,e2,e3) P2P Video e1,e2,e3 Not generated 2

Sk(e1,e2,e3) ASR e1,e2,e3 Sk(e1,e2,e3)(isHolder:“ASR”) 2

Sk(e1,e2,e3,e4) Laser e1,e2,e3,e4 Sk(e1,e2,e3,e4)(isHolder:“Laser”) 3

… … … … …

principle described previously. We reflect this as a reduced
confidence to the answers generated by the specific possible
world and quantify it as a score assigned to each answer. One
way to measure that confidence is to count how many evolu-
tion relationships have to be coalesced for the possible world
to be constructed. The evolution relationships may also be
assigned a weight reflecting the confidence to the fact that its
second concept is actually an evolution of the first.

Example 3 Consider again the query of Example 2 and
assume that it is to be evaluated on the database of Fig. 2.
Table 1 illustrates a set of true variable assignments for some
of the possible worlds of the database. The possible world
on which each assignment is defined is expressed through its
respective set Ωs . The fourth column contains the result gen-
erated in the answer set from the specific assignment and the
last column contains its respective cost, measured in num-
ber of coalesces that are required for the respective possible
world to be generated from the evolution database. Note that
the second and the third assignments (highlighted in bold)
are redundant since they are subsumed by the first.

The existence of a score for the different solutions allows
us to rank the query results and even implement a top-k query
answering. The challenging task though is how to identify in
an efficient way the possible worlds and more specifically
the true variable assignments that lead into correct results.

4.2 Query Evaluation

In this section, we present evaluation strategies for the evo-
lution-unaware queries, namely the naive approach (Sect.
4.2.1), the materializing all the possible worlds method
(Sect. 4.2.2), the materializing only the maximum world
approach(Sect. 4.2.3) and, finally, the on-the-fly coalescence
computations (Sect. 4.2.4).

4.2.1 The Naive Approach

The straightforward approach in evaluating a query is to
generate all the possible worlds and evaluate the query on
each one individually. In the sequel, generate the union of

all the individually produced results, eliminate duplication
and remove answers subsumed by others. Finally, associate
to each of the remaining answers a cost based on the coales-
cences that were performed to generate the possible world
from which the answer was produced, and rank the answers
according to that score. The generation of all possible worlds
is a time consuming task. For an evolution database with an
evolution graph of N edges, there are 2N possible worlds.
This is clearly a brute force solution, not desirable for online
query answering.

4.2.2 Materializing all the Possible Worlds

Since the possible worlds do not depend on the query that
needs to be evaluated, they can be pre-computed and stored
in advance so that they are available at query time. Of course,
as it is the case of any materialization technique, the materi-
alized data need to be kept in sync with the evolution data-
base when its data are modified. Despite the fact that this will
require some effort, there are already well-known techniques
for change propagation [2] that can be used. The major draw-
back, however, is the space overhead. A possible world con-
tains all the attributes of the evolution database, but in fewer
concepts. Given that the number of attributes is typically
larger than the number of concepts, and that concepts associ-
ated with evolution relationships are far fewer than the total
number of concepts in the database, we can safely assume
that the size of a possible world will be similar to the one
of the evolution database. Thus, the total space required will
be 2n times the size of the evolution database. The query
answering time, on the other hand, will be 2n times the aver-
age evaluation time of the query on a possible world.

4.2.3 Materializing only the Maximum World

An alternative solution is to generate and materialize the
possible world Dmax generated by performing all possible
coalescences. For a given evolution database 〈E,Ω〉, this
world is the one constructed according to the set of all evo-
lution relationships in Ω . Any query that has an answer in
some possible world of the evolution database will also have
an answer in this maximal possible world Dmax. This solu-

123

S. Bykau et al.

tion work has two main limitations. First, it does not follow
our minimalistic principle and performs coalescences that
are not needed, i.e., they do not lead to any additional results
in the result set. Second, the generated world fails to include
results that distinguish difference phases of the lifespan of
a concept (phases that may have to be considered individ-
ual concepts), but the approach coalesces them in one just
because they are connected through evolution relationships.

4.2.4 On-the-fly Coalescence Computations

To avoid any form of materialization, we propose an alter-
native technique that computes the answers on the fly by
performing coalescences on a need-to-do basis. In particu-
lar, we identify the attributes that satisfy the different query
conditions and from them the respective concepts to which
they belong. If all the attributes satisfying the conditions are
on the same concept, then the concept is added in the answer
set. However, different query conditions may be satisfied by
attributes in different concepts. In these cases, we identify
sets of concepts for each one of which the union of the attri-
butes of its concepts satisfy all the query conditions. For
each such a set, we coalesce all its concepts into one if they
belong to the same connected component of the evolution
graph. Doing the coalescence, it is basically like creating
the respective possible world; however, we generate only the
part of that world that is necessary to produce an answer to
the query. In more details, the steps of the algorithm are the
following.
[Step 1: Query Normalization] We decompose every non-
arithmetic atom in the body of the query that has more
than one condition into a series of single-condition atoms.
More specifically, any atom of the form x(n1 : v1, n2 :
v2, . . . , nk : vk) is decomposed into a conjunction of atoms
x(n1 : v1), x(n2 : v2), . . . , x(nk : vk).
[Step 2: Individual Variable Assignments Generation]
For each non-arithmetic atom in the decomposed query, a
list is constructed that contains assignments of the variables
in the respective atom to constants that make the atom true.
Assuming a total of N non-arithmetic atoms after the decom-
position, let L1, L2, …, L N be the generated lists. Each var-
iable assignment actually specifies the part of the evolution
database that satisfies the condition described in the atom.
[Step 3: Candidate Assignment Generation] The elements
of the lists generated in the previous step are combined
together to form complete variable assignments, i.e., assign-
ments that involve every variable in the body of the query. In
particular, the cartesian product of the lists is created. Each
element in the cartesian product is a tuple of assignments. By
construction, each such tuple will contain at least one assign-
ment for every variable that appears in the body of the query.
If there are two assignments of the same attribute bound var-
iable to different values, the whole tuple is rejected. Any

repetitive assignments that appear within each non-rejected
tuple are removed to reduce redundancy. The result is a set of
variable assignments, one from each of the tuples that have
remained.
[Step 4: Arithmetic Atom Satisfaction Verification] Each
assignment generated in the previous step for which there is
at least one arithmetic atom not evaluating to true is elimi-
nated from the list.
[Step 5: Candidate Coalescence Identification] Within
each of the remaining assignments, we identify concept-
bound variables that have been assigned to more than one
values. Normally, this kind of assignment evaluates always
to false. However, we treat them as suggestions for coales-
cences, so that the assignment will become a true assignment
(ref. previous Section). For each assignment, h in the list pro-
vided by Step 4, the set Vh = {Vx1 , Vx2 , …, Vxk } is generated,
where Vx is the set of different concepts that variable x has
been assigned in assignment h. In order for the assignments
of variable x to evaluate to true, we need to be able to coa-
lesce the concepts in Vx . To do so, these concepts have to
belong to the same connected component in the evolution
graph of the database. If this is not the case, the assignment
h is ignored.
[Step 6: Coalescence Realization & Cost Computation]
Given a set Vh = {Vx1, Vx2 , …, Vxk } for an assignment h
among those provided by Step 5, we need to find the mini-
mum cost coalescences that need to be done such that all the
concepts in a set Vi , for i = 1..k, are coalesced to the same
concept. This will make the assignment h a true assignment,
in which case the head of the query can be computed and an
answer generated in the answer set. The cost of the answer
will be the cost of the respective possible world, which is
measured in terms of the number of coalescences that need
to be performed. Finding the required coalescences for the
set Vh that minimizes the cost boils down to the problem of
finding a Steiner forest [15].

Example 4 Let us consider again the query of Example 2.
In Step 1, its body will be decomposed into two parts:
$x(name :′ AT &T Labs I nc.′) and $x(is Holder : $y). For
those two parts, during Step 2, the lists L1 = {{$x = e1}}
and L2 = {{$x = e1, $y =′ P2PV ideo′}, {$x = e3, $y =′
AS R′}, {$x = e4, $y =′ Laser ′}, {$x = e5, $y =′
V oI P ′}} will be created. Step 3 creates their cartesian prod-
uct L = {{$x = e1, $x = e1, $y =′ P2PV ideo′}, {$x =
e1, $x = e3, $y =′ AS R′}, {$x = e1, $x = e4, $y =′
Laser ′}, {$x = e1, $x = e5, $y =′ V oI P ′}}. The only
attribute bound variable is $y but this is never assigned to
more than one different value at the same time so nothing
is eliminated. Since there are no arithmetic atoms, Step 4
makes no change to the list L . If for instance, the query had
an atom $y �=′ V O I P ′ in its body, then the last element
of the list would have been eliminated. Step 5 identifies that

123

On Modeling and Querying Concept Evolution

the last three elements in L have the concept bound vari-
able $x assigned to two different values; thus, it generates
the candidate coalesences: V1 = {e1, e3}, V2 = {e1, e4} and
V3 = {e1, e5}. Step 6 determines that all three coalescences
are possible. Concepts e1, e2 and e3 will be coalesced for
V1, e1, e2, e3 and e4 for V2, and the e1, e2, e3 and e5 for V3.

4.3 Steiner Forest Algorithm

The last step of the evaluation algorithm for evolution
unaware query language takes as input a set of concept sets
and needs to perform a series of coalesce operations such that
all the concepts within each set will become one. To do so, it
needs to find an interconnect on the evolution graph among
all the concepts within each set. Note that the interconnect
may involve additional concepts not in the set that unavoid-
ably will also have to be coalesced with those in the set. Thus,
it is important to find an interconnect that minimizes the total
cost of the coalescences. The cost of a coalescence operation
is the weight of the evolution relationship that connects the
two concepts that are coalesced. Typically, that cost is equal
to one, meaning that the total cost is actually the total number
of coalescence operations that need to be performed. For a
given set of concepts, this is known as the problem of finding
the Steiner tree [12]. However, given a set of sets of concepts,
it turns out that finding the optimal solution, i.e., the mini-
mum cost interconnect of all the concepts, is not always the
same as finding the Steiner tree for each of the sets individ-
ually. The specific problem is found in the literature as the
Steiner forest problem [15].

The difference in the case of the Steiner forest is that edges
can be used by more than one interconnect. More specifically,
the Steiner tree problem aims at finding a tree on an undi-
rected weighted graph that connects all the nodes in a set and
has the minimum cost. In contrast to the minimum spanning
tree, a Steiner tree is allowed to contain intermediate nodes to
reduce its total cost. The Steiner forest problem takes as input
set of sets of nodes and needs to find a set of non-connected
trees (branches) that make all the nodes in each individual
set connected and the total cost is minimal, even if the cost
of the individual trees are not always the minimal. We refer
to these individual trees with the term branches. Figure 5
illustrates the difference through an example. Assuming that
we have the graph shown in the figure and the two sets of
nodes {x, y} and {u, v}. Clearly, the minimum cost branch
that connects nodes x and y is the one that goes through nodes
a, b and c. Similarly the minimum cost branch that connects
u and v is the one that goes through nodes e, f and g. Each
of the two branches has cost 4 (the number of edges in the
branch), thus, the total cost will be 8. However, if instead we
connect all four nodes x, y, u and v through the tree that uses
the nodes i, j, k and m, then, although the two nodes in each
set are connected with a path of 5 edges, the total cost is 7.

Fig. 5 An illustration of the Steiner forest problem

Formally, the Steiner forest problem is defined as follows.
Given a graph G = 〈N , E〉 and a cost function f : E → R

+,
alongside a set of groups of nodes V = V∞, . . . ,VL, where
Vi ⊆ N , find a set C ⊆ E such that C forms a connected
component that involves all the nodes of every group Vi and
the

∑

i
f (ci) | ci ∈ C is minimal.

The literature contains a number of approximate solu-
tions [1,18,22] as well as a number of exact solution using
Dynamic Programming [9,12,26] for the discovery of Steiner
trees. However, for the Steiner forest problem (which is
known to be NP-hard [15]) although there are approximate
solutions [15], no optimal algorithm has been proposed so
far. In the current work, we made a first attempt toward that
direction by describing a solution that is based on dynamic
programming and is constructed by extending an existing
Steiner tree discovery algorithm.

To describe our solution it is necessary to introduce the
set f lat (V). Each element in f lat ((V)) is a set of nodes
created by taking the union of the nodes in a subset of
V . More specifically, f lat (V) = {U |U = ⋃

V〉∈S V〉 with

S ⊆ V}. Clearly f lat (V) has 2L members. We denote by
max f lat (V) the maximal element in f lat (V) which is the
set of all possible nodes that can be found in all the sets in
V , i.e., max f lat (V) = {\ | \ ∈ V∞ ∪ . . . ∪ VL}.

Our solution for the computation of the Steiner forest con-
sists of two parts. In the first part, we compute the Steiner
trees for every member of the f lat (V) set, and in the second
part we use the computed Steiner trees to generate the Steiner
forest on V .

The state-of-the-art optimal (i.e., no approximation) algo-
rithm for the Steiner tree problem is a dynamic programming
solution developed in the context of keyword searching in
relational data [9]. The algorithm is called the Dynamic Pro-
gramming Best First (DPBF) algorithm and is exponential in
the number of input nodes and polynomial with respect to the
size of graph. We extend DPBF to find a set of Steiner trees,
in particular a Steiner tree for every element in f lat (V). The
intuition behind the extension is that we initially solve the
Steiner tree problem for the max f lat (V) and continue iter-
atively until the Steiner trees for every element in f lat (V)

has been computed. We present next a brief description of
DPBF alongside our extension.

123

S. Bykau et al.

Algorithm 1 Steiner tree algorithm
Input: graph G, f : E → R

+, groups V = V1, . . . , VL
Output: ST for each element in f lat (V)

1: QT : priority queue sorted in the increasing order
2: QT ⇐ ∅
3: for all si ∈ max f lat (V) do
4: enqueue T (si , {si }) into QT ;
5: end for
6: while QT �= ∅ do
7: dequeue QT to T (v, p);
8: if p ∈ f lat (V) then
9: ST (p) = T (v, p)

10: end if
11: if ST has all values then
12: return ST
13: end if
14: for all u ∈ N (v) do
15: if T (v, p) ⊕ (v, u) < T (u, p) then
16: T (u, p) ⇐ T (v, p) ⊕ (v, u);
17: update QT with the new T (u, p);
18: end if
19: end for
20: p1 ⇐ p;
21: for all p2 s.t. p1 ∩ p2 = ∅ do
22: if T (v, p1) ⊕ T (v, p2) < T (v, p1 ∪ p2) then
23: T (u, p1 ∪ p2) ⇐ T (v, p1) ⊕ T (v, p2);
24: update QT with the new T (u, p1 ∪ p2);
25: end if
26: end for
27: end while

Let T (v, p) denote the minimum cost tree rooted at v that
includes the set of nodes p ⊆ max f lat (V). Note that by def-
inition, the cost of the tree T (s, max f lat (V)) is 0, for every
s ∈ max f lat (V).

Trees can be iteratively merged to generate larger trees
using the following three rules.

T (v, p) = min(Tg(v, p), Tm(v, p)) (1)

Tg(v, p) = minu∈N (v)((v, u) ⊕ T (u, p)) (2)

Tm(v, p1 ∪ p2) = minp1∩p2=∅(T (v, p1) ⊕ T (v, p2)) (3)

where ⊕ is an operator that merges two trees into a new one
and N (v) is the set of neighbour nodes of nodev. In Ding et al.
[9], it was proved that these equations are dynamic program-
ming equations leading to the optimal Steiner tree solution
for max f lat (V) set of nodes. To find it, the DPBF algo-
rithm employs the Dijkstra’s shortest path search algorithm
in the space of T (v, p). The steps of the Steiner tree com-
putation are shown in Algorithm 1. In particular, we main-
tain a priority queue QT that keeps in an ascending order
the minimum cost trees that have been found at any given
point in time. Naturally, a dequeue operation retrieves the
tree with the minimal cost. Using the greedy strategy, we
look for the next minimal tree which can be obtained from
the current minimal. In contrast to DPBF, we do not stop
when the best tree has been found, i.e., when the solution for
max f lat (V) has been reached, but we keep collecting min-

imal trees (lines 7–10) until all elements in f lat (V) have
been computed (lines 11–13). To prove that all the elements
of f lat (V) are found during that procedure, it suffices to
show that our extension corresponds to the finding of all the
shortest paths for a single source in the Dijkstra’s algorithm.
The time and space complexity for finding the Steiner trees
is O(3

∑
li n + 2

∑
li ((

∑
li + logn)n + m)) and O(2

∑
li n),

respectively, where n and m are the number of nodes and
edges of graph G, and li is the size of the i th set Vi in the
input of set V of the algorithm.

Once all the Steiner trees for f lat (V) have been com-
puted, we use them to find the Steiner forest for V . The Steiner
forest problem has an optimal substructure and its subprob-
lems overlap. This means that we can find a dynamic pro-
gramming solution to it. To show this, first we consider the
case for L = 1, i.e., the case in which we have only one
group of nodes. In that case, finding the Steiner forest is
equivalent to finding the Steiner tree for the single set of
nodes that we have. Assume now that L > 1, i.e., the input
set V is {V1, . . . , VL }, and that we have already computed all
the Steiner forests for every set V ′ ⊂ V . Let SF(V) denote
the Steiner forest for an input set V . We do not know the exact
structure of SF(V), i.e., how many branches it has and what
elements of V are included in each. Therefore, we need to
test all possible hypotheses of the forest structure, which are
2L , and pick the one that has minimal cost. For instance, we
assume that the forest has a branch that includes all nodes
in V1. The total cost of the forest with that assumption is
the sum of the Steiner forest on V1 and the Steiner forest for
{V2, . . . , VL } which is a subset of V , hence it is considered
known. The Steiner forest on V1 is actually a Steiner tree.
This is based on the following lemma.

Algorithm 2 Steiner forest algorithm
Input: G = 〈N , E〉, V = {V1, . . . , VL }, ST (s)∀s ∈ f lat (V)

Output: SF(V)

1: for all Vi ∈ V do
2: SF(Vi) = ST (Vi)

3: end for
4: for i = 2 to L − 1 do
5: for all H ⊂ V and | H |= i do
6: u ⇐ ∞
7: for all E ⊆ H and E �= ∅ do
8: u ⇐ min(u, ST (max f lat (E)) ⊕ SF(H \ E))

9: end for
10: SF(H) ⇐ u
11: end for
12: end for
13: u ⇐ ∞
14: for all H ⊆ V and H �= ∅ do
15: u ⇐ min(u, ST (max f lat (H)) ⊕ SF(V \ H))
16: end for
17: SF(V) ⇐ u

123

On Modeling and Querying Concept Evolution

Lemma 1 Each branch of a Steiner forest is a Steiner tree.

Proof This proof is done by contradiction. Assuming that a
branch of the forest is not a Steiner tree, it can be replaced
with a Steiner tree and reduce the overall cost of the Steiner
forest. This means that the initial forest was not minimal. ��

We can formally express the above reasoning as:

SF(V) = min
H⊆V

(ST (max f lat (H)) ⊕ SF(V \ H)) (4)

Using the above equation in conjunction with the fact that
SF(V) = ST (V1), if V = {V∞}, we construct an algo-
rithm (Algorithm 2) that finds the Steiner forest in a bottom-
up fashion. The time and space requirements of the specific
algorithm are O(3L − 2L(L/2 − 1)− 1) and O(2L), respec-
tively. Summing this with the complexities of the first part,
it gives a total time complexity O(3

∑
li n + 2

∑
li ((

∑
li +

logn)n + m)) + 3L − 2L(L/2 − 1) − 1) with space require-
ment O(2

∑
li n + 2L).

4.3.1 Query Evaluation Optimization

In the case of top-k query processing, there is no need to
actually compute all possible Steiner forests to only reject
some of them later. It is important to prune as early as possi-
ble cases which are expected not to lead to any of the top-k
answers. We have developed a technique that achieves this.
It is based on the following lemma.

Lemma 2 Given two sets of sets of nodes V ′ and V ′′
on a graph G for which V ′ ⊆ V ′′: cost (SF(V ′)) ≤
cost (SF(V ′′)).
Proof The proof is based on the minimality of a Steiner for-
est. Let SF(V ′) and SF(V ′′) be Steiner forests for V ′ and
V ′′, with costs w1 and w2, respectively. If cost (SF(V ′′)) ≤
cost (SF(V ′)), then we can remove V ′′ \ V ′ from V ′′ and
cover V ′ with a smaller cost forest than SF(V ′), which con-
tradicts the fact that SF(V ′) is a Steiner forest. ��

To compute the top-k answers to a query, we do the follow-
ing steps. Assume that B = {V1, . . . ,Vn} is a set of inputs
for the Steiner forest algorithm. First, we find the Bmin ⊆ B
such that for each V ′ ∈ Bmin there is no V ′′ ∈ B such that
V ′ ⊂ V ′′. Then, we compute the Steiner forest for each ele-
ment in Bmin. According to Lemma 2 and the construction
procedure of Bmin, we ensure that the top-1 is among the
computed Steiner forests. We remove the input which cor-
responds to that top-1 answer from B and then we continue
with the computation of Steiner forests to update Bmin. The
above steps are repeated until k answers have been found.

5 System Implementation

We have built a system to materialize the ideas described
previously and see them in practice. The system has been

implemented in Java, is called TrenDS, and the architecture
of which is illustrated in Fig. 6. It consists of four main com-
ponents. One is the data repository for which it uses an RDF
storage. The RDF storage has a SPARQL interface through
which the data can be queried. It has no specific require-
ments thus, it can be easily replaced by any other RDF stor-
age engine. The evolution relationships among the concepts
are modeled as RDF attributes.

Once a query is issued to the system, it is first parsed by
the Query Parser. The parser checks whether the query con-
tains evolution related operators, in which case it forwards
it to the Evolution Operator Processor module. The model
is responsible for the implementation of the semantics of the
evolution expressions as described in Fig. 4. To achieve this,
it rewrites the query into a series of queries that contain no
evolution operators, thus, they can be sent for execution to
the repository. The results are collected back and sent to the
user or the application that asked the query.

In the case in which we deal with the evolution-unaware
queries, it is then sent to the Query Engine module. This
module is responsible for implementing the whole evalua-
tion procedure described in Sect. 4.2.4. In particular, it first
asks the repository and retrieves all the concepts that satisfy
at least one of the query conditions (dotted line in Fig. 6).
Then, it calls the Steiner Forest module to compute the differ-
ent ways they can be coalesced to produce on-the-fly possible
worlds. Finally, for each such a world, the results are gener-
ated and returned, alongside any additional fields that need
to be retrieved by the repository. In the case in which only
the top-k results are to be retrieved, the module activates the
optimization algorithm described in Sect. 4.3.1 and prunes
the number of Steiner forests that are to be computed.

6 Case Studies

We have performed two main case studies of modeling and
querying evolution. Consider an evolution database which is
an extension of the example introduced in Sect. 1 that models
how countries have changed over time in terms of territory,
political division, type of government, and other characteris-
tics. Classes are represented by ovals and instances by boxes.
A small fragment of that evolution base is illustrated as a
graph in Fig. 7.

Germany, for instance, is a concept that has changed sev-
eral times along history. The country was unified as a nation-
state in 1871 and the concept of Germany first appears in our
historical database as Germany at instant 1871. After WWII,
Germany was divided into four military zones (not shown in
the figure) that were merged into West and East Germany in
1949. This is represented with two split edges from the con-
cept of Germany to the concepts of West Germany and East

Germany. The country was finally reunified in 1990, which

123

S. Bykau et al.

Fig. 6 The TrenDS system
architecture

Fig. 7 The evolution of the concepts of Germany and France and their governments (full black lines represent governedBy properties)

is represented by the coalescence of the West Germany and
East Germany concepts into Unified Germany via two merge

edges. These merge and split constructs are also defined in
terms of the parts of the concepts they relate. For instance,
a part-of property indicates that Berlin was part of Germany

during [1871, 1945]. Since that concept of Germany existed
until 1945 whereas Berlin exists until today, the part-of rela-
tion is carried forward by the semantics of split and merge

into the concept of Reunified Germany. Consider now a his-
torian who is interested in finding answers to a number of
evolution-aware queries.

[Example Query 1] How has the notion of Germany changed
over the last two centuries in terms of its constituents, gov-
ernment, etc.? The query can be expressed in our extended
query language as follows:

Select ?Y, ?Z , ?W
(?X, self ::Reunified Germany/

backward∗[1800, 2000]/, ?Y) AND
(?Y, edge, ?Z) AND (?Z , edge, ?W)

123

On Modeling and Querying Concept Evolution

The query first binds ?X to Reunified Germany and then
follows all possible evolution axes backwards in the period
[1800, 2000]. All concepts bound to ?Y are in an evolution
path to Reunified Germany, namely Germany, West Germany,
and East Germany. Note that, since the semantics of an ∗
expression includes self (see Fig. 4), then Reunified Germany

will also bind ?Y . The second triple returns in ?Z the name of
the properties of which ?Y is the subject, and finally the last
triple returns in ?W the objects of those properties. By select-
ing ?Y, ?Z , ?W in the head of the query, we get all evolutions
of Germany together with their properties.
[Example Query 2] Who was the head of the German gov-
ernment before and after the unification of 1990? The query
can be expressed as follows:

Select ?Y
(?X, self ::Reunified Germany/join−1[1990]/
next :: head[1990], ?Y) AND
(?Z , self ::Reunified Germany/next :: head[1990], ?Y)

The first triple finds all the heads of state of the Reunified

Germany before the unification by following join−1[1990]
and then following next :: head[1990]. The second triple
finds the heads of state of the Reunified Germany. Finally,
the join on ?Y will bind the variable only to those heads of
state that are the same in both triples, hence returning the one
before and after the mentioned unification.

Consider now the evolution of the concept of biotechnol-
ogy from a historical point of view. According to historians,
biotechnology got its current meaning (related to molecular
biology) only after the 1970s. Before that, the term biotech-
nology was used in areas as diverse as agriculture, micro-
biology, and enzyme-based fermentation. Even though the
term “biotechnology” was coined in 1919 by Karl Ereky, a
Hungarian engineer, the earliest mentions of biotechnology
in the news and specialized media refer to a set of ancient
techniques like selective breeding, fermentation and hybrid-
ization. From the 1970s, the dominant meaning of biotech-
nology has been closely related to genetics. However, it is
possible to find news and other media articles from the 1960s
to the 1980s that use the term biotechnology to refer to an
environmentally friendly technological orientation unrelated
to genetics but closely related to bioprocess engineering. Not
only the use of the term changed from the 1960s to the 1990s,
but also the two different meanings coexisted in the media
for almost two decades.

Figure 8 illustrates the evolution of the notion of biotech-
nology since the 1940s. As in the previous example, classes
in the evolution base are represented by ovals and instances
by boxes. The used-for property is a normal property that sim-
ply links a technological concept to its products. The notions
of Selective breeding, Fermentation and Hybridization existed

from an indeterminate time until now and in the 1940s joined
the new topic of Conventional Biotech, which groups ancient
techniques like the ones mentioned above. Over the next
decades, Conventional Biotech started to include more mod-
ern therapies and products such as Cell Therapies, Penicillin

and Cortisone. At some point in the 1970s, the notions of Cell

Therapies and Bioprocess Engineering matured and detached
from Conventional Biotech becoming independent concepts.
Note that Cell Therapies is a class-level concept that detached
from the an instance-level concept. The three concepts coex-
isted in time during part of the 1970s, the latter two coexist
even now. During the 1970s, the notion of Conventional Bio-

tech stopped being used and all its related concepts became
independent topics. In parallel to this, the new topic of Biotech

started to take shape. We could see Biotech as an evolution of
the former Conventional Biotech but using Genetic Engineer-

ing instead of conventional techniques. Concepts and terms
related to the Biotech and Genetic Engineering topics are mod-
eled with a part-of property. In parallel to this, the concept of
Cloning techniques started to appear in the 1950s, from which
the specialized notions of Cell Cloning and Molecular Cloning

techniques detached in the 1970s and joined the notions of
Bioprocess Engineering and Biotech, respectively. The latter
is an example of class-level concepts joining instance-level
concepts.
[Example Query 3] Is the academic discipline of biotechnol-
ogy a wholly new technology branch or has it derived from
the combination of other disciplines? Which ones and how?
The query requires to follow evolution paths and return the
traversed triples in addition to the nodes to answer the ques-
tion of “how.” The query is expressed in our language as
follows:

Select ?Y, ?Z , ?W
(?X, self ::Biotechnology/backward∗, ?Y) AND
(?Y, e − edge/self, ?Z) AND (?Z , e − node, ?W)

The first triple binds ?Y to every node reachable from
Biotechnology following evolution edges backwards. Then,
for each of those nodes, including Biotechnology, the second
triple gets all the evolution axes of which the bindings of ?Y
are subjects whereas the third triple get the objects of the
evolution axes. This query returns, (Biotech, becomes−1,
Conventional Biotech), (Conventional Biotech, join−1,
Hybridization), (Conventional Biotech, join−1, Fermentation),
and (Conventional Biotech, join−1, Selective Breeding).
[Example Query 4] Which scientific and engineering con-
cepts and disciplines are related to the emergence of cell
cloning? We interpret “related” in our model as being imme-
diate predecessors/successors and siblings in the evolution
process. That is, from a concept we first find its immediate
predecessors by following all evolution edges backwards one

123

S. Bykau et al.

Fig. 8 The evolution of the
concept of Biotechnology

step. We then follow from the result all evolution edges for-
ward on step and we get the original concept and some of its
siblings. Finally, we repeat the same process in the opposite
direction following evolution edges one step, first forward
and then backwards. Based on this notion, we can express
the query as follows:

Select ?Y, ?Z , ?W
(?X, self ::Cell Cloning, ?Y) AND
(?Y, backward | backward/forward, ?Z)

AND (?Y, forward | forward/backward, ?W)

The first triple will just bind Cell Cloning to ?Y . The sec-
ond triple follows the detach edge back to Cloning, and then
the detach edge forward to Molecular Cloning. The third tri-
ple starts again from Cell Cloning and follows the join edge
forward to Bioprocess Engineering and then the detach edge
backwards to Conventional Biotech. All these concepts will be
returned by the query.

7 Evolution-Unaware Query Performance Evaluation

To evaluate the efficiency of the evolution-unaware query
evaluation approach, we performed two kinds of experi-
ments. First, we studied the behavior of the Steiner forest
discovery algorithm in isolation, and then we evaluated the
performance of the query answering mechanism we have

developed and which uses internally the Steiner forest algo-
rithm. We also studied the improvements in performance
with regard to our optimization technique for top-k query
answering.

In the experiments, we used both synthetic and real data.
We used the term non-evolution data to refer to concepts and
attributes, and the term evolution data to refer to the evolu-
tion relationships and more generally to the evolution graph.
We noticed that in the real datasets, the non-evolution data
were much larger than the evolution data and we maintained
a similar analogy during our synthetic data generation.

For the synthetic data generation, we used the Erdös–
Rényi graph generator [21] which can produce random
graphs for which the probability to have an edge between
two nodes is constant and independent of other edges. Since
many real world data follow a power law distribution, for the
non-evolution synthetic data, we used the Zipf’s distribu-
tion. In our own implementation of the Zipfian distribution,
as a rank we considered the number of occurrences of an
attribute-value pair in the entire dataset (e.g., if the attribute
〈State, C A〉 appeared 15 time, its rank was 15). This allowed
us to model the fact that there are few frequent attribute-value
pairs and the majority are rare attributes. The real corpora that
we used had similar properties. We will refer to the synthetic
dataset generated using this method as ER-SYNTH.

For real dataset, we used an extract from the trademark
corpora which is available from the United States Patent and

123

On Modeling and Querying Concept Evolution

Fig. 9 A fraction of the discovered evolution graph of AT&T

Trademark Office2. The trademarks are a kind of intellectual
property which may belong to an individual or a company. If
some change in ownership occurs, the corresponding trade-
marks have to be re-registered accordingly. For instance, in
the domain of corporate mergers, acquisitions and spin-offs,
one can observe how the intellectual property is allocated
among its owners throughout time. The United States Pat-
ent and Trademark Office provides a set of trademarks along
with the lists of their owners. To illustrate this, let us take a
standard character trademark “Interwise” which was initially
registered by Interwise Inc. and then, after the AT&T
Corp. acquisition, it became a property of AT&T Corp..
A modeller has two options to store this information: either
she can consider both companies as one concept with two
name attributes or create two concepts which own the same
trademark. Note that because of temporal consistency con-
straints, we have to split the trademark into two separate
concepts in the second modelling choice. With respect to
the evolution world semantics, we interpret these two mod-
elling possibilities as two possible worlds, because in the
second case Interwise Inc. and AT&T Corp. should
be involved into an evolution relation. The dataset extracted
from the UPTSO contained approximately 16K unique com-
panies, 200K attributes. In this dataset, we have discovered
573 evolution graphs of various sizes between 5 and 373. The
example of discovered evolution graph is presented in Fig. 9
which depicts the fraction of evolution of AT&T.

The attributes’ frequency in the trademark dataset is dis-
tributed according to the Zipfian law, i.e., the most frequent
attribute-value pair appear twice as often as the second most
frequent attribute value pair, and so on. More specifically, the
value of exponent of the found Zipfian distribution is approx-
imately equal to 3. To make the dataset extracted from real
data even richer, i.e., with components of higher complex-
ity, we used two graph merging strategies. In the first one, a

2 http://www.uspto.gov/.

new evolution component is constructed by connecting two
components through an artificial evolution relationship edge
between two random nodes from the two components. We
refer to this kind of merge as CHAIN, because it creates a
chain of source graphs. In the second strategy, two compo-
nents are merged by choosing an arbitrary node from one
component and then adding evolution relationship edges to
some random node of every other component. We refer to
this method as STAR. Datasets generated using these methods
will be denoted as REAL-CHAIN and REAL-STAR, respec-
tively. The naive evaluation strategies that were described in
Sects. 4.2.1 and 4.2.2 are omitted from the discussion since
their high complexity makes them practically infeasible to
implement. In some sense, the naive case corresponds to the
brute force way of finding a minimal Steiner forest, which is
exponential in the size of evolution graph.

The experiments were all carried out on a 2.4 GHz CPU
and 4G memory PC running MS Windows Vista.

7.1 Steiner Forest

To study the Steiner forest algorithm in detail, we performed
two kinds of experiments. First, we studied the scalability
properties of the algorithm for varying inputs, and then the
behavior of the algorithm for graphs with different charac-
teristics.
Scaling the Input Recall that the input to the Steiner forest
algorithm is the set V = {V∞, . . . ,VL}. In this experiment,
we studied the query evaluation time with respect to the size
of the input. By size, we considered two parameters: (i) the
total number of elements in the sets of V , i.e., the

∑L
i=1 |Vi |;

and (ii) the number of the groups, i.e., the value L .
For the former, we started with L = 1 and we scaled the∑ |Vi | (which in this case is actually equal to |V1|) from 2 to

10. For each size, the average evaluation time of 25 random
queries was recorded. The queries were evaluated both on
synthetic and on real data. The synthetic graph was obtained
using the Erdös–Rényi method and had n = 57 nodes and
m = 65 edges. The real dataset graph was the one described
previously. The results of this experiment are presented in
Fig. 10a. The exponential grows in time (note that the time is
presented on a logarithmic scale) with respect to a query size
is consistent with the theoretical complexity of the Steiner
forest algorithm.

To study how the parameter L affects the query execution
time, we kept the �L

i=1|Vi | constant but modified the number
of the sets L from 1 to 3, and then we repeated the experiment
for values of

∑L
i=1 |Vi | from 6 to 10 (we assumed that a min-

imal set size was 2). The results of the average of 25 random
query execution times are reported in Fig. 10b. The charac-
teristics of the graph were the same as those in the previous
experiment. The current experiment showed that the execu-
tion time depends fully on the

∑L
i=1 |Vi | and not on L itself.

123

http://www.uspto.gov/

S. Bykau et al.

(a)

(c) (d)

(b)

Fig. 10 Steiner forest discovery performance

This means that within a reasonable range of query sizes, the
number of forest branches does not have any influence on the
performance.
Scaling the Graph In this experiment we studied the Steiner
forest discovery time with respect to the size of the graph. We
used three kinds of graph data: ER-SYNTH, REAL-CHAIN
and REAL-STAR, with sizes from 25 to 250 nodes with a
step of 25.

For the synthetic dataset the number of edges and nodes
was almost the same. We generated 25 random inputs to
the Steiner forest problem with L = 2 and |V1| = 3, and
|V2| = 3. The results of this experiment are presented in Fig.
10c. The query evaluation time has a linear trend as expected,
and it was interesting that the execution time was always less
than a second.

We also studied the scalability of the algorithm in terms
of the parameter L . For three queries with

∑ |Vi | = 6 and
L = 1, 2 and 3, we varied the evolution graph size from 25
to 250 with step 25. The graph we used was the ER-SYNTH
with the same number of nodes and edges as before. The
results are shown in Fig. 10d, where it can be observed that
the scalability of the algorithm depends on the total number
of elements in the sets in the input set V , i.e., the

∑L
i=1 |Vi |,

and not on the number of forest branches, i.e., the number L ,
at least for values of

∑L
i=1 |Vi | up to 10.

7.2 Query Evaluation

Apart from experimenting with the Steiner forest algorithm
in isolation, we ran a number of experiments to evaluate the

123

On Modeling and Querying Concept Evolution

query answering mechanism we have developed for evolu-
tion databases. The query evaluation time depends not only
on the evolution graph size and structure but also on the size
and structure of the whole evolution database. First, we ana-
lyzed the behaviour of the system with respect to the query
size. The query size is determined by the number of distinct
variables, and their number of occurrences in the query. We
started with a 1-variable query and we observe its behavior
as size increases. Then, we tested the scalability of the query
evaluation mechanism as a function of the evolution graph
only. Finally, we studied the scalability as a function of the
data (i.e., attributes and associations) and we found that their
distribution (but not their size) can dramatically affect the
performance of the system.

In the synthetic data generation, we generated val-
ues that were following the Zipfian distribution for the
attributes/associations. We controlled the generation of the
ER-SYNTH dataset through four parameters and, in particu-
lar, the pool of concepts, the exponent that is used to adjust
the steepness of the Zipfian distribution, the number of ele-
ments that describes the maximum frequency of an attribute
or association, and the number of attributes.The values of the
parameters for the synthetic data are chosen to coincide with
those of the real corpora.
Scaling the Query We considered a number of 1-variable
queries with a body of the form:

$x(attr1 : value1), . . . , $x(attrN : valueN)

and we performed a number of experiments for different
values of N , i.e., the number of atoms in the query. For
every atom, we randomly chose an attribute-value pair from
a pool of available distinct attribute name/value pairs. The
ER-SYNTH graph that was generated had 57 nodes and 65
edges. The results are shown in Fig. 11a. The same figure
includes the results of the query evaluation on the real data-
set that had a size similar to the synthetic. For the generation
of their non-evolution data we had the exponent set to 3, the
number of elements parameter set to 15 and their total num-
ber was 537. The results of the Fig. 11a are in a logarithmic
scale and confirm the expectation that the query evaluation
time is growing exponentially as the number of variables in
the query grows. If we compare these results with those of
the Steiner forest algorithm for the respective case, it follows
that the integrated system adds a notable overhead on top of
the Steiner forest algorithm execution time. This is was due
to the number of coalescence candidates and the number of
Steiner forests that needed to be computed to obtain the cost
of the elements in the answer set. Although the parameters
for the generation of the synthetic and real data coincided,
their trends were different, as Fig. 11c illustrates.

We further tested how the number of concept variables in
the query affects the performance. Note that we are mainly
interested in the concept-bound variables. Let M represents

the number of distinct concept-bound variables in the query,
and Mi the number of appearances of the i th variable in
the query. Note that the number of distinct variables will
require to solve a Steiner forest problem in which the input
V = {V∞, . . . ,VL} will have L = M and |Vi | = Mi , for
each i = 1..M . The total number of variable appearances in
the query will naturally be

∑M
i=1 Mi .

In the experiment, we chose a constant value for the
∑M

i=1 Mi and we run queries for M =1, 2 or 3. As a data-
set, we used the ER-SYNTH with 57 nodes and 65 edges.
537 attributes were generated with the exponent parameter
having the value 3 and the number of elements parameter to
have the value 15.A total of 53 synthetic associations were
also generated with the exponent parameter having the value
3, and the number of elements parameter to have the value
10. We used 25 randomly generated queries for each of the
3 M values, and took their average execution time. We did
multiple runs of the above experiments for different values
of

∑M
i=1 Mi between 4 and 10. The outcome of the experi-

ments is shown in Fig. 11b in a logarithmic scale. Clearly,
the number of branches in a forest did not affect the query
evaluation time, i.e., queries with many variables showed the
same increase in time as the 1-variable query for the same∑M

i=1 Mi .
Scaling the Data In this experiment, we examined the query
evaluation time with respect to the size of the evolution graph.
As evolution data, we used both real and synthetic sources.
Regarding the real data, we used a series of graphs (and their
attributes as non-evolution data) with sizes from 25 to 250
with step 25. The number of edges was 110% of the number
of nodes for all graphs. For the real dataset, we used both the
REAL-CHAIN and the REAL-STAR data. For each graph, we
generated 25 random queries with 3 distinct variables, i.e.,
M = 3, and each variable had M1 =2, M2 =2 and M3 =3
appearances in the query, and we measured the average time
required to evaluate them. As a synthetic dataset, the ER-
SYNTH was used, generated to be the same size as before
but with the following Zipfian distribution parameters: expo-
nent 3, number of elements 15 and number attributes 10 times
more than the number of nodes. Note that we did not generate
associations because the trademark dataset did not have any
association that we could use as a guide. Figure 11c depicts
the results of this experiment. It shows that there is a lin-
ear growth of time which is accompanied with an increasing
oscillations which can be explained by the growing expo-
nent of non-evolution data, i.e., the number of coalescence
candidates may become too large for evolution graphs with
considerable size.

Furthermore, we studied how the query evaluation time
scales for different values of M , i.e., for different distinct vari-
ables but with the same total number of variable appearances
in the query (i.e., the

∑M
i=1 Mi). We used the ER-SYNTH

dataset again with sizes from 25 to 250, using a step 25. The

123

S. Bykau et al.

(a) (b)

(c) (d)

Fig. 11 Query evaluation performance

number of evolution relationships was 110% of the number
of concepts. For each case, we generated 25 random queries
with M = 1 having M1 = 6, M = 2 having M1 = 3, and
M2 = 3 and finally, M = 3 having M1 = 3, M2 = 2, and
M3 = 2. We executed these queries and measured the average
evaluation time. The non-evolution data were following the
Zipfian distribution with exponent 3, the number of elements
was 15 and the total number of attributes was 10 times more
that the number of nodes (concepts). For the associations,
the exponent was 3, the number of elements was 10 and their
total number was 5 times more that the respective number
for nodes. The results are presented in Fig. 11d. Similarly to
the previous experiment, we observed a linear growth with
increasing oscillations.

Evolution Scalability for Different Forest Structures We
further examined how the number of evolution graph compo-
nents influence the query evaluation time. For this purpose,
we generated data using ER-SYNTH and, in particular 5 data-
sets of evolution graphs with a total size of 300 nodes and
330 edges. The sets had 1, 2, 3, 4 and 5 evolution graphs,
respectively. For each set we run 25 random queries with
two distinct variables (L = 2) that were appearing in the
query 3 times each, i.e., M1 = 3 and M2 = 3 and mea-
sured their average execution time. As non-evolution data, we
generated attributes and associations with varying exponent
parameter, 2.5, 3 and 3.5. The total number of elements and
attributes/associations was 15 and 1, 000 in one case, while
it was 10 and 100 in the other. Figure 12a contains a table

123

On Modeling and Querying Concept Evolution

Fig. 12 Query evaluation time
for graphs with different
numbers of connected
components and for varying
exponent of data distribution

(a) (b)

with the query evaluation time for each number of branches
and exponent values. From the result, we could observe the
dramatic decrease in time with respect to the number of evo-
lution graph components. This can be explained by the fact
that the query evaluation spread over a number of evolution
graph components where each evaluation time becomes con-
siderably small.
Data Distribution Dependency Finally, we studied the
properties of the system in relation to the data distribution
parameter, namely the exponent of Zip’s distribution. The
query optimizer described in Sect. 4.3.1 was taken into con-
sideration here and we analyzed how the non-evolution data
were affecting the top-k query answering. For this experi-
ment, we used the following input parameters: 25 random
queries with M = 2 distinct variables, and M1 = 3 and
M2 = 3 respective appearances of each distinct variable in
the query. We used an ER-SYNTH dataset, the evolution graph
of which had n = 57 nodes and m = 65 evolution edges. We
also had 10,000 attributes distributed over 30 concepts, and
1,000 associations distributed over 15 concepts. The expo-
nent we used varied from 2.25 to 3.05 with a step of 0.1. The
results of the specific experiment are presented in Fig. 12b.
For small exponents, the difference between regular query
answering and the top-10 or top-1 was significant. To justify
this, recall that the number of pruned candidates depends on
how different are the input sets in the Steiner forest algorithm
input (ref. Sect. 4.3.1), thus, when the exponent is small the
input sets share many concepts.

8 Related Work

Managing Time in Databases Temporal data management
has been extensively studied in the relational paradigm [38].
For semi-structured data, one of the first models for managing
historical information is an extension of the Object Exchange
Model (OEM) [5]. There is also a versioning scheme for

XML [6]. Versioning approaches store the information of
the entire document at some point in time and then use edit
scripts and change logs to reconstruct versions of the entire
document. In contrast, Buneman et al.[3] and Rizzolo and
Vaisman [36] maintain a single temporal document from
which versions of any document fragment (even single ele-
ments) can be extracted directly when needed. A survey on
temporal extensions to the Entity-Relationship (ER) model
is presented by Gregersen and Jensen [16].

Almost in its entirety, existing work on data changes is
based on a data-oriented point of view. It aims at recording
and managing changes that are taking place at the values
of the data. What has been completely overlooked are other
types of changes, such as a concept evolving/mutating into
another, or a concept “splitting off” into several others.
Change Management in Ontologies There is a fundamen-
tal distinction between an actual update and a revision in
knowledge bases [23]. An update brings the knowledge base
up to date when the world it models has changed. Our
evolution framework models updates since it describes how
real-world concepts have changed over time. In contrast, a
revision incorporates new knowledge from a world that has
not changed. An approach to model revision in RDF ontolo-
gies has been presented [29]. The work on ontology evolution
in data integration [28] automatically finds ways to update
mappings when the underlying ontologies were changed. In
contrast to our kind of evolution, Kondylakis and Plexousakis
[28] consider structural changes of ontologies with the main
focus on mapping recomputation. The survey [14] provides
a thorough classification of the types of changes that occur in
ontologies. However, there is no entry in their taxonomy that
corresponds to the kind of concept evolution we developed
in this work; in fact, they view evolution as a special case
of versioning. Similarly to versioning in databases, ontol-
ogy versioning study the problem of maintaining changes in
ontologies by creating and managing different variants of it
[27]. In our case, we focus on the evolution of a concept that

123

S. Bykau et al.

spans different concepts (e.g., student to professor, research
lab to independent corporate concept). Highly related, yet
different, to concept evolution is the problem of terminology
evolution that studies how terms describing the same notion
in a domain of discourse are changing over time [39]. The
high-level changes in RDF/S knowledge bases [34] represent
similar to our evolution operators ideas. However, our work
focuses on this kind of changes and elaborates on their prop-
erties and query evaluation strategies. Closer to our work
is the proposal [24] for modeling changes in geographical
information systems (GIS). They use the notion of a change
bridge to model how the area of geographical concept (coun-
tries, provinces) evolve. A change bridge is associated with a
change point and indicates what concepts become obsolete,
what new concepts are created, and how the new concepts
overlap with older ones. Since they focus on the GIS domain,
they are not able to model causality and types of evolution
involving abstract concepts beyond geographical concepts.
Possible Worlds Semantics and Steiner trees Possible
world semantics has been intensively used in many areas.
Dalvi and Suciu [8] introduces the semantics of queries where
matches can be uncertain, i.e., not all the conditions of a
query are necessarily satisfied. This results in answers which
are ranked with respect to the relevance to the original query.
In the area of entity linkage possible world, semantics is used
to model uncertain linkages [20]. By considering that link-
ages have some level of uncertainty, the query answering
is reduced to the problem of testing all possible combina-
tions of linkages and finding those that most likely answer
the query semantics. In data integration, probabilistic map-
pings are supported through possible world semantics [11].
In this case, the connections between the data sources and
the mediated schema are defined with some level of confi-
dence. Dong et al. [11] provide the algorithm for efficiently
computing the answers and study its complexity. The above
approaches are similar to our case in the sense that we can
treat evolution relationships as a source of uncertainty which
allows us to generate possible database instances. However,
the query evaluation and optimization in our approach are
fundamentally different.

Existing approaches for finding Steiner trees can be
divided into two groups: approximate solutions [1,18,22] and
exact, with the latter been based on dynamic programming
[26,12,9,32]. In this work, we consider only exact solutions.
A first algorithm was proposed by Dreyfus and Wagner [12]
and uses the decomposition property of a Steiner tree, i.e., for
an arbitrary terminal the tree is divided into two Steiner trees
of smaller size and one shortest path. Using that decompo-
sition property, Dreyfus and Wagner [12] builds a dynamic
programming algorithm which computes the Steiner tree for
every subset of terminals until the solution is found. To avoid
the computation of all subtrees, Mölle et al. [32] proposes
the division of a Steiner tree into inclusion-maximal regions

where each terminal is a leaf. In that case, the Dreyfus–Wag-
ner algorithm is used only for subtrees of the size of the
maximum region. Ding et al. [9] and Kimelfeld and Sagiv
[26] introduce a new way for the iterative computation of the
solution to a Steiner tree problem by gradually growing and
merging Steiner subtrees. In our work, we proposed instead
an extension of an algorithm from Ding et al. [9] that allows
for the computation of a Steiner forest.

9 Conclusion

This work studies the problem of concept evolution. In con-
trast to temporal models and schema evolution, concept
evolution deals with mereological and causal relationships
between concepts. Recording concept evolution also enables
users to pose queries on the history of a concept.

We presented a framework for modeling evolution as an
extension of temporal RDF with mereology and causal prop-
erties. These properties are expressed with a set of evolution
terms and its query language is an extension of nSPARQL
that allows navigation over the history of the concepts. Fur-
thermore, we have designed and implemented an evaluation
technique that allows query answering over databases where
the evolution model that the user has in mind is of different
granularity than the one used in the database. The solution
required the computation of a Steiner forest. For the latter, we
have presented a novel algorithm for computing its optimal
solution. Finally, we have studied two real use cases where we
show the applicability of the proposed framework. In addi-
tion, we have performed a number of an extensive experimen-
tal evaluation to determine the efficiency of the evaluation
technique in the case for evolution-unaware queries.

References

1. Bhalotia G, Hulgeri A, Nakhe C, Chakrabarti S, Sudarshan S (2002)
Keyword searching and browsing in databases using banks. In:
ICDE, pp 431–440

2. Blakeley J, Larson PA, Tompa FW (1986) Efficiently updating
materialized views. In: SIGMOD, pp 61–71

3. Buneman P, Khanna S, Tajima K, Tan W (2002) Archiving scien-
tific data. In: SIGMOD, pp 1–12

4. Bykau, Siarhei, Mylopoulos J, Rizzolo F, Velegrakis Y (2011) Sup-
porting queries spanning across phases of evolving artifacts using
steiner forests. In: CIKM, pp 1649–1658

5. Chawathe S, Abiteboul S, Widom J (1999) Managing historical
semistructured data. In: Theory and Practice of Object Systems,
pp 143–162

6. Chien S, Tsotras V, Zaniolo C (2001) Efficient management of mul-
tiversion documents by object referencing. In: VLDB, pp 291–300

7. Dalvi NN, Kumar R, Pang B, Ramakrishnan R, Tomkins A, Bohan-
non P, Keerthi S, Merugu S (2009) A web of concepts. In: PODS,
pp 1–12

8. Dalvi N, Suciu D (2007) Efficient query evaluation on probabilistic
databases. VLDB J 16:523–544

123

On Modeling and Querying Concept Evolution

9. Ding B, Yu JX, Wang S, Qin L, Zhang X, Lin X (2007) Finding
Top-k Min-Cost connected trees in databases. In: ICDE, pp 836–
845

10. Dong X, Halevy AY, Madhavan J (2005) Reference reconciliation
in complex information spaces. In: SIGMOD, pp 85–96

11. Dong, X, Halevy AY, Yu C (2007) Data integration with uncer-
tainty. VLDB, VLDB Endowment, pp 687–698

12. Dreyfus SE, Wagner RA (1972) The Steiner problem in graphs.
Networks 1:195–207

13. Dyreson CE, Evans WS, Lin H, Snodgrass RT (2000) Efficiently
supported temporal granularities. IEEE Trans Knowl Data Eng
12:568–587

14. Flouris G, Manakanatas D, Kondylakis H, Plexousakis D, Anto-
niou G (2008) Ontology change: classification and survey. Knowl
Eng Rev 23:117–152

15. Gassner E (2010) The Steiner Forest Problem revisited. J Discrete
Algorithms 8:154–163

16. Gregersen H, Jensen CS (1999) Temporal entity-relationship mod-
els—a survey. IEEE Trans Knowl Data Eng 11:464–497

17. Gutiérrez C, Hurtado CA, Vaisman AA (2005) Temporal RDF. In:
ESWC, pp 93–107

18. He H, Wang H, Yang J 0001, Yu PS (2007) Blinks: ranked keyword
searches on graphs. In: SIGMOD Conference, pp 305–316

19. Hull R, Yoshikawa M (1990) ILOG: declarative creation and
manipulation of object identifiers. In: VLDB, pp 455–468

20. Ioannou E, Nejdl W, Niederee C, Velegrakis Y (2010) OntheFly
entity-aware query processing in the presence of linkage. PVLDB
3:429–438

21. Johnsonbaugh R, Kalin M (1991) A graph generation software
package. In: SIGCSE, pp 151–154

22. Kacholia V, Pandit S, Chakrabarti S, Sudarshan S, Desai R,
Karambelkar H (2005), Bidirectional expansion for keyword
search on graph databases. In: VLDB, pp 505–516

23. Katsuno H, Mendelzon AO (1991) On the difference between
updating a knowledge base and revising it. In: KR, pp 387–394

24. Kauppinen T, Hyvönen E (2007) Modeling and reasoning about
changes in ontology time series. In: Ontologies: a handbook of
principles, concepts and applications in information systems, pp
319–338

25. Keet CM, Artale A (2008) Representing and reasoning over a tax-
onomy of part-whole relations. Appl Ontol 3:91–110

26. Kimelfeld B, Sagiv Y (2006) New algorithms for computing steiner
trees for a fixed number of terminals. http://www.cs.huji.ac.il/
bennyk/papers/steiner06.pdf

27. Klein MCA, Fensel D (2001) Ontology versioning on the semantic
web. In: SWWS, pp 75–91

28. Kondylakis H, Plexousakis D (2010) Enabling ontology evolution
in data integration. In: EDBT. ACM, New York, pp 38:1–38:7

29. Konstantinidis G, Flouris G, Antoniou G, Christophides V (2007)
On RDF/S ontology evolution. In: SWDB-ODBIS, pp 21–42

30. Lenzerini M (2002) Data integration: a theoretical perspective. In:
PODS, pp 233–246

31. Lerner BS (2000) A model for compound type changes encoun-
tered in schema evolution. TODS 25:83–127

32. Mölle D, Richter S, Rossmanith P, Anvertraut MG (2005) A faster
algorithm for the steiner tree problem. In: STACS. Springer, Berlin,
pp 561–570

33. Palpanas T, Chaudhry J, Andritsos P, Velegrakis Y (2008) Entity
data management in OKKAM. In: SWAP, pp 729–733

34. Papavassiliou V, Flouris G, Fundulaki I, Kotzinos D, Christophides
V (2009) On detecting high-level changes in rdf/s kbs. In: ISWC,
pp 473–488

35. Pérez J, Arenas M, Gutierrez C (2008) nSPARQL: a navigational
language for RDF. In: ISWC, pp 66–81

36. Rizzolo F, Vaisman AA (2008) Temporal XML: modeling, index-
ing, and query processing. VLDBJ 17:1179–1212

37. Rizzolo F, Velegrakis Y, Mylopoulos J, Bykau S (2009) Modeling
concept evolution: a historical perspective. In: ER, pp 331–345

38. Soo MD (1991) Bibliography on temporal databases. SIGMOD-
REC 20:14–23

39. Tahmasebi N, Iofciu T, Risse T, Niederee C, Siberski W (2008)
Terminology evolution in web archiving: Open issues. In: Interna-
tional Web Archiving Workshop

40. Velegrakis Y, Miller RJ, Popa L (2004) Preserving mapping con-
sistency under schema changes. VLDB J 13:274–293

41. W3C (2004) RDF vocabulary description language 1.0: RDF
Schema. http://www.w3.org/TR/rdf-schema/

123

http://www.cs.huji.ac.il/bennyk/papers/steiner06.pdf
http://www.cs.huji.ac.il/bennyk/papers/steiner06.pdf
http://www.w3.org/TR/rdf-schema/

	On Modeling and Querying Concept Evolution
	Abstract
	1 Introduction
	2 Motivating Scenarios
	3 Supporting Evolution-Aware Queries
	3.1 Temporal Databases
	3.2 Modeling Evolution
	3.3 Query Language
	3.4 Query Evaluation

	4 Supporting Evolution-Unaware Queries
	4.1 Modeling Evolution
	4.2 Query Evaluation
	4.2.1 The Naive Approach
	4.2.2 Materializing all the Possible Worlds
	4.2.3 Materializing only the Maximum World
	4.2.4 On-the-fly Coalescence Computations

	4.3 Steiner Forest Algorithm
	4.3.1 Query Evaluation Optimization

	5 System Implementation
	6 Case Studies
	7 Evolution-Unaware Query Performance Evaluation
	7.1 Steiner Forest
	7.2 Query Evaluation

	8 Related Work
	9 Conclusion
	References

