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ABSTRACT
Evolving data has attracted considerable research attention.
Researchers have focused on modeling and querying of
schema/instance-level structural changes, such as, insertion, dele-
tion and modification of attributes. Databases with such a func-
tionality are known as temporal databases. A limitation of the tem-
poral databases is that they treat changes as independent events,
while often the appearance (or elimination) of some structure in
the database is the result of an evolution of some existing struc-
ture. We claim that maintaining the causal relationship between
the two structures is of major importance since it allows additional
reasoning to be performed and answers to be generated for queries
that previously had no answers. We present the TrenDS, a system
for exploiting the evolution relationships between the structures in
the database. In particular, our system combines different struc-
tures that are associated through evolution relationships into virtual
structures to be used during query answering. The virtual struc-
tures define “possible” database instances, in a fashion similar to
the possible worlds in the probabilistic databases. TrenDS uses
a query answering mechanism that allows queries to be answered
over these possible databases without materializing them. Eval-
uation of such queries raises many technical challenges, since it
requires the discovery of Steiner forests on the evolution graphs.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous

General Terms
Algorithms, Performance
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1. INTRODUCTION
Considerable amount of research effort has been spent on the

development of models, techniques and tools for managing data
changes. These range from data manipulation languages, and main-
tenance of views under changes to schema evolution and mapping
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adaptation. To cope with the history of data changes, temporal
models have been proposed for the relational and ER models, for
semi-structured data, XML and for RDF. Almost in its entirety, ex-
isting work on data changes is based on a data-oriented point of
view. It aims at recording and managing changes that are taking
place at the values of the data. Unfortunately, such work fails to
capture the full spectrum of evolutionary phenomena. Specifically,
those approaches are founded on the assumption that the nature
of each real world entity represented in the database persists over
time, e.g., students are added, modified, and eventually deleted, but
never become professors, with a direct link between the student
tuple and the professor one. As such, evolution amounts only to
temporal changes of attributes/relationships. Evolution of an entity
that spans different concepts [7] (e.g., student to professor, research
lab to independent corporate entity) are unaccounted for. This kind
of evolution finds numerous applications in many practical scenar-
ios. For instance, in the area of Dataspaces[6], entities may split or
merge, historians may model the evolution of species or the chains
of human achievements, i.e., how the concept of biotechnology
evolved from the agricultural technology to the modern genetics,
and educators can track how courses are evolving to new modern
topics or are eliminated when out-dated.

In the presence of this type of evolution, answering queries that
span across multiple evolution phases is becoming a challenge. For
instance, given the fact that Germany transformed from an empire
into a modern country that was split to East and West and later
merged into one, the query "give me all the heads-of-state of Ger-
many between 1800 and 2000" is hard to deal with. It essentially
requires hand-coding the history of Germany into several queries to
be processed separately. Note that this may look similar to termi-
nology evolution [1], i.e., using different terms to describe the same
real world entity at different points in time, but it actually goes far
beyond that.

In this demo, we showcase a system, called TrenDS, that sup-
ports this functionality. It achieves this in polynomial time by lever-
aging on the distinct properties of the evolution relationships (the
detailed algorithm is presented in [3]). One of the distinct features
of TrenDS is its ability to reason and generate answers that may
not be explicitly recorded in the data, alongside an explanation of
why such an answer is considered. The system is demonstrated on
a real-case scenario that models the corporate history of companies
through acquisitions, spin-offs, break-ups and merges. A motivat-
ing example for this work has been the story of the well-known
AT&T Labs.

2. MOTIVATING EXAMPLE
Consider AT&T, a company that over the years has gone through

a large number of break-ups, merges and acquisitions. Its famous
Bell Labs where many great innovations took place, had a similar



Figure 1: The history of the AT&T Labs.
fate. It was founded in 1925 under the name Bell Telecommu-
nication Laboratories (BTL). In 1984, it was split into Bellcore (to
become Telcordia in 1997) and AT&T Bell Laboratories. The latter
existed until 1996 when it was split into Bell Labs, that was bought
by Lucent, and to AT&T Labs. The Lucent Bell Labs became
Alcatel-Lucent Bell Labs Research in 2006 due to the take-over
of Lucent by Alcatel. Furthermore, due to the take-over of AT&T
by SBC in 2005, the AT&T Labs were merged with the SBC Labs
to form the new AT&T Inc. Labs. Despite being research labs of
different legal entities, Lucent and AT&T Labs have actually main-
tained a special partnership relationship. All the different labs have
produced a large number of inventions, as the respective patents
can demonstrate. Examples of such inventions are the VoIP (Voice
over Internet Protocol), the ASR (Automatic Speech Recognition),
the P2P (Peer-to-Peer) Video and the laser. A graphical illustration
of the above can be found in Figure 1 where the labs are modeled
by rectangles and the patents by ovals.

Assume that a temporal database has been used to model this
information as illustrated in Figure 1, and consider a user who is
interested in finding the lab that invented the laser and the ASR
patent. It is true that these two patents have been filed by two dif-
ferent labs, the AT&T Bell Labs and the AT&T Labs Inc. Thus,
the query will return no results. However, it can be noticed that the
latter entity is an evolution of the former. It may be the case that
the user does not have the full knowledge of the way the labs have
changed in in her own mind, the two labs are still considered the
same. We argue that instead of expecting from the user to know
all the details of the evolution granularity and the way the data has
been stored, which means that the user’s conceptual model should
match the one of the database, we’d like the system to try to match
the user’s conceptual model. This means that the system should
have the evolution relationships represented explicitly in the dataset
and take them into account when evaluating a query. In particular,
we want the system to treat the AT&T Bell Labs, the AT&T Labs
Inc, and the AT&T Labs as one unified (virtual) entity. That unified
entity is the inventor of both the laser and the ASR, and should be
the main element of the response to the user’s query.

The query response is based on the assumption that the user did
not intend to distinguish between the three aforementioned labs.
Since this is an assumption, it should be associated with some de-
gree of confidence. Such a degree can be based, for instance, on
the number of labs that had to be merged in order to produce the
answer. A response that involves 2 evolution-related entities should
have higher confidence than one involving 4.

3. TECHNICAL CHALLENGES
[Modeling Evolution] As a data model we have adopted an entity-
based (or concept-based) model that is gaining popularity and has
been the fundamental model in dataspaces. The dataspace is a
well-known and highly popular data model in heterogeneous sys-
tems [6]. Its fundamental structure is the entity which is used to

model a real world object. An entity is a data structure consist-
ing of a unique identifier and a set of attributes. Each attribute has
a name and a value. The value of an attribute can be an atomic
value or an entity identifier. A database is a collection of entities.
For a query language we adopt a datalog style language, the query
language for web forms, in which a query consists of a head and
a body. The body is a conjunction of atoms. An atom is an ex-
pression of the form e(n1:v1, n2:v2, . . ., nk:vk) or an arithmetic
condition such as =, ≤, etc. The head is always a non-arithmetic
atom. Given a database, the body of the query is said to be true if
all its atoms are true. A non-arithmetic atom e(n1:v1, n2:v2, . . .,
nk:vk) is true if there is an entity with an identifier e and attributes
〈ni, vi〉 for every i=1..k. When the body of a query is true, the
head is also said to be true. A value vi in a query may be either a
constant or a variable. A true assignment is an assignment of the
variables in a query to constant values that make the body of the
query true. The answer to a query is a set of entities constructed
according to the head specifications, for every true assignments of
the variables in the body. Note that keyword query answering tech-
niques are typically translate the set of keywords into our style of
queries [2], but this is not the focus of our work.

EXAMPLE 3.1. The query:
$x(isHolder:$y):-$x(name:′AT&TLabsInc.′, isHolder:$y)
looks for entities called “AT&T Labs Inc.” that are holders of a
patent. For every entity found in the database satisfying these con-
ditions, an entity is created in the answer set that has an attribute
isHolder with a value that is equal to the patent of the entity found
in the database.

To model the evolution relationship we consider a special as-
sociation that we elevate into a first-class citizen in the database.
We call this association an evolution relationship. Intuitively, an
evolution relationship from one entity to another is an association
indicating that the real world object modeled by the later is the re-
sult of some form of evolution of the object modeled by the former.
In Figure 1, the dotted lines between the entities illustrate evolution
relationships. A database with evolution relationships is an evolu-
tion database.

Given an evolution database, one can construct a directed acyclic
graph by considering as nodes the entities and as edges its evolution
relationships. We refer to this graph as the evolution graph of the
database.
[Query Answering Semantics in Evolution Databases] Our pro-
posal is to merge entities representing different evolution phases
of the same real world object into one single representation when
this is going to lead to new answers to the user query. This kind
of merging is called coalescence. The full details and formal def-
initions of the concept of coalescence and query answering can be
found in our full papers [7, 3, 4].

Intuitively, coalescence is defined only on entities that are con-
nected through a series of evolution relationships; the coalescence
of those entities is a new entity that replaces them and has as at-
tributes the union of their attributes (including associations).

Given an evolution database and a set of evolution relationships
one can perform a series of consecutive coalescence operations,
each one coalescing the two entities that an evolution relationship
associates. The result of such coalescences is a new databases re-
ferred as a possible world. Our notion of a possible world is similar
to the notion of possible worlds in probabilistic databases [5].

According to the definition of a possible world, an evolution
database can be seen as a shorthand of a set of databases, each
one representing a possible world. Thus, the answer of a query on
an evolution database can be seen as a shorthand for the union of
the answers of the evaluation of the query on every possible world.



$x $y Possible Answer Cost
World

e1 P2P Video ∅ e1(isHolder:“P2P Video") 0
Cl(e1,e2) P2P Video e1,e2 Not generated 1

Cl(e1,e2,e3) P2P Video e1,e2,e3 Not generated 2
Cl(e1,e2,e3) ASR e1,e2,e3 Cl(e1,e2,e3)(isHolder:“ASR") 2

Cl(e1,e2,e3,e4) Laser e1,e2,e3,e4 Cl(e1,e2,e3,e4)(isHolder:“Laser") 3
. . . . . . . . . . . . . . .

Table 1: A fraction of variable assignments for Example 3.2.
The number of possible worlds is exponential to the number of evo-
lution relationships, which means that generating them at run-time
is practically infeasible, and pre-computing them is prohibitively
space-consuming. Our solution to this is to detect at run-time only
the possible worlds that are likely to generate answers, and generate
only the part of these worlds that are related to the query.

Furthermore, for a given query, there may be multiple possible
worlds that generate the same results. To eliminate this redundancy
we require every coalescence taken into consideration for the gen-
eration of a possible world to be well-justified. In particular, our
principle is that no possible world or variable assignment will be
considered, unless it generates some new results in the answer set.
Furthermore, among the different possible worlds that generate the
same results in the answer set, only the one that requires the smaller
number of coalescences will be considered.

It is natural to assume that not all possible worlds are equally
likely to describe the database the user has in mind when she was
formulating the query. We assume that the more a possible world
differs from the original evolution database, the less likely it is to
represent what the user had in mind. This is also in line with the
minimality and well-justification principle described previously.
We reflect this as a reduced confidence to the answers generated
by the specific possible world and quantify it as a cost assigned to
each answer. One way to measure that confidence is to count how
many evolution relationships have to be coalesced for the possible
world to be constructed. The evolution relationships may also be
assigned a cost reflecting the confidence to the fact that its second
entity is actually an evolution of the first.

EXAMPLE 3.2. Table 1 illustrates a set of true variable assign-
ments for the query of Example 3.1 on the database of Figure 1
alongside the possible world on which each assignment is illus-
trated (third column). The fourth column contains the result gen-
erated in the answer set from the specific assignment and the last
column its respective cost. Cl() is a coalescence of entities spec-
ified in the brackets. Note that the second and the third variable
assignment (highlighted in bold), are redundant since they are sub-
sumed by the first.

The existence of a cost for the different solutions, allows us to
rank the query results and even implement a top-k query answering.

[Finding the best coalescence] For a given set of entities con-
nected through evolution relationships, there may be multiple ways
on how these relationships can be used to coalesce the entities into
a single one. Finding these ways and deciding the best may result
in an exponential cost in the size of the query and evolution graph,
e.g. using the recursive SQL. However, we show that the problem
boils down to finding the Steiner forest of these entities on the evo-
lution graph and we propose a novel algorithm which is polynomial
in the size of evolution graph (see [3] for details).

3.1 Evolution Query Evaluation
Our query evaluation algorithm consists of the following six

steps:
[Step 1: Query Normalization] We decompose every non-

arithmetic atom in the body of the query that has more than one
condition into a series of single-condition atoms.

[Step 2: Individual Variable Assignments Generation] For each
non-arithmetic atom in the decomposed query, a list is constructed
that contains assignments of the variables in the respective atom to
constants that make the atom true.

[Step 3: Candidate Assignment Generation] The elements of the
lists generated in the previous step are combined together to form
complete variable assignments, i.e., assignments that involve every
variable in the body of the query. In particular, the cartesian product
of the lists is created. Each element in the cartesian product is a
tuple of assignments. By construction, each such tuple will contain
at least one assignment for every variable that appears in the body
of the query. If there are two assignments of the same attribute
bound variable to different values, the whole tuple is rejected. Any
repetitive assignments that appear within each non-rejected tuple
is removed to reduce redundancy. The result is a set of variable
assignments, one from each of the tuples that have remained.

[Step 4: Arithmetic Atom Satisfaction Verification] Each assign-
ment generated in the previous step for which there is at least one
arithmetic atom not evaluating to true, is eliminated from the list.

[Step 5: Candidate Coalescence Identification] Within each of
the remaining assignments we identify entity-bound variables that
have been assigned to more than one value. Normally this kind of
assignment evaluates always to false. However, we treat them as
suggestions for coalescences, so that the assignment will become a
true assignment. In order for the assignments of variable to eval-
uate to true, we need to be able to coalesce the entities. To do so,
these entities have to belong to the same connected component in
the evolution graph of the database. If this is not the case, the as-
signment is ignored.

[Step 6: Coalescence Realization & Cost Computation] For ev-
ery set of entities to be coalesced (obtained at step 5) we have to
compute the Steiner forest, and based on that forest, generate a cost
for the respective answers. To do that, we have designed and imple-
mented an optimal Steiner Forest algorithm which is polynomial to
the size of the evolution graph and exponential to the size of user’s
query. Note that approximate solutions of the Steiner forest prob-
lem cannot be applied because we cannot order the answers if we
have approximate costs. The details of the algorithm alongside its
performance evaluation can be found elsewhere [3].

4. THE TRENDS SYSTEM
We have implemented the above theory into a system called

TrenDS, which is a stand-alone Java program on top of a data repos-
itory. Since the module is based on an entity-based data model, an
RDF repository has been a natural choice. The evolution relation-
ships are implemented as normal attributes in the repository, but
TrenDS elevates them into first class citizens.

TrenDS contains a query execution engine module which is re-
sponsible for parsing the query and decomposed it into the right
queries that need to be sent to the underlying storage system. The
module is greatly assisted by a steiner forest component. It is the
component responsible for finding the best way that different enti-
ties satisfying part of the query conditions are related through evo-
lution relationships. The results of the queries are collected in the
query execution module that combines them together in order to
form the final answer.

The query execution engine operates in four modes. The first is
the traditional mode in which no evolution relationships are con-
sidered and the answer set consists of only those data elements



Figure 2: TrenDS Graphical User Interface
that satisfy the query conditions. The second mode is the evolu-
tion mode in which the answer set is enhanced with answers satis-
fying the query conditions but do not exist in the data repository.
These are data elements created through merges of existing entities
in the repository that are related through evolution relationships.
The third mode is the top-k evolution which is the same like the
evolution mode apart from the fact that only the top-k results are
returned. The sorting of the results is based on the Steiner forest
that was used to associate the entities in the repository and merge
them. Finally, the fourth mode, called fully-collapsed, executes the
query against a repository where all entities connected through evo-
lution relationships have been collapsed into one.

A screen-shot of the TrenDS is illustrated in Figure 2. It consists
of a text field on which the user can write a query. On the left of
the query, a pull down menu allows the user to select the method
of computing the cost of result items. The main part of the screen
is the list of the results found as an answer to the query. Theoret-
ically, every entry in the results describe the binding of the query
variables into values of the repository. This is the case in which no
evolution information is considered. However, this is not the case
if the evolution is taken into consideration. The presented entities
may be virtual, i.e., created on-the-fly through a merge of entities
associated with evolution relationships. As an example, consider
the 5th entry in Figure 2. There is no entity eid1-2, neither en-
tity eid3-7. The former has been constructed by the merging
of the entities eid1 and eid2, while the second by the merging
of eid3 and eid7. If the user wants to see the binding of vari-
ables to actual entities in the repository, she can do so by clicking
on the entry which will open a small panel as shown in the figure.
Note that TrenDS has variables bound to more than one data value,
which can look strange at first sight. However, this is the feature of
our approach and the actual reason that the merging of the entities
on which the variable is bound is forced. In the specific example,
variable $x is bound to entity eid1 and eid2, while variable $y
is bound to eid3 and eid7. This leads to the merging (collapse)
of the two former, creating the virtual entity eid1-2 and the two
latter creating entity eid3-7. If the user wants additionally to un-
derstand how the Steiner forest between these entities looks like,
she can click on the Explanation button on the right of the re-
sult entry which will open a graphical illustration.

5. DEMO HIGHLIGHTS AND LESSONS
The demonstration will be based on a dataset extracted from the

United States Patent and Trademark Office1. The trademarks are a
kind of intellectual property. When there is a change of ownership,
the trademark will have to re-register accordingly. Tracking the

1http://www.uspto.gov

re-registration history of trademarks alongside a number of other
factors can reveal important information about the history of the
various companies. The dataset extracted from the UPTSO con-
tained approximately 16, 000 US companies, 200, 000 attributes.
In this dataset we have discovered 573 evolution graphs of various
sizes between 5 and 373.
Evolution Discovery. Although it is not the main goal and fea-
ture of TrenDS, the participants will have the ability to explore the
data set of US companies. By entering the name of a company
(e.g. Oracle, Microsoft, Google), they will be able to see its evo-
lution graph, i.e., from what companies it has been created, if any,
what companies it has incorporated, what spin-offs were created
by it, and to what companies it was broken-up, if any. For these
evolution states, the reregistration of the trademarks will be dis-
played to justify the inference about its evolution. The goal of this
demonstration is twofold. First to show to the user how evolution
relationships can be inferred, and second, to familiarize the user
with the data so that she will be able to proceed into the following
demonstration scenarios.
Query Evaluation with Evolution Semantics. The main part of
the demonstration will be the use of evolution in query answering.
A number of queries will be executed and their results will be pre-
sented. The users will have the ability to see the results of their
queries as they would have been returned by a traditional search
engine. Then, by selecting the appropriate tab the results when
evolution is taken into consideration will be displayed. The addi-
tional results will be highlighted and explained. For explanation,
we use the Steiner forest that illustrates to the user in a graphical
way the evolution merges that have led to the specific answer. Fur-
thermore, the user will also be able to choose between seeing the
top-k results of the fully collapsed evolution graph, and compare
the time needed for generating each one.
Ranking Based on Different Metrics. Merging entities that are
(from the evolution perspective) far to each other is not as important
as merging those that are close. The users of the demo will have
the ability to experiment with the different ranking functions which
are based on the Steiner forest connecting the entities to be merged,
and witness how the results are automatically affected.

The overall demo will allow SIGMOD participants to understand
the concept of evolution in this new perspective, realize the differ-
ent parameters that are affecting it, learn the algorithms that are pro-
ducing answers under this assumption, and amuse themselves with
the interesting results that can be found in the US patent dataset and
the way that American companies have evolved over time.
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