Noname manuscript No.
(will be inserted by the editor)

A Holistic and Principled Approach for the Empty-Answer Problem

Davide Mottin - Alice Marascu -
Palpanas - Yannis Velegrakis?

Received: date / Accepted: date

Abstract We propose a principled optimization-based in-
teractive query relaxation framework for queries that return
no answers. Given an initial query that returns an empty
answer set, our framework dynamically computes and sug-
gests alternative queries with fewer conditions than those
the user has initially requested, in order to help the user
arrive at a query with a non-empty answer, or at a query
for which no matter how many additional conditions are ig-
nored, the answer will still be empty. Our proposed approach
for suggesting query relaxations is driven by a novel prob-
abilistic framework based on optimizing a wide variety of
application-dependent objective functions. We describe op-
timal and approximate solutions of different optimization
problems using the framework. Moreover, we discuss two
important extensions to the base framework: the specifica-
tion of a minimum size on the number of results returned

The work was primarily done while D. Mottin and A. Marascu were at
the U. of Trento.

L Partially supported by Texas NHARP, Microsoft Research, and NSF
grants 0812601, 0915834, 1018865. Work done while at the U. of
Trento and the Qatar Computing Research Inst.

2Partially supported by the ERC grant Lucretius and the KEYSTONE
Cost Action.

D. Mottin, E-mail: davide.mottin@hpi.de
Hasso Plattner Institute

Y. Velegrakis, E-mail: velgias@disi.unitn.eu
University of Trento

A. Marascu, E-mail: alice.marascu@ie.ibm.com
IBM Research-Ireland

S. Basu Roy, E-mail: senjutib@njit.edu

Department of Computer Science, New Jersey Institute of Technology
G. Das, E-mail: gdas@uta.edu - gdas@qf.org.qa

University of Texas Arlington & QCRI

T. Palpanas, E-mail: themis @mi.parisdescartes.fr
University of Paris Descartes

Senjuti Basu Roy - Gautam Das' . Themis

by a relaxed query and the possibility of proposing multi-
ple conditions at the same time. We analyze the proposed
solutions, experimentally verify their efficiency and effec-
tiveness, and illustrate their advantages over the existing ap-
proaches.

1 Introduction

The web offers a plethora of data sources in which the user
has the ability to discover items of interest by filling desired
attribute values in web forms that are turned into conjunc-
tive queries and get executed over the data source. Exam-
ples include users searching for electronic products, trans-
portation choices, apparel, investment options, etc. Users of
these forms often encounter two types of problems - they
may over-specify the items of interest, and find no item in
the source satisfying all the provided conditions (the empty-
answer problem), or they may under-specify the items of
interest, and find too many items satisfying the given condi-
tions (the many-answers problem). This is because the ma-
jority of such searches are often of exploratory nature since
the user may not have a complete idea, or a firm opinion of
what she may be looking for.

In this paper we focus on the empty-answers problem.
A popular way to cope with empty-answers is query relax-
ation, which attempts to reformulate the original query into
a new query, by removing or relaxing conditions, so that
the result of the new query is likely to contain the items
of interest for that user. Typically, query relaxation is non-
interactive (e.g., [13,27,28,29]). A set of alternative queries
- with some of the original query conditions relaxed - is sug-
gested to the user in order to select the one he or she prefers
the most. The very large number of candidate alternative
queries that may be generated, due to the numerous com-
binations of conditions that can be removed from it, makes

Davide Mottin et al.

the relevant systems hard to design, and cumbersome to use
by naive users.

We advocate here that for many application scenarios
is more palatable the interactive (or navigational) approach
The user starts from an original empty-answer query, and is
guided in a systematic way through several “small steps”.
Each step slightly changes the query, until it reaches a form
that either generates a non-empty answer, or a further change
in the query is not possible, given the restrictions set for-
ward by the user. In addition to being effective for naive
users, such an interactive approach is meaningful for sce-
narios in which the user interacts with the data source via
a small device, i.e., a mobile phone, where the size of the
screen does not allow many choices to be displayed at once.
Another kind of applications are the customer-agent interac-
tions that take place over the phone, as it happens during the
purchase of a travel insurance, an airline ticket, a holiday
house reservation, a car, etc. When the original user spec-
ifications cannot be satisfied, the communication of all the
different alternatives to the customer by the agent is not pos-
sible, thus, the agent will have to guide the customer through
small steps to adapt to the original request into one for which
there are satisfactory answers. Such interactions provide the
user more control with the selection process.

Our approach for selecting query relaxations is driven by
anovel and principled probabilistic framework based on op-
timizing a wide variety of application-dependent objective
functions. For instance, when a user wants to purchase an
airline ticket and her initial query returns empty-answer, our
framework can be used to suggest alternative queries that do
return some airline tickets, and these tickets that are the most
“relevant” to her initial preferences, or are the most econom-
ical, etc. The framework may be used to suggest queries that
lead the user to the more expensive airlines tickets, or tick-
ets in flights that have many unsold seats; thereby maximiz-
ing the revenue/profit of the airlines company. It may also
be used to suggest queries that lead the user to valid tick-
ets in the shortest possible number of interactive steps; i.e.,
the objective is to minimize the time/effort the user spends
interacting with the system.

Most of the prior query relaxation approaches for the
empty-answers problem have been non-interactive, and/or
do not support a broad range of objectives, e.g., conflicting
situations where the objective is to maximize profit of the
seller. We provide a detailed discussion of related work in
Section 8. Optimization-based interactive approaches have
been proposed for the many-answers problem [7, 30, 32],
however these papers only consider one narrow optimiza-
tion goal, that of minimizing user effort. We note that there
is a fundamental asymmetry between the empty-answer and

many-answers problems that precludes a straightforward adap-

tation of previous optimization-based query tightening tech-
niques to query relaxation.

The approach works as follows. At each interaction step,
a relaxation is proposed to the user'. In order to decide what
should be the next proposed relaxation, our system has to
first compute the likelihood that the user will respond pos-
itively to a proposal, as well as quantify the effectiveness
of the proposal with respective to the optimization objec-
tive. Intuitively, the likelihood (or probability) that a user
responds positively to a proposed relaxation depends on (a)
whether the user believes that the proposal is likely to re-
turn non-empty results, and (b) whether some of the returned
items are likely to be highly preferred by the user (even
though they only partially satisfy the initial query condi-
tions). Since our system cannot assume that the user knows
the exact content of the database instance, nor does it pre-
cisely know whether the user will prefer the returned results,
we resort to a probabilistic framework for reasoning about
these questions. This probabilistic framework is one of the
fundamental technical contributions of this paper.

To quantify the effectiveness of a proposed relaxation,
one needs to consider the probability with which the user
will accept (or reject) it, the value of the expected results of
the specific query (this depends on the application-specific
objective function as briefly discussed earlier, and discussed
in more detail in Section 3.3), and the further reformulations
(relaxations) that can be applied to it in case it turns out that
it still produces no results. All these elements together form
a factor that determines the cost of a proposal. The problem
then is to find the sequence of query proposals with the opti-
mum total cost (the actual cost function may be maximized
or minimized based on the specific optimization objective
and discussed in Section 3). This is in general a challeng-
ing task, as we have to consider an exponential number of
possible sequences of query proposals.

To cope with the above challenges, we have developed
different strategies for computing the sequences of query re-
formulations (relaxations) and have materialized these strate-
gies into the respective algorithms. The first algorithm, Full-
Tree, is a baseline and is essentially an exhaustive algorithm
that pre-computes a complete tree of all the possible relax-
ation sequences, the possible user responses to each relax-
ation proposal, and the cost of the sequences. The second
algorithm, FastOpt, is an innovative space pruning strategy
that avoids computing the complete tree of all possible relax-
ations in advance. When deciding a relaxation to propose to
the user, it explores only part of the tree, maintaining upper
and lower bounds of the costs of the candidate relaxations,
until the one with the lowest cost can be unambiguously de-
termined. While the above techniques always produce the
optimal condition relaxations sequence, we also investigate
an approximate solution with improved scalability charac-
teristics, called CDR (or Cost Distribution Relaxation).

! Instead of a single relaxation, a ranked list of top-k relaxations
could also be suggested in one step.

A Holistic and Principled Approach for the Empty-Answer Problem

This is a probabilistic method that looks ahead into the space
of potential relaxations for the few next steps, estimates the
probability distribution of the cost of further relaxations nec-
essary before the entire relaxation sequence is constructed,
and makes a maximum likelihood decision for the best next
relaxation. The experimental evaluation demonstrates that
this method is both effective in finding a solution close to
the optimal, and efficient in producing this solution fast. In
this paper we extend our previous work [41] adding the sup-
port top-k relaxations, limits on the cardinality of the results,
a complexity analysis, support for non boolean databases,
and a more efficient algorithm that combines the approx-
imate and the pruning technique. The framework has also
been demonstrated in a research prototype [40].

Our main contributions can be summarized as follows:

e We propose a principled probabilistic optimization-based
interactive framework for the empty-answer problem that
accepts a wide range of optimization objectives, and is based
on estimation of the user’s prior knowledge and preferences
over the data.

e We propose novel algorithmic solutions using our frame-
work. The algorithms FastOpt and CDR produce optimal
and approximate relaxation sequences respectively, without
having to explore the entire relaxation tree.

e We propose an extension of the framework that returns
top-k relaxations at each step, and also we allow the possi-
bility to specify a cardinality constraint on the size of the re-
sults. Enabling top-k relaxations is a critical step that affects
time. As such, we introduce a new algorithm, FastCDR,
that embeds both the optimal FastOpt pruning and the ap-
proximate cost computed by CDR. Our framework also ac-
commodates previous Pareto-optimal solutions that find the
maximally succeeding subqueries. To this end, we devise a
combined method called FastOptMFS that includes maxi-
mally succeeding queries to our optimization criteria.

e We explain how our technique can be used for different
cases such as categorical attributes with hierarchies, numer-
ical attributes, or constraints on the expected answer set.

e We perform a thorough experimental performance and scal-
ability evaluation using different optimization objectives on
real datasets, as well as a usability study on real users, and
we report our findings.

The rest of this paper is organized as follows. We start
by presenting a motivating example in Section 2, and our
probabilistic framework in Section 3. Section 4 describes
exact algorithms that solve our problem, including efficient
algorithms that can prune the search space, and Section 5,
fast approximate algorithms. We discuss extensions of our
basic framework in Section 6, and present the experimental
evaluation in Section 7. Finally, we provide an overview of
the related work in Section 8, and conclude in Section 9.

3
=
P i) £ = =
: | 2| £ |BE:EBE|E S
= = & |<|2|<|5|8|Z|E|4|&
4 VW | Touareg | $62K [1 |0 [0 |0 |0 [1|0|1|O
Lo Askari A10 [$206K [0 |[1[0O[O|[1|[1|1]1]O
ts Honda | Civic | $32K [1|(0[0[0|0[0|0|0|O
ty |Porsche| 911 $126K| 0|0 (0|0|1|O0|1]1]0

Fig. 1: An instance of a car database.

(ABS,DSL,Manual)

()
{t.ttt)

177234

Fig. 2: Query lattice of the query () in Example 1.

2 Motivating Example

Consider a web site like cars.com, where users can search
for cars by specifying in a web-form the desired characteris-
tics. An example instance of such a database is shown in Fig-
ure 1. A user is interested in a car that has anti-lock braking
system (ABS), dusk-sensing light (DSL), and manual trans-
mission. The data instance of Figure 1 reveals that there is
no car that satisfies these three requirements.

The user is in an urgent need of a cheap car, and is there-
fore willing to accept one that is missing some of the desired
characteristics. The system knows that the cheapest car is a
Honda Civic (i.e., tuple t3) that has ABS, but no manual
transmission and no DSL. So it proposes to the user to con-
sider cars with no Manual transmission. If the user accepts,
the system next proposes to the user to consider cars with
no DSL. If she also accepts the second relaxation, then the
cheapest car of the database, tuple ¢35 would be returned.

Instead, the system could also propose to the user cars
with no ABS in the beginning. However, if the user accepts
that suggestion, this would result in a match of the most ex-
pensive car of the database (Askari A10, tuple to). Since
the user wishes to find the cheapest car, therefore, proposing
first to relax the DSL requirement is preferable.

Assume that when the user is first asked to relax DSL,
the answer is no. In this case, the system needs to investi-
gate what alternative relaxations are acceptable. If the sys-
tem knew that most users prefer cars with DSL, it could have
used this knowledge to propose a different relaxation in the
first place. In the following sections, we present a framework

Davide Mottin et al.

that takes into account all the above issues, for different op-
timization objectives.

The set of possible relaxations of the query ABS=1 A
DSL=1 A Manual=1 is graphically depicted in Figure 2
as a lattice where each node represents a query. The query
of a node is a relaxation of the query modeled on the node
above. The query is expressed as a triple where each value of
the triple means that the respective condition is ignored if “-”
or considered if “17(e.g., ABS=1 A DSL=1as (1,1, -)).
The original query can be modeled as (1,1, 1), depicted at
the root of the lattice, while each of the other nodes in the
lattice represents a relaxed query. A directed edge from node
p to node p’ denotes that p’ contains exactly one additional
relaxation that is not present in p. For illustration, each relax-
ation contains the tuples in its answer set. Note that, given a
query with k conditions, the number of possible relaxations
is exponential in k.

3 Probabilistic Framework

This section introduces the proposed probabilistic frame-
work for interactive query relaxation. The framework is based
on a cost associated to each user interaction with the system.
Given the generality of the cost model, application-specific
instantiations are presented (such as, proposing relaxations
for which the results have the maximum price).

3.1 Generic Probabilistic Framework

Let A be a collection {41, As, ..., A, } of m attributes,
with each attribute A;€.A associated with a finite domain
Dom 4,. The set of all possible tuples id=Dom 4, x Dom,
X ... xDomy, constitutes the universe. A database is a
finite set DCU. A tuple t(v1, va, ..., Uy) can also be ex-
pressed as a conjunction of conditions A;=wv;, for i=1..m,
allowing it to be used in conjunctive expressions without in-
troducing new operators. Given t€lUf we denote as Constrs(t)
the set of conditions of ¢.

A query @ is a conjunction of atomic conditions of the
form A;=v;, where A;€A and v;€ Dom 4,. Each condition
in the query is referred to as constraint. The set of con-
straints of a query () is denoted as Constrs(Q). A query
can be equivalently represented as a tuple (v1, va, ..., Unm),
where attribute Ay, takes the value vy, if vy€Dom 4, , or Ay
takes any value if vy has the special value “-”. Similarly,
a tuple (vy, va, ..., Uy,) can be represented as a query Q,
i.e., a conjunction of conditions of the form A;=wv;, one for
each value v;. Thus, by abuse of notation, we may write a
tuple in the place of a query. A tuple ¢ satisfies a query Q)
if Constrs(Q) \ Constes(t)=0. The universe of a query Q,
denoted as Uy, is the set of all the tuples in the universe I/
that satisfy the query (). The answer set of a query @) on a
database D, denoted as Q(D), is the set of tuples in D that

satisfy Q. It is clear from the definition that Q(D)ClUg. An
empty answer to a user query means that none of its satisfy-
ing tuples are present in the database.

Example 1 The tuple ¢ in Figure 1 can be represented as M ake=V W

A Model=Touareg N Price=62K N ABS=1 A Computer=0
A Alarm=0 AN AW D=0 AN DSL=0 A Manual =1 N HiFi=0
AN ESP=1 A Turbo=1. Given the set of attributes (ABS, DSL,
Manual), the query ABS=1 A DSL=1 A Manual=1 can be
modeled as (1, 1, 1) while the query ABS=1A DSL=1as (1,1, —).

A relaxation is the omission of some of the conditions
of the query. This results into a larger query universe, which
means higher likelihood that the database will contain one
or more of the tuples in it, i.e., the evaluation of the relaxed
query will return a non-empty answer.

Definition 1 A relaxation of a query Q is a query @’ for
which Constrs(Q)')CConstrs(Q). The constraints in

Constrs(Q) \ Constrs(Q’) are referred to as relaxed con-
straints and their respective attributes as relaxed attributes.

For the rest of this paper, since our goal is to provide a
systematic way of finding a non-empty answer relaxation,
we consider for simplicity only relaxations that involve one
constraint at a time. Note that there are other forms of re-
laxations, relevant to categorical attributes with hierarchies,
or numerical values. Our techniques can also handle these
forms of relaxations. We discuss these cases further in Sec-
tion 6.

The extra tuples that the query universe of a relaxation
of a query () has as opposed to query universe of () is called
a tuple space.

Definition 2 The ruple space of a relaxation @’ of a query
Q, denoted as TSq (Q’), is the set U \ Ug.

Among the constraints of a user query, some may be fun-
damental and the user may not be willing to relax them. We
refer to such constraints as hard constraints and to all the
others as soft constraints. Since the hard constraints cannot
be relaxed, for the rest of this paper we focus our attention
on the remaining constraints of the user query, which are
initially considered to be soft.

In the tuple representation of a query, we use the “#”
symbol to indicate a hard constraint, and “?” to indicate a
question to the user the respective constraint to be relaxed.

Example 2 The expression (1,#,—,1,7) represents a re-
laxation query for which the user has already refused to re-
lax the second constraint (i.e., she has kept the original query
condition on the second attribute as is), has accepted to re-
lax the third one, and is now being proposed to relax the last
constraint.

A Holistic and Principled Approach for the Empty-Answer Problem

value=0.48
pref=0.3
icost=0.144|

value=0.15
pref=0.7
cost=0.105

(#-,1)
{t1}
value=0.15

(#,7) (#,-#)
{t1,13} {1}

(-#,7) (-,#,#)
(12,14} {12}
| N

(#,-7) (-#,7)
(11,13} (12,14}

value=0.15 value=0.15| 48 8

15 value=0.48

Fig. 3: Query Relaxation tree of the query in Example 1.

In order to quantify the likelihood that a possible relax-
ation ()’ of a query @ is accepted by the user, we need to
consider two factors: first, the prior belief of the user that
an answer will be found in the database using the relaxed
query ', and second, the likelihood that the user will pre-
fer (i.e., be satisfied with) the answer set of Q. The relax-
ation ' selected by the framework should have high val-
ues for both factors, and additionally should attempt to op-
timize application-specific objectives (e.g., try to steer the
user towards highly profitable/expensive cars). We provide
generic functional definitions of both factors next, and defer
application-specific details to Section 3.3.

Since we cannot assume that the user knows any tuple in
the database, we resort to a probabilistic method for model-

ing that knowledge through a function called prior(¢, Q, Q).

It specifically measures the user belief that a certain tuple ¢
satisfying the relaxed query @', i.e., a tuple from the tuple
space of the relaxation, exists in the database. In order to es-
timate the likelihood that the user is satisfied with an answer
set, we use a preference function pref(t,Q) that captures
the probability that a user will like a tuple ¢, given the query.
Section 3.3 discusses how specific prior and pref functions
can be constructed for various applications.

Using the prior and the pref functions, we can compute
the relaxation preference function, i.e., the probability that a
user accepts a proposed relaxation Q' to a query @ (where
() evaluates to an empty-answer). The probability to reject
the relaxation is:

relPrefno(Q,Q') = (1 —pref(t, Q")) * prior(t,Q, Q") (1)

tETSQ(Q’)

which represents the probability of not liking any of the
tuples in the tuple space. Thus, the probability of accepting
the relaxation is the probability that the user likes at least
one tuple, which is the inverse of the probability of the user
not liking any tuple (i.e., rejecting the relaxation), namely

relPrefyes(Q, Q/) =1- relPrefno(Q,Q’) @

To encode the different relaxation suggestions and user
choices that may occur for a given query () that returns no
results, we employ a special tree structure which we call the
query relaxation tree (see Figure 3 for an example of such
a tree). This is similar to tree structures used in machine
learning techniques and games [36]. The tree contains two
types of nodes: the relaxation nodes (marked with double-
line rectangles in Figure 3) and the choice nodes (marked
with single-line rectangles in Figure 3). Note that the chil-
dren of relaxation nodes are choice nodes, and the children
of choice nodes are relaxation nodes.

A relaxation node represents a relaxed query. The root
node is a special case of a relaxation node that represents
the original user query. A relaxation node does not have any
children when the respective query returns a non-empty an-
sSwer, or returns an empty-answer but cannot be relaxed fur-
ther (either because all its constraints are hard, or because no
further relaxation can lead to a non-empty answer). In every
other case, relaxation nodes have a number of children equal
to the number of soft constraints in the query corresponding
to the node. Each child represents an attempt to further relax
the query. In particular, the i-th child represents the attempt
to relax the i¢-th soft constraint (recall that in each interac-
tion step we attempt to relax only a single constraint). These
children are the choice nodes.

A choice node models an interaction with the user, dur-
ing which the user is asked whether she agrees with the re-
laxation of the respective constraint. Each choice node has
always two children: one that corresponds to a positive re-
sponse from the user, and one that corresponds to a negative
response. In the first case, the child is a relaxation node that
inherits the constraints from its grandparent (i.e., the clos-
est relaxation node ancestor), minus the constraint that was
just relaxed (this constraint is removed). In the second case,
the child is a relaxation node inheriting the constraints from
the same grandparent, but now the constraint proposed to be

Davide Mottin et al.

relaxed has become a hard constraint (the relaxation was re-
jected). A choice node can never be a leaf. Thus, any root-to-
leaf path in the tree starts with a relaxation node, ends with
a relaxation node, and consists of an alternating sequence of
relaxation and choice nodes.

Definition 3 (Relaxation tree) Given a query () that re-
turns no results, the relaxation tree T is recursively defined
as follows. (1) The root node is a relaxation node represent-
ing the query Qs; (2) the children of a relaxation node are
all the choice nodes representing a relaxation Q" along one
non-hard constraint; (3) the children of a choice node are
two relaxation trees rooted at QQyes and @y, that represent
the query Q' after the user choice (yes, or no, respectively);
(4) a subtree has no children (leaf node) if the query is not
relaxable or non-empty.

Each path of the tree from the root to a leaf describes a
possible relaxation sequence. Note that if the query @) con-
sists of k constraints (i.e., attributes), there are an exponen-
tial (in k) number of possible relaxation sequences. In prac-
tice, the number of paths is significantly smaller, because
they may terminate early: at relaxation nodes that have a
non-empty answer, or at relaxation nodes for which no fur-
ther relaxation of any non-hard constraint leads to a non-
empty answer.

Example 3 Figure 3 illustrates the query relaxation tree for
the query @ in the Example 1. Relaxation nodes are mod-
eled with a double-line and choice nodes with a single-line
border. The color-filled nodes are nodes corresponding to re-
laxations with a non-empty answer. The non-colored leaves
correspond to relaxations that cannot lead to a non-empty
answer. Notice how the ”?” symbol is used to illustrate the
proposal to relax the respective condition, and how this pro-
posal is turned into a relaxed or a hard constraint, depending
on the answer provided by the user.

Next, we introduce and assign a cost value to every node
of the query relaxation tree. Having the entire query relax-
ation tree that describes all the possible relaxation sequences,
the idea is to consider the cost value of each relaxation node
to determine which relaxation to propose during each inter-
action, based on the specific optimization objective, as we
describe in Section 3.3.

Recall Equations (1) and (2) that describe the probability
that a user will reject, or accept a specific relaxation proposal
made by the system. Using these formulae, in general, the
cost of a choice node n can be expressed as:

Cost(n) =relPrefyes(Q, Q") x (C1 + Cost(nyes))+

relPrefno(Q, Q") * (C1 + Cost(nno)) v

where the ny.s and n,, are the two children (relaxation)
nodes of n, @ is the query corresponding to the parent of

n, and Q" corresponds to the suggested relaxation of () at
node n. In the formula, the variable C'; is a constant, that is
used to quantify any additional cost incurred for answering
the current relaxation proposal.

The cost of a relaxation node, on the other hand, depends
on the way the costs of its children are combined in order to
decide the next relaxation proposal. To produce the optimal
solution, at every step of the process, a decision needs to be
made on what branch to follow from that point onward. This
decision should be based on the selection of the relaxation
that optimizes (maximizes or minimizes) the cost. Thus, the
cost of a relaxation node n in the query relaxation tree is

Cost(n) = optimize.csCost(n,) 4)

where S is the set of soft constraints in Constrs(Q)), and n,
is the choice child node of n that corresponds to an attempt
to relax the soft constraint c. The optimization task is either
maximization or minimization depending on the objective.

The cost of a leaf node, returned by a function Cost Lea f,
depends on a specific optimization objective, and the “value”
of the tuples in that leaf node that contribute towards this ob-
jective (the details are presented in Section 3.3).

Definition 4 Given a node n the Cost is

CostLeaf(n) ifnisaleaf
Equation 3 if n is a choice node
Equation 4 if n is a relaxation node

Cost(n) =

Recall that a relaxation tree encodes all possible relax-
ation sequence, among which we want to find the best one.
A solution tree is a subtree of the complete tree containing
only complete paths from the root to the leaves. Therefore,
we aim at solving the following problem.

Problem 1 Given an initial empty answer query (s on a
database D and a specific instance of prior, pref, Cost Lea f
functions for the relaxation tree 7 built on (), find the so-
lution subtree 7’ C 7 such that the Cost(7”) is optimum
(maximum or minimum depending on the optimization cri-
teria), where C'ost(7T") is the cost of the root computed with
Equation 4.

Example 4 Assume the objective is to minimize the number
of steps, then the cost of the root in Figure 3 is the children
with the shortest expected length. Even though the left and
the middle children have the same structure, the middle has
70% probability of choosing the yes-child. Since the yes-
path is the shortest, the child with the minimum cost is the
middle one, and the query (1,?,1) is returned to the user.

3.2 Theoretical analysis

Consider the relaxation problem for an empty answer query
in which the aim is to minimize the user effort, i.e., the num-
ber of user interactions needed. If one is able to find that

A Holistic and Principled Approach for the Empty-Answer Problem

minimum cost relaxation, the simpler problem of deciding
whether a relaxation has a cost at most n, should have the
same or smaller complexity. Unfortunately, the latter prob-
lem can be shown to be NP-complete.

Theorem 1 Given a database D and an empty answer query
Q, deciding whether there is a query relaxation tree such
that the cost of its root node is less than or equal to a con-
stant n is NP-complete.

Proof. For the proof we can assume that we have a boolean
database, i.€., a database where each attribute takes a boolean
value of 0 or 1. We will show that even for that special case,
the problem is still NP-complete. To do so we reduce the
known to be NP-complete exact cover by 3-set problem
(denoted as X3C) [20] to ours. Given a finite set U over
3n elements, and a collection S of 3-elements subsets of U,
X3C finds an exact cover for U, i.e., a sub-collection C C S
of subsets, such that every element of U occurs in exactly
one member of C.

Consider an instance X3C(U, S) of the X3C problem
that consists of a finite set U = {z1,za,..., 23y} defined
over 3n elements, and a family S = {51, Ss,...,S5,} of
subsets of U, such that, |S;| = 3,V1 < i < ¢ and requires a
yes or no answer on whether there exists a cover C' C S of
n pairwise disjoint sets, covering all elements in U.

Given a specific instance Z of the X3C problem, we cre-
ate a database D with ¢ boolean attributes A = {A4,..., A,}
and 3ntuples T = {t1,...,ts,}.Foreach S; = {z;, xx, x; },
A; contains boolean 1 for tuples {¢;,x,t;}, while the re-
maining tuples get boolean value O for attribute A;. This
way, every attribute is present (i.e., corresponds to 1 value
for that attribute) in only three tuples. For such a database,
we consider the query Q € {0} (i.e., all ¢ constraints of Q)
are set to 0). We also construct a simple “black-box” rank-
ing function that assigns a preference score pref(t,Q) to
each tuple ¢ in the database. pref(¢t,Q) = 1, when the
tuple exactly matches all the query predicates; otherwise,
pref(t,Q) = 0. Therefore, for our instance, it is easy to see
that pref(t,Q) = 0 for all the tuples in the database, since
@ returns no answer in the first place. The next step is to
generate a relaxation tree, and compute the cost of its root
node based on the minimum cost strategy. Interestingly, us-
ing the black-box preference function described above, we
have relPref,, = 100% and relPrefy.s = 0 in each
choice node. This is indeed true, because, pref(t,Q) = 0
for every tuple ¢, which results in rel Prefy.; = 0 for ev-
ery choice node. The above steps achieved to create an in-
stance J of the query relaxation problem from an instance
I of the X3C problem that we initially considered. We con-
sider the Dynamic objective, with C'1 = 1. Moreover, since
pref(t,Q) = 0 for each tuple ¢ any choice of the prior leads
to the same result.

We claim that 7 is a YES-instance of X3C iff J is a
YES-instance of our problem.

(=): Suppose C' = {S;,,...,.S;, } C S is an exact (dis-
joint) cover of U. Then consider each node in the optimal
path of the query relaxation tree, where tuple t; € Ay iff
x; € Sj,. Notice that each node Ay, consists of only three
tuples. Since C' is an exact cover of U, each element x € U
appears in exactly one subset Sy, € C. Thus, Cost(root) =
100% * (1 + Cost(nn,)) = n, that indicates that 7 is a
YES-instance.

(<): Let 7w be a the optimal path in the query relaxation
tree. Cost(root) = n, witnesses the fact that 7 is a YES-
instance. Observe that any node in 7 only contributes to 3
tuples to the database. Since the overall cost is n, it follows
that every node contains exactly 3 tuples and they are dis-
joint. Now, if we consider the collection S, it is easy to ver-
ify that |C'| = n and that every element « € U appears in
exactly one set S € C. Therefore, Z is a YES-instance.

O

3.3 Application-Specific Instantiations of the Probabilistic
Framework

The generic query relaxation framework presented in the
previous section is largely agnostic to application-specific
details. However, to illustrate its range of applicability, we
take the opportunity here to discuss various specific instances
of the framework, notably different instances of the prior,
pref, and objective functions.

Recall that the prior function represents the user’s prior
knowledge of the content of the database. An implementa-
tion of the prior is to consider the data distribution in the
case of known data domains. One possible implementation,
which is the one we use, is the popular Iterative Propor-
tional Fitting (IPF) [8,44,45] technique on the instance data
(which can be thought as a sample of the subject domain)
to estimate the required probabilities. IPF takes into account
multi-way correlations among attributes, and can produce
more accurate estimates than a model that assumes indepen-
dence across attributes. This is achieved by considering the
information on the correlations among some attributes in the
various multi-dimensional marginal distributions of these at-
tributes. This technique is based on the well recognized and
widely applicable information theoretic principle of maxi-
mum entropy [8]. However, we note that the independence
model, or any other probability density estimation technique
can be applied in the place of IPF.

The preffunction is the probability/likelihood that a user
will like a tuple ¢ given a query. In simple instances, e.g.,
where the user in interested in cheap items in the query in-
stances, the preference for a tuple can be modeled as any
suitable function where the probability is dependent on the

Davide Mottin et al.

price of the item (higher the price, lower the probability).
More generally, the approach is to use a tuple scoring func-
tion for calculating the pref of the tuples that imposes a non-
uniform bias over the tuples in the tuple space. For example,
instead of simple tuple scoring functions (such as price), one
could also use more complex scoring functions such as as-
signing a relevance score [6] to each of the tuples. There
exists a large volume of literature on such ranking/scoring
functions [1, 6, 14]. Even though any of these functions are
possible, in our implementation, we use a simple and in-
tuitive measure, which is based on the Normalized Inverse
Document Frequency [1].

ZcEConstt(Q)ﬂCanstt(t) de(c)
Zc€¢onstt(Q) idf(c) ’
DI
[{t|t € D,t satisfies c}|

pref(t, Q) =

where idf (¢) = log

However, the question remains - as the relaxation process
progresses, does the preference of the user also evolve, i.e.,
the preference for a particular tuple changes? Note that the
preference for a particular tuple may be computed in several
different ways: (1) preference for a tuple is independent of
the query and is always static - an example is where the pref-
erence is tied to a static property of the tuple, such as price,
(2) preference for a tuple is query dependent, but only de-
pends on the initial query and does not change during the in-
teractive query relaxation session - e.g., when the preference
is based on relevance score measured from the initial query,
and (3) preference for a tuple is dependent on the latest re-
laxed query the user has accepted - this is a very dynamic
scenario where after each step of the interactive session the
preference can change. These different preference computa-
tion approaches are referred to as Static, Semi-Dynamic,
and Dynamic respectively.

The generic probabilistic framework discussed in the pre-
vious subsection could be used to optimize a variety of ob-
Jective functions, by appropriately modifying the preference
computation approach of the tuples, and the cost computa-
tion of the leaf nodes, relaxation nodes, and the choice nodes
of the relaxation tree. We illustrate this next.

Just as each tuple has a preference of being liked by a
user, each tuple can also be associated with a value that rep-
resents its contribution towards a specific objective function.
It is important to distinguish the value of a tuple from the
preference for a tuple - e.g., if the objective is to steer the
user towards overpriced, highly-profitable items, then the
value of a tuple may be its price (higher the better), whereas
the user may actually prefer lower priced items (lower is bet-
ter) - although in most applications the value and the pref-
erence of a tuple are directly correlated. Thus, in some ap-
plications our query relaxation algorithms have to delicately
balance the conflicting requirement of trying to suggest re-
laxations that will lead to high-valued tuples, but at the same

time ensuring that the user is likely to prefer the proposed
relaxation. The following example illustrates this situation:

Example 5 Consider the example database in Figure 1, and
assume that instead of steering the user towards cheap cars,
the objective may steer the users towards expensive cars. In
this case, the value/preference of a tuple is directly/inversely
correlated with its price. For the purpose of illustration, let
value of t; = 0.15,15 = 0.48,t3 = 0.07,t4 = 0.30. Let us
also assume that the probability that the user will say “yes”
to relaxing ABS is only 0.3 (e.g., she knows that most cars
come with ABS systems, and relaxing ABS will not offer
too many additional choice of cars), whereas the probability
that she will say “yes” to relaxing DSL is much higher at 0.7
(e.g., it may be a relatively rare feature, and relaxing it may
offer new choices). Of course, our system can only estimate
these relaxation preference probabilities using Equations 1
and 2, which depend on the prior and tuple preference func-
tions.

Then, the cost of relaxing ABS is the expected value that
can be achieved from it, which is 0.3 x 0.48 = 0.144, while
the cost of relaxing DSL is 0.7 x 0.15 = 0.105. The sys-
tem would therefore prefer to suggest relaxing DSL to the
user, since it has a higher cost (i.e., potential for greater ben-
efit towards to overall objective), even though ¢, has lower
preference than ¢ .]

As with preferences, the value of a tuple may evolve as
the user interacts with the system. Three cases can also be
considered here.

Static: In this case, the value of a tuple ¢ is pre-calculated
(statically) independently of the initial query Q, or subse-
quent relaxed queries Q'. The relaxation suggestions try to
lead user to a leaf-node that has the highest cost (cost of
a non-empty leaf is the maximum value of the tuples that
represent that leaf?)?. One can see that this is equivalent to
guiding the users to the most-valued tuples. In such cases,
the cost of a choice node is computed using Equation 3, by
setting C; = 0. Finally, as the optimization objective is to
maximize cost, then the cost of a relaxation node is the max-
imum cost of its children.

Semi-Dynamic: In this case, the value of a tuple ¢ is cal-
culated using the initial query Q, the first time it appears
in the tuple space of a relaxation. Typical examples of such
values are relevance score of the tuple to the initial query
(here value is same as preference). This computed value of
t is reused in all subsequent relaxations. The rest of the pro-
cess is similar to that of Static.

2 Other aggregation functions (such as average) are also possible;
the appropriate choice of the aggregation function is orthogonal to our
problem.

3 Cost of an empty-leaf node is 0.

A Holistic and Principled Approach for the Empty-Answer Problem

Dynamic: In this case, the value of a tuple ¢ at a relaxation
node is calculated using the latest relaxed query @’ that the
user has accepted. This value computation is fully dynamic,
and the value of the same tuple ¢ may change as the last
accepted relaxed query changes. An example of such dy-
namically changing values are relevance of the tuple to the
most recent relaxed query. Such dynamic value computation
approach could be used inside the framework with the opti-
mization objective of minimizing user effort, as it minimizes
the expected number of interactions. In this case, any leaf
node (empty or non-empty) has equal cost of 0. The cost
of a choice node is computed using Equation 3, by setting
C7 = 1 (incurs additional cost of 1 with one more interac-
tion). Finally, if the cost of a relaxation node is computed as
the minimum cost of its children, then the underlying pro-
cess will suggest relaxations that terminate this interactive
process in minimum number of steps in an expected sense,
thus minimizing the user effort.

More Complex Objective Functions: Interestingly, the pro-
posed framework could even be instantiated with more com-
plex objective functions, such as those that represent a com-
bination of the previous optimization objectives of relevance,
price, user effort, etc. (e.g., most relevant results as quickly
as possible, or cheapest result as quickly as possible). In
such cases, the cost of a leaf node needs to be modeled as
a function that combines these underlying optimization fac-
tors. After that, the cost computation of the relaxation nodes
or the choice nodes in the relaxation tree would mimic ei-
ther Semi-Dynamic* or Dynamic, depending upon the spe-
cific combined optimization objective. Further discussion on
complex objective functions is omitted for brevity.

Combining Maximal Succeeding Subqueries. The frame-
work can also combine previously studied strategies, e.g.,
those based on maximal succeeding subqueries, in order to
propose interactive results that maximize one of the objec-
tives and the minimality of the answer. The combination of
such objectives considers only paths in the tree that lead to
a maximal succeeding subquery and discards all the oth-
ers. We integrate one adaptation of the well-known QuickX-
Plain [29] from Jannach [27] that includes user preferences
to find the minimally failing subquery. The minimally fail-
ing subquery is the biggest empty-answer query containing
the least preferred database attributes, such that any sub-
query is non failing. Therefore the constraints in the mini-
mally failing subquery are the only constraints to be relaxed.
We combine this strategy with the Semi-Dynamic and Dy-
namic objective, and use the algorithm in [27] as a subrou-
tine to generate the relaxations.

4 choice node and relaxation node cost of Static is same as that of
Semi-Dynamic.

3.4 Cardinality constraint

In several applications, the user is interested in non-empty
answers that contain a certain minimum number of tuples
(specified by some cardinality constraint). Our framework
assumes that the user is interested in at least one result. A
cardinality constraint introduces a cutoff criteria on the size
of the results, and it might be integrated in the framework.

The simplest approach to constrain the number of tuples
is to consider as empty any query that returns a number of
tuples less than the required cardinality. This approach is
used in most of the previous works [12, 35], but while the
interactive method in [35] assumes that the user is interested
in a fixed number of results, the why-not approach [12,51]
assumes that the user is interested in some specific tuple.

Alternatively, a positive score is assigned to any non-
empty query. This approach ensures that any non-empty query
can be selected, even with small probability. Interestingly,
our framework can naturally model such cardinality con-
straints by assigning either a fixed minimum score to non-
empty leaves, or a penalty on the pref function on each re-
sult of a query with less than the required cardinality. There-
fore, we assume the existence of a user defined scoring func-
tion that assigns a value to any non-empty relaxed query Q’.
Notice that this value is then propagated up, through the re-
cursive application of the C'ost function.

Since any scoring function is a valid choice, we have
implemented the simplest approach.

3.5 Top-k relaxations

In certain applications, it may be disappointing for the user
to get just one relaxation suggestion at a time. Our proposed
framework can be readily extended to suggest a ranked list
of k relaxations at a given interaction, by suggesting to the
user the k best sibling relaxation nodes based on the cost
at a given level in the relaxation tree. In a top-k model, the
user chooses among the k relaxations without being asked
to refuse/accept them individually. This has the substantial
drawback that no feedback is provided in the navigation
phase and the user is left blind on the interaction.

There are two ways of interpreting the choice of the user
in a top-k model: the No-bias model, and the ranked or
Skip-above model.

No-bias. Under the no bias model the user selects one re-
laxation and the system simply proposes the next relaxations,
or the results of the relaxed query (if it is non-empty). This
model has been extensively adopted to present refinements
of queries in the many-answers problem [7,30], and in query
recommendation [3,11] in the web, since the order in which
the reformulations are presented is irrelevant.

Skip-above. The alternative model assumes that the relax-
ations are proposed in the order of decreasing importance

10

Davide Mottin et al.

(like we do in our framework), which is the approach em-
ployed in the click-chain model [48]. Then, once the user
selects a relaxation, this implicitly means that she refuses to
relax those that rank higher. Therefore, all the attributes that
rank higher are implicitly deemed as hard and not proposed
to the user anymore.

Note that one can easily use the No-bias model to mate-
rialize the Skip-above model since the former considers all
the possible remaining attributes after the user selected one
to relax. The opposite does not hold. However, generating
more than one relaxations at a time results in higher com-
putation times, because we need to explore more relaxation
alternatives simultaneously. Section 4.3 shows how to effi-
ciently modify algorithms that propose only the single best
relaxation to obtain the desired results, without substantially
changing the framework.

Another complementary approach to present top-k re-
laxations requires to recompute the pref function on the
selected/non-selected attributes. Therefore, the relaxation tree
changes on demand to consider the change in the preference.
This adaptive setting is not considered in this work.

4 Exact Algorithms
4.1 FullTree

Given Equation 4, one can visit the whole query relaxation
tree in a depth-first mode and compute the cost of the nodes
in a bottom-up fashion. This algorithm is referred to as Full-
Tree. Its steps are described in Algorithm 1. Note that the
specific approach has the limitation that the whole tree needs

to be constructed first by the procedure CONSTRUCTQRTREE,

and then traversed, a task that is computationally expensive
since the size of the tree can be exponential in the num-
ber of the constraints in the query. Procedure CONSTRUC-
TQRTREE constructs the whole tree starting on the root node
representing input query (Js, and then it recursively adds
child nodes until the query in the node is non-empty or can-
not be relaxed further (i.e., no more constraints to relax).
Furthermore, for every positive response that the user pro-
vides to a relaxation request, the algorithm has to call the
database to evaluate the relaxed query. Additionally, based
on the specific score computation approach, for every re-
sponse, it may have to make additional calls to recompute
the prior and the pref value for the tuples in the relaxed
query tuple space. This may lead to time complexity pro-
hibitive for many practical scenarios.

4.2 FastOpt

To avoid computing the whole query relaxation tree, for each
relaxation, we can compute an upper and a lower bound of
the cost of its children. From the ranges of the costs that

Algorithm 1 FullTree

Input: Initial query Qs

Output: Relaxation Cost of Q5
1: T < CONSTRUCTQRTREE(Q®s)
2: return COMPOPTCOST(T)

3: procedure CONSTRUCTQRTREE(Query Q)
4: Nrelaz < New RelaxationNode(Q) > construct the root
5: C={c| ceConstrs(Q) A cis hard}
6: Qtmp < new Query(C)

7: if Qtmp(D)=0VQ = 0 then

8 return n,.cjq

9: for ¢ € Constrs(Q) do

> non-relaxable query

10: if ¢ is not hard then

11: Nresp < New ChoiceNode()

12: Nrelaz-addChild(nresp)

13: Qyes <+ new Query(Constrs(Q)\{c}) > removec
14: Nresp.yesChild <— (CONSTRUCTQRTREE(Q yes))
15: cp, +— Hard(c) > cp, is the hard version of ¢
16: Qno < new Query((Constrs(Q)\{c}) U{cn})

17: Nresp.NoChild <— (CONSTRUCTQRTREE(Qr0))

18: return n,.cjq

19: procedure COMPOPTCOST(Node n)
20: if n has no children then

21: return CostLeaf(n)

22: if n is a ChoiceNode then

23: Costyes < COMPOPTCOST(n.yesChild)

24 Costypo + COMPOPTCOST(n.noChild)

25: Qyes <+ n.yesChild.Query ©> query in the “yes” child
26: Po <—relPrefno(n.Query, Qyes) > Equation (1)
27: Pyes<—1_Pno

28: return Pycs * (C14-Costyes)+Pno * (C14+Costyo)
29: else if n is a relaxation node then

30: return optimum COMPOPTCOST(c)

cen.Children

the computation provides, we can identify those branches
that cannot lead to the branch with the optimal cost. When
the specific optimization minimizes the cost (i.e., effort),
these are the branches starting with a node that has as a
lower bound for its cost a value that is higher than the up-
per bound of the cost of another sibling node. Similarly,
when the objective is to maximize the cost (i.e., lead user
to most relevant answers/answers with highest static score),
the branches starting with a node that has as a upper bound
for its cost a value that is smaller than the lower bound of the
cost of another sibling node could be ignored. By ignoring
these branches the required computations are significantly
reduced. We refer to this algorithm as FastOpt. Algorithm 2
shows the FastOpt pseudocode.

Instead of creating the whole tree, FastOpt starts from
the root and proceeds in steps. In each step, it generates the
nodes of a specific level. A level is defined here as all the
choice nodes found at a specific (same) depth, alongside
the respective relaxation nodes they have as children. For
the latter it computes a lower and upper bound of their cost
and uses them to generate a lower and upper bound of the
cost of the choice nodes in that level. When the cost is to
be minimized (maximized), those choice nodes with a lower

A Holistic and Principled Approach for the Empty-Answer Problem

(1,2,1) 1,1,2)
[0. 18 0. 35] [0,0.52] ..

ye567/ " no 33% yeSSO/ no10/

(1,1,#)
[0,0.52]

es70/.n030/

(-1,1) (#1,1) 1,-1) 141 | (1,1,7)
[0.08,0.08]| |[0,0.52]| |[0.27,0.27] {[0,0.52]| {[0,0.52]

(2,1,#) (1,2,#)
[0.02,0.41] [0.09,0.44];.
yes 36% ino 64% : yes 20% ".. no 80% yes 36% :no 64% yes 80% no 20% yes 20% *, .no 80% yes 33"/;".‘n0 67%
(#,-,1) (##1) | | (#1,5) || (#1.#) (-1,-) (#1,) (1,#:) (-,1,#) (#, 1 #) (1,-#) (1,#,#)
[0,0.52]| |[0.13,0.1 [0,0.52]

Fig. 4: Ex. 6 Query Relaxation Tree after 1st and 2nd expansions

Algorithm 2 FastOpt

Input: Initial query Qs
Output: Relaxation Cost of Qs

1: NextBranch <— new RelaxationNode(Q)s)

2: NextBranch.LL <+ 1

3: T < NextBranch

4: repeat

5: Build tree at level NextBranch.L

6: N, < relaxation nodes in level NextBranch. L

7. for each n€N,.;, do

8: if n is a leaf then 1 i.e., no further relaxation is possible
9: n.UB,n.LB <+ CostLeaf(n)
10: else
11: Compute n.U B, n.LB for the specific objective
12: UPDATENODES(NextBranch. L)

13: PRUNE (7))

14: Te < T .Children

15: NextBranch.L < L + 1
16: for each n € 7. do

> children of the root node

17: ifn.L = |Constrs(Qstart)| then
18: Te < Te \ {NextBranch}
19: NextBranch < arg min{n.UB - n.LB} > min ub-Ib strategy

neT,
20: until NextBranch not NULL
21: return COMPOPTCOST(7)

22: procedure UPDATENODES(Level L)
23: N1 < nodes at level L
24: for each neN7, do

25: if n is a choice node then
26: Compute probabilities as in Algorithm 1
27: Tyess Tno < “yes” and “no” children of n
28: n.LB <~ Pycs * (Cl+ryes.LB) + Pro * (Cl+1y,.LB)
29: nUB < Pyes % (Cl+47yes.UB) 4 Pro % (C1+1,,.UB)
30: else if n is a relaxation node then
31: n.UB < optimize (n.UB)
cen.Children
32: nLB < optimize (n.LB)

cen.Children

33: procedure PRUNE(Node r)
>r.UB < n.LB if the objective is to maximize
34: if exists n € r.Siblings s.t. LB > n.UB then

35: n.Father.Children < n.Father.Children \{r}
36: else

37: for each n € r.Children do

38: PRUNE(n)

bound higher than the upper bound (or respectively, with
an upper bound lower than the lower bound) of a sibling

node are eliminated along with all their subtree and not con-
sidered further. The computed upper and lower bounds of
the choice nodes allow the computation of tighter upper and
lower bounds for their parent relaxation nodes (compared
to bounds that have already been computed for them in a
previous step). The update of these bounds propagates re-
cursively all the way to the root. If a relaxation node models
a query that generates a non-empty answer, then it does not
expand to its sub-children. Furthermore, after |Constrs(Q)|
repetitions, the maximum branch length is reached and the
relaxation sequence with the optimum cost can be decided.

The upper and lower bounds of the cost of a node are
computed by considering the worst and best case scenario,
and depends upon the specific score computation approach.
Recall that the cost of a node is computed according to Equa-
tions (3) and (4). When the process seeks to optimize the
cost using Semi-Dynamic or Static score computation ap-
proach (corresponds to maximum relevance/maximize static
score), the lowest cost of a node n at a level L could be as
small as 0, because the remaining |Constrs(Q)| — L relax-
ations accepted by the user may have a very small (almost
zero) associated probability, resulting in the expected cost
to be close to 0. This yields a lower bound n.L B=0. Alter-
nately, the highest cost of a node n at a level L is achieved
when the user is lead to the highest cost leaf with a “yes”
probability of 100% immediately in the very next interac-
tion. This yields an upper bound n.U B = maximum cost of
any leaf.

In contrast, when the Dynamic score computation ap-
proach is used (corresponds to minimum effort objective),
the lowest cost of a node n at a level L of the tree is achieved
when the probability for the yes branch of the choice node is
100% and the C'ost(nyes) in Equation (3) is 0. This yields a
lower bound n. L B=0. Similarly, the highest cost is achieved
when all the remaining |Constrs(Q)| — L negative responses
have a probability of 100%. This yields an upper bound
n.UB = |Constrs(Q)| — L

At the end, when the computation reaches a level equal
to the number of constraints in the query, |Constrs(Q)|, there

12

Davide Mottin et al.

is only one choice node to choose. Note that for the leaf
nodes of the full tree, the upper and lower bounds coincide.

FastOpt is applicable to any cost function for which up-
per and lower bounds of the cost of a node can be computed
even after only part of the tree below the node has been ex-
panded. The efficiency of the algorithm relies on whether
very tight bounds can be computed even after only a small
part of the tree has been expanded. The cost function should
also have the following monotonic property: the upper and
lower bound calculations should get tighter if more of the
tree is expanded. All aforementioned cost functions satisfy
this property.

Example 6 Consider the running example in Section 2, with
the initial query (ABS, DSL, Manual), which aims to
guide the user towards cheap cars. The value of a tuple is
inversely proportional to its price. Let the normalized values
for those tuples be 0.27, 0.08, 0.52, and 0.13. The objective
is to select the relaxation node with the highest cost (i.e.,
expected value).

Consider Figure 4. At the beginning the root node that
is created represents the original query with 3 conditions.
Then, in the first iteration (L=1), the 3 possible choice nodes
(corresponding to the 3 attributes of the query) along with
their yes and no relaxation child nodes, will be generated
(upper half of the figure). Since the relaxation nodes (-,1,1)
and (1,-,1) give non-empty answers, they get lower bound
(and upper bound) costs of .08 and 0.27 respectively (in the
figure, the bounds of every node are denoted in square brack-
ets “[...]”). The rest of the relaxation child nodes will be
assigned a lower bound of 0 and an upper bound of 0.52
(price of the most expensive tuple in the database). Then
the bounds of the choice nodes will be updated based on
the expected value (considering respective preference prob-
abilities), and the lower bound (resp. upper bound) of the
root node will also be updated with the maximum of lower
bound (resp. upper bound) cost of its child nodes. In the
figure, the values of the quantities rel Pref,,(Q, Q') and
relPrefyes(Q, Q") are illustrated next to the label of the no
and yes edges, respectively.

Let us now consider the expansion of the second level.
For brevity, we only expand the first and the third child,
as shown in the lower half of Figure 4. The newly gener-
ated relaxation nodes have new upper bounds, apart from
those generating empty answers (or cannot be relaxed fur-
ther) that have a O upper bound. This impacts the relaxation
nodes of the previous (first) level, whose bounds are up-
dated to [0.08,0.08], [0.1,0.52], [0.41,0.51] and [0.09,0.44].
The updates propagate all the way to the top. Notice that the
first child of the root has now an upper bound (0.22) that is
smaller than the lower bound of the third child (0.46), thus
the first child is pruned and will not be considered further. ll

To further optimize the algorithm, we expand at each
step only the node that has the tightest bounds, i.e., the small-
est difference between its lower and upper bounds. The in-
tuition is that the difference between these two values will
become tighter (or even 0), and the algorithm will very soon
decide whether to keep, or prune the node, with no effect on
the optimal cost of the tree.

4.3 FastOpt for top-k

Unlike the FullTree algorithm that constructs the entire tree
and returns all the possible relaxations, the FastOpt does
not guarantee to maintain at least £ branches for each level.
It computes the worst and best case by means of bounds
and prunes a branch if it does not participate for sure to the
optimal solution. This condition has to be adapted to the top-
k scenario. In the case of top-k relaxations, a priority queue
P of k best children has to be maintained for each subtree.
A node can be safely pruned if there exist k elements with
a lower (upper) bound greater (lower) than the kth biggest
(smallest) upper bound.

Algorithm 3 shows the PRUNE procedure of FastOpt
adapted for top-k case with Dynamic objective. All other
objectives are easily computed with minimal changes in the
code. The algorithm first computes a priority queue P con-
taining sibling nodes in decreasing order of lower bound and
the kth biggest lower bound (Lines 34-35). Then it removes
from P any node with a lower bound greater than the kth
biggest lower bound (Lines 37-39). Finally, the PRUNE pro-
cedure is called on the remaining nodes in P. It is easy to
see that the algorithm preserves the completeness of the so-
lution, given that the pruned nodes are those that for sure
cannot eventually become part of the final solution.

Under the Skip-above model, FastOpt can be optimized
further by reasoning on the values of the bounds of each
node. Recall that the Skip-above model assumes that once
an attribute is selected for relaxation, any attribute that is
ranked higher cannot be relaxed. Therefore, in order to be
certain that the removed attributes are better than the se-
lected ones we have to reason on the bounds. In particu-
lar, given a choice node, any other sibling node having an
upper (lower) bound greater (smaller) then the lower (up-
per) bound of that node is selected. Then, the attributes that
should be relaxed by the selected sibling nodes cannot be
relaxed any further.

Example 7 Consider the right tree in Figure 4. The node’s
(1,1,7) lower bound (0.46) is higher than the upper bound
(0.22) of (2,1,1). Therefore, the first attribute cannot be re-
laxed anymore in the sub-tree rooted at (1,1,?), and the query
becomes (#,1,7).

Algorithm 3 shows the pruning part involved in the Skip-
above model. The PROPAGATE subroutine simply applies

A Holistic and Principled Approach for the Empty-Answer Problem

13

Algorithm 3 FastOpt for top-k (Dynamic)

Input: Initial query @ s, number of relaxations k
Output: Relaxation Cost of Qs

34: procedure PRUNE(Node r)
35: P + {n} U r.Siblings
36: kUB < kth highest UB
37: fori =1...k,p; € Pdo

38: if p; LB > kEUB then

39: P+ P\ {p:}

40: p;.Father.Children — p; .Father.Children \{p; }
41: if Skip-above then

42: fori =k...1,p; € Pdo

43: forj=(:—1)..1,p; € Pdo

44: if p;.UB < p;.LB then

45: ¢ < attribute relaxed by p;

46: Constrs(p;.Q) « Constrs(p;.Q) U Hard(c)
47: PROPAGATE(c, p;)

48: for each p € P do

49: PRUNE(p)

the same constraint on the children nodes, and prune the
branches corresponding to the relaxed constraint if already
constructed.

The performance of Algorithm 3 is clearly affected by

the value k: a large k£ diminishes the chances to prune branches

in advance. We show the relation between k& and time in the
experimental section.

5 Approximate Algorithms
5.1 CDR

Although the FastOpt algorithm discussed in the previous
section generates optimum-cost relaxations and builds the
relaxation tree on demand, the effectiveness of this algo-
rithm largely depends on the cost distribution properties be-
tween the participating nodes. In the worst case, the FastOpt
may still have to construct the entire tree first, even before
suggesting any relaxation to the user. In fact, due to the ex-
ponential nature of the relaxation tree, even the FastOpt al-
gorithm may be slow for an interactive procedure for queries
with a relatively large number of constraints. Applications
that demand fast response time (such as, online air-ticket or
rental-car reservation systems) may not be able to tolerate
such latency. On the other hand, these applications may be
tolerant to slight imprecision. Thus, we propose a novel ap-
proximate solution that we refer to as the CDR (Cost Dis-
tribution Relaxation) algorithm. Like FastOpt, Algorithm
CDR also constructs the query relaxation tree on demand,
but the constructed part is significantly smaller. This is pos-
sible because it leverages the distributional properties of the
nodes of the tree to probabilistically compute their cost. Of
course for applications that are less tolerant to approximate
answers, FastOpt may be more desirable, even though the
response time may be higher.

Given a query @, the algorithm CDR computes first the
exact structure of the relaxation tree up to a certain level
L < |Constrs(Q)|. Next, it approximates the cost of each L-
th level choice nodes by considering the cost distributions of
its children and proceeds with the bottom-up computation of
the remaining nodes until the root. At the root node, the best
relaxation child node is selected, and the remaining ones are
pruned. Upon suggesting this new relaxation, the algorithm
continues further based on the user’s response.

There are three main challenges in the above procedure:
(i) in the absence of the part of the tree below level L, how
will the cost of level L nodes be approximated? (ii) How
is the cost of the intermediate nodes approximated in the
bottom-up propagation? and (iii) how is the best relaxation
at the root selected? To address these challenges, we pro-
pose the use of the distributional properties of the cost of the
nodes and the employment of probabilistic computations, as
described next.

5.1.1 Cost Probability Distributions Computation

The algorithm computes the distribution of the cost of the
nodes at level L (first the relaxation nodes, then the choice
nodes), and higher by assuming that the underlying distribu-
tions are independent and by computing the convolutions [4]
of the probability density functions (pdf for short).> We adopt
convolution of distributions definitions from previous work [4]
to compute the probability distribution of the cost of the
nodes in the partially built relaxation tree, as defined below.
Then, in Section 5.2, we discuss how such convolution func-
tions could be efficiently approximated using histograms.

Definition 5 (Sum-Convolution of Distributions) Assume
that f(z), g(«) are the pdfs of two independent random vari-
ables X and Y respectively. The pdf of the random variable
X +Y (the sum of the two random variables) is the convo-
lution of the two pdfs: *({f,g})(z) = [f(2)g(z — 2) d=.

Definition 6 (Max-Convolution of Distributions) Assume
that f(x), g(z) are the pdfs of the two independent random
variables X, Y respectively. The pdf of the random variable
Maz(X,Y) (the maximum of the two random variables) is
the max convolution of the two pdfs:,,.. * ({f,g})(x) =

f(x) foxg(z) dz + g(x) fox f(2)dz.

The Min-Convolution can be analogously defined, and more-
over these definition can be easily extended to include more
than two random variables.

We now describe how to estimate the cost distribution of
each node using Sum convolution and Max(similarly Min)

5> The independence assumption is heavily used in database litera-
ture, and as the experimental evaluation shows, it does not obstruct the
effectiveness of our approach.

Davide Mottin et al.

7/9

63/81

1/9

17/81

1/81

1/3 - |1/3

7/9

1/3 1/9 1/9 1/9 1/9

1/3

0 033 0.67 10 117 0.34 0.5

a) Original PDF b) relPref_{yes} * CostPDF(n,’))

(a)

0.34

05 0

(b)

0.17

(©

Fig. 5: CostPDF(n) for (a) the “yes” branch of a choice node, (b) choice node, and (c) non-leaf relaxation nodes.

convolution. We denote as CostPDF(n) the probability
density function of the cost of a node n.

Cost distribution of a Relaxation Node: We first need to
compute the cost distribution of nodes at level L and then
propagate the computation to the parent nodes. We consider
the pdf of each node at level L to be uniformly distributed
between its upper and lower bounds of costs as described in
FastOpt.

For relaxation nodes at higher levels, we need to com-
pute the optimum cost over all the children nodes. Note that,
optimization objectives associated with Semi-Dynamic and
Static require Max-convolution as the score of the relax-
ation nodes are maximized in those cases. In contrast, Dy-
namic could be used to minimize effort - requiring Min-
convolution to be applied to compute the minimum cost of
the relaxation nodes.

Cost distribution of a Choice Node: The computation of
the cost distribution involves the summation operation be-
tween two pdfs (CostPDF (ny.s) and CostPDF(ny,)),

and between a constant and a pdf (e.g., C1+Cost PDF (nyes))

(ref. equation (3)). Assuming independence, the former op-
eration involves the sum convolution of two pdfs, whereas
the latter requires the sum convolution between a pdf and
a constant. In addition, C'1 + CostPDF (nyes) (similarly
C1 + CostPDF(ny,)) needs to be multiplied with a con-
stant rel Prefys (similarly rel Pref,,). We note this mul-
tiplication operation between a constant and a pdf can be
handled using convolution as well.

Selecting Relaxation at the Root: Given that the root node
in the relaxation tree contains k children, the task is to select
the best relaxation probabilistically. For each child node n;
of root with pdf CostPDF(n;), we are interested in com-
puting the probability that the cost of n; is the largest (resp.
smallest) among all its k£ children when we want to max-
imize (resp. minimizes) the cost of the root. Formally, the
suggested relaxation at the root (IV,;,) equals

k
Ny = arg max (Pr(Cost(n;) > HCost(nj)))
i i
(Nyiz = arg min Pr(Cost(n;) < Hf;m Cost(n;)), re-

n;

spectively)

Algorithm 4 CDR (Dynamic)

Input: Initial query Qs, level L
Output: Relaxation node to be proposed at the root
I: forl=1...Ldo

2: N1, relaxation nodes in level [
3: for each n€N,.;,. do
4: if n is a leaf then > n is non-empty or not relaxable
5: CostPDF(n) < uniformin [1, |Constrs(Qs)| —]
6: forl=L...1do
7. UPDATERELAXATIONNODES(])
8: UPDATECHOICENODES(])
9: N, < child nodes of root
10: return arg max(Pr(Cost(n) < H;Z"l"j#" Cost(ny)))
neN,
11: procedure UPDATECHOICENODES(Level)
12: Nysp +— choice nodes at level {
13: for each n€ N5, do
14: Compute probabilities as in Algorithm 1
15: Tyes,Tno < “yes” and “no” child of n
16: CostPDF(n) <= Pyes * (C1 4 CostPDF (ryes))+
’ Ppo % (C1+ CostPDF(ry,))
17: procedure UPDATERELAXATIONNODES(Level 1)
18: N, < relaxation nodes at level [
19: for each n€ N, do
20: N,, < choice child nodes of n
21: CostPDF(n) = min;—1. |n,|(CostPDF(n;))

Given the user response, the above process is repeated
for the subsequent nodes until the solution is found.

5.1.2 Efficient Computation of Convolutions

The practical realization of our methodologies is based on
a widely adopted model for approximating arbitrary pdfs,
namely histograms (we adopt equi-width histograms, how-
ever any other histogram technique is also applicable). In
[4] it has been shown that we can efficiently compute the
Sum, Max, and Min-convolutions using histograms to rep-
resent the relevant pdfs. In the following example, we illus-
trate how histograms may be used for representing cost pdfs
at nodes of the relaxation tree.

Example 8 Consider a query Q@ with |Constrs(Q)|=5 and
empty answers, and assume that the approximation algo-
rithm sets L = 2. Let us assume that cost is required to
be maximized. Consider a choice node n at level 2, which
has child relaxation nodes n} (for a positive response to

A Holistic and Principled Approach for the Empty-Answer Problem

the relaxation proposal) and n/, (for a negative response);
Wilog, let 1 be the upper bound of cost of n)®. Thus, the
cost of each child is a pdf with uniform distribution between
0 and 1. CostPDF(n}) is approximated using a 3-bucket
equi-width histogram, and if we assume that relPrefycs
and relPref,, of n are 0.5, the Cost PDF'(n) can be com-
puted using Equation 3 by approximating the pdf of the cost
of each child with a 3-bucket histogram. Figures 5 (a) - (b)
illustrate these steps.

The algorithm continues its bottom-up computations, and
considers relaxation nodes in the next higher level: at level 1,
given a relaxation node (n') that has k children (each corre-
sponds to a choice node in level 2), CostPDF(n’) is com-
puted by using Equation 4 and applying max-convolution
on its children (see Figure 5 (c)). Once the pdf of the cost of
every relaxation node at level 1 has been determined, the al-
gorithm next computes the pdf of cost of each level 1 choice
nodes using sum-convolution, and so on.

5.2 FastCDR

Completely constructing L levels as required by the CDR
when it needs to return top-k relaxations becomes computa-
tionally expensive. Since the FastOpt behaves like the Full-
Tree when k is close to |Constrs(Q)| we need a different
algorithm to efficiently solve the problem while guarantee-
ing quality close to optimal.

CDR can be further optimized by removing from the
search space non promising branches in the first L levels,
and continuing the exploration over the remaining nodes.
This can be naturally achieved using FastOpt in the first
L levels and then expanding the the remaining tree using the
CDR. Clearly, the solutions produced applying this strategy
are as good as those of CDR, and hopefully better if the re-
moved branch is the one that CDR would select for expan-
sion. Furthermore, if the optimal solution is found within
the first L levels, the time performance will be the same as
FastOpt, eliminating the requirement of CDR that further
expands one of the branches if the optimal is not detected in
the first iteration. We refer to this new hybrid algorithm as
Fast Cost Distribution Relaxation (of FastCDR). Algo-
rithm 5 describes its steps in pseudocode. It works exactly
as the CDR except that first it generates all the candidate
nodes using FastOpt for top-k (see Line 13-27).

6 Extensions

6.1 Databases with categorical and numerical attributes
with hierarchies

Our framework can ingest categorical data, provided that the
data is organized and stored in a specific format. If not, a

6 Recall that the lower bound is always 0.

Algorithm 5 FastCDR (Dynamic)

Input: Initial query @ s, level L, number of relaxations k
Output: top-k relaxations at root
1: GENERATENODES(L)

2: UPDATERELAXATIONNODESLOWEST(L)

3: for!l = L..1do

4: UPDATERELAXATIONNODES(]) > see Algorithm 4
5: UPDATECHOICENODES(]) > see Algorithm 4
6: N, < child nodes of root

7: P < N, ordered by Pr(Cost(u) < H@’;ll’j#u Cost(5))

8: return pi,...,pr € P

9: procedure UPDATERELAXATIONNODESLOWEST(Level L)

10: Ny < relaxation nodes at level L

11: for each relaxation node n€N,.;,, do

12: CostPDF(n) < uniform in [1, |Constrs(Q)| — L]

13: procedure GENERATENODES(Level L)
14: for1=1...|L| do

15: N1, relaxation nodes in level [

16: for relaxation node u€ N, do

17: if u represents an empty answer query then
18: UPDATERELAXATIONNODESLOWEST(u)
19: u.LB,u.UB <+ CostLeaf(n)

20: else

21: u.LB =0

22: w.UB = |Constrs(Qs)| — L

23: UPDATECHOICENODES(L)

24: for TLev = (L — 1)..0do

25: UPDATERELAXATIONNODES(TLev)

26: UPDATECHOICENODES(TLev)

27: PRUNE(L) > see Algorithm 2

preprocessing step needs to be executed to bring the in that
format, and then the algorithm can run as in the boolean
database case.

Categorical attributes. The categorical data reorganization
is performed attribute by attribute. Each value of a categor-
ical attribute is an attribute itself in a boolean database. For
instance, attribute price={low, average} is represented as
two attributes price-low and price-high in the corresponding
boolean database and a tuple has value 1 on price-low if the
value of the attribute price is low. Given a query on categori-
cal attributes, we convert it into boolean using the converted
attributes. The rest of the computations in the framework re-
main unchanged.

The framework can also accommodate the case in which
an order or a preference is induced on the categorical at-
tribute values, by changing the pref function to steer the
user towards a specific attribute value.

Hierarchical attributes. The same idea applies to concep-
tual hierarchies (i.e., hierarchies that have a partial or total
order of the attributes). In order words, we expand the query
lattice (refer to Figure 2) using the hierarchies of each at-
tribute, construct the query relaxation tree, and finally com-
pute the cost. Additional priorities on the hierarchy attributes
may be embedded in the pref computation. Figure 6 contains
an illustration of the categorical data in a Boolean database.
Vehicle contains two categories {Car, Motorcycle}. Each of

Davide Mottin et al.

16
‘ Car ‘ ‘ Motorcycle ‘
! R
’ChevroletS]O‘ ’ Ford ‘ ’ Aprilia ‘ ’ KYMCO ‘

Vehicle | Car | Motorcycle | Chevrolet S10 | Ford | Aprilia | KYMCO
1 1 0 0 1 0 0
1 0 1 0 0 0 1

Fig. 6: Categorical data representation in a Boolean
database.

are relaxations, they will not lead into a query with a non-
empty answer. This type of relaxations are represented as a
leaf in the query relaxation tree. If this happens, then instead
of simply terminating the process, which may not be the best
option for the user, we can retract one or more relaxations
and follow an alternative path, allowing the process to con-
tinue.

There are many options that can be used to decide which
alternative path to follow. For instance, one could: (i) go 1-
relaxation back, and continue with the next best sibling; (ii)
go t-relaxations back, and continue with the next best sib-
ling, with ¢ having some predefined value; (iii) go t-relaxations
back, and continue with the next best sibling, with ¢ being

these categories contains the following subcategories { Chevrolet the minimum number of levels back s.t. the corresponding

S10, Ford} and {Aprila, KYMCO}. An attribute is created
for each category. Each tuple has value 1 or O for an at-
tribute depending on whether the tuple represents an object
belonging to that category or not. For instance, the attribute
corresponding to category named ‘“car” receives the value 1
for a tuple modeling a “Chevrolet S-10” car (because it be-
longs to the category “car”’) and O for “motorcycle” (because
it does not belong to the category “motorcycle”). The table
at the bottom of Figure 6 illustrates how a Ford car and a
KYMCO motorcycle are stored in the Boolean database.

From an implementation point of view, to navigate through

the hierarchies levels during the execution, the algorithm
keeps an additional structure that stores information about
the categorical attributes. During the interactive process with
the user, and when the next best relaxation is computed on
the fly, the algorithm will also check if any relaxation can be
applied in the hierarchy levels (i.e., if the current attribute is
a ”car”, then it is evaluated whether relaxing one level up to
”vehicle” makes sense).

Numerical attributes. The numerical attributes are more
elastic from a relaxation point of view as the numerical value
itself of an attribute can be extended over large ranges of val-
ues. If we consider buckets over data ranges and hierarchies
on top of them, this case is reduced to the hierarchical case
and the above methods applies.

Our algorithms can equally ingest databases containing
all these kinds of attributes simultaneously. However, we re-
call that the focus of the current work is not on optimized
ways of operating with different types of data, but on the
optimization of the interactive process with the user.

6.2 Drill down / Roll back

Proposing to the user the relaxations that at any given mo-
ment seem to be the most promising (according to the crite-
ria we have already discussed) and the responses that the
user has until that moment provided, may end up into a
query that no more relaxations are possible or even if there

subtree has at least m > 0 tuples, and /m being some param-
eter; (vi) ask the user to which of the attributes she selected
so far she is willing to give up; ban that attribute, go back to
the level where that attribute was relaxed and continue with
the next best sibling; (v) same, but allow the user to select
t > 1 attributes that she is willing to give up, and discard
all of them at once. Go to the attribute at the highest level in
the tree, and recompute from there and by not considering
the other ¢ — 1 attributes relaxations; (vi) same as before,
but prioritize all other attributes that are not in the set of at-
tributes under that attribute, and consider the rest only after
this set of attributes is exhausted; and as a final alternative,
(vii) once we go back to another attribute (selected by one
of the previous ways), make zero all probabilities of all at-
tributes the user selected after that attribute, and continue
with the next best sibling.

Roll back algorithms. The FastOpt, CDR, and FastCDR
can be adapted to accept roll-back operations. More specif-
ically, when the user requires a roll-back operation, the al-
gorithm locates the node the user wants to roll-back to, and
computes the second best subtree if not already constructed.
This operation is done on-demand, and it assumes that the
new query contains all the attributes at that point in the tree,
without the attribute that the user has just discarded. The
algorithm then calls the procedure that constructs the new
subtree with the new query, irrespective of the rest of the
tree previously computed.

7 Experimental Evaluation

We present our experimental evaluation in this section, in-
vestigate the effectiveness and scalability of our proposed
solutions, and compare our proposed framework with a num-
ber of related works and baseline methods. Our prototype
is implemented in Java v1.6, on an 1686 Intel Xeon X3220
2.40GH machine, running Linux v2.6.30. We report the mean
values, as well as the 95% confidence intervals, wherever
appropriate.

A Holistic and Principled Approach for the Empty-Answer Problem

17

Datasets. We use two real datasets from diverse domains,
namely, used cars and real estate. The Cars dataset is an
online used-car automotive dealer database from US, con-
taining 100,000 tuples and 31 attributes. The Homes dataset
is a US home properties dataset extracted from a nation-
wide realtor website, comprising of 38,095 tuples with 16
boolean attributes. Based on the Cars dataset, we also gen-
erated datasets ranging between 20,000-500,000 rows (Cars-
X), where we maintained the original (multidimensional)
distribution of attribute values. This offers a realistic setting
for testing the scalability of our algorithms.

Queries. We consider a workload of 20 random empty-answer

queries, initially containing only soft constraints. User pref-
erences are simulated using our relPref value associated with
each choice node.

Implementation. All the algorithms are implemented in a
java framework that can be easily extended. The boolean
database is loaded in the main memory and is represented as
an array of integers. The array is sorted, therefore queries are
efficiently answered in logarithmic time while using native
boolean operations.

7.1 Implemented Algorithms

Interactive. This algorithm is from our interactive query re-
laxation framework, and we implement three different in-
stances of the preference computation: (i) Dynamic: a min-
imization of the user effort, with parameter C; = 1 and
leaf cost 0; (ii) Semi-Dynamic: a maximization of the an-
swers quality with parameter C; = 0 and leaf cost equal to
the maximum value of the preference function in the result-
set; and (iii) Static: a maximization of a randomly chosen
static value for each tuple, with parameter C; = 0 and
leaf cost the maximum profit of the result-set. (Note that
for Semi-Dynamic and Static we do not report the results
using average as the leaf cost function, since they are simi-
lar to those obtained using the maximum.) Additionally, we
implement FullTree, FastOpt, and our two parameterized
algorithms CDR and FastCDR, as well as top-k variants
of FastOpt and FastCDR that interactively propose k re-
laxations at each step. Finally, we implement a method (de-
scribed in Section 3.3) that combines FastOpt with [27],
using Dynamic and Semi-Dynamic objectives, which we
refer to as FastOptMFS.

Baselines. We implement two simple baseline algorithms:
Random randomly chooses the next relaxation to propose
to the user, and Greedy greedily selects the first encoun-
tered non-empty relaxation, considering only the next level.

Related Works. In this group of algorithms we have con-
sidered a number of approaches from the related literature.

e top-k: This algorithm takes user-specific ranking func-
tions as inputs (user provides weights for each attribute of
the database), and we show the top-k tuples, ranked by the
linear aggregation of the weighted attributes.

e Why-Not: This algorithm is from [51], non-trivially adapted
for the empty-answer problem. We note that method [51] is
primarily designed for numerical data, and inappropriate for
empty-answer problem, since it assumes that the user knows
her desirable answer (unlike empty-answer problems). We
make the following adaptations: given an empty-answer query,
we apply our pref function (Section 3) to determine the
most relevant tuple in the database that matches the query
(non-exact match). We use that tuple as user’s desirable an-
swer, then convert the categorical database to a numeric one
(in scale 0 — 1), and apply [51] to answer the corresponding
Why-Not query. The algorithm generates a set of relaxations
that we present to the user.

e MFS and InteractiveMFS: These algorithms are from
[27], and they propose all the maximally succeeding sub-
queries to the user. Based on the paper mentioned above,
we implement two algorithms: InteractiveMFS is the MFS
algorithm with the backtrack functionality, presented in Fig-
ure 9 of [27]. In addition, the algorithm requires as user input
a preference order on the attributes; we used our preference
function to compute an ordering and compare the results.
Even though a thorough experimental assessment is missing
from the original paper, we include such a comparison in
Section 7.3.

e QueryRef: This algorithm is from [35]. Given a query, the
method suggests a set of relaxations, such that the number
of tuples in the answer set is bounded by a user specified
input. The main differences and limitations of this work are
discussed in Section 8. Our empirical study, depicted in Fig-
ure 7, exhibits that 81% of the queries with 8 constraints
do not lead to a non-empty answer (i.e., failing queries),
if the relaxations take place along each attribute indepen-
dently (and ignore multiple attribute relaxations in conjunc-
tion). Therefore, [35] largely fails to successfully address
the empty-answer problem at hand. In order to remedy this
situation, we also experiment with an adaptation of the al-
gorithm that proposes additional minimal relaxations if the
relaxation along one attribute is non-empty.

Summary of Experiments. We implement the related works
discussed above, and set up a user study comparing the re-
lated works with our proposed framework in Section 7.2.
Additionally, we also present other two user studies: a sep-
arate study that validates the effectiveness of different cost-
functions supported by our framework, and a comparison
between single and top-k relaxations produced by our meth-
ods. Pareto-optimal solutions are considered and compared
in Section 7.3. An empirical comparison among the different
objectives is presented in Section 7.4. Section 7.5 presents
quality assessment to experimentally demonstrate the effec-

18 Davide Mottin et al.
mlOO% M Interactive EMFS Mtop-k Why-Not
K] 80% | | | | - 100%
.
(7] 80%
3 60% — N
o 0,
o 40%] || || | 60%
é ° 40%
0%

3 4 5 6 7 8
Query Size

Fig. 7: Failing queries in QueryRef vs query size.

0%

Preferred Answers Quality Usability

Fig. 8: Comparison of user satisfaction with differ-
ent related work.

B st Dynamic W st Semi-Dynamic ™ sat. Static B Single M Single sat. B Multiple sat. 4.5 ~-Dynamic
dissat. Dynamic M dissat. Semi-Dynamic ' dissat. Static H Multiple Single unsat. = Multiple unsat. 4 " -mrsemi-Dynamic /
100% 100% »3.5 -
g =#=Static ’__;_4
80% 5 3
80% 0 25 / /
60% 5 o a4
60% R
40% E1s -
2
20% 7
° 20% !
. 0.5
20% 0% — 0
0% Preferred Answer Quality Usability 4 5 6 7

Ql Q2 Q3 Q4

Fig. 10: Comparisons of single (k = 1)
and multiple (¢ > 1) relaxations in
terms of user satisfaction.

Fig. 9: Percentage of satisfied and dis-
satisfied users.

tiveness of our proposed framework in optimizing the pre-
ferred cost function (by the cost of the root node of the re-
laxation tree). Section 7.6 presents the scalability studies.
Section 7.7 and Section 7.8 present the results at increasing
k and cardinality, respectively. Section 7.9 reports the effec-
tiveness of the approximation algorithm CDR based on the
parameter (L).

Summary of Results. Our study concludes the following
major points - (1) Existing methods are unable to address the
same broad range of objectives (e.g., the case when the over-
all goal conflicts with user preference) as we do. (2) More
than 60% of the users prefer “step-by-step” interactive re-
laxation suggestion to non-interactive top-k results based on
user defined ranking functions (11%), or returning all relax-
ations suggestions in one step [21,51] (20%). (3) User satis-
faction is maximum (i.e., over 90%) with the returned results
by our framework even for seller-centric optimization objec-
tives. (4) Our proposed algorithms scale well with increas-
ing dataset or query size (experiments up to 500k tuples). (5)
Algorithm CDR can effectively balance between efficiency
and the quality of the returned results (within a factor of 1.08
from the optimal). (6) FastCDR preserves quality close to
optimal and real-time performance at increasing k.

Query size

Fig. 11: Number of steps vs query size
in the user study.

7.2 User Study

‘We build a prototype of our system and use the Homes dataset
to conduct two user studies with Amazon’s Mechanical Turk
(AMT).

Comparison to previous work. In this user study, we com-
pare our proposed method Interactive (for seller-centric op-
timization) with top-k, Why-Not and Multi-Relaxations.
We hire 100 qualified AMT workers to evaluate 5 differ-
ent queries, and measure user satisfaction in a scale of 1
to 47 independently and in comparison with other methods.
We ask each worker, which method is most preferable (Fa-
vored), rate her satisfaction with the quality of the returned
results (Answers Quality) for each method, and rate her sat-
isfaction with the effectiveness of each of methods (Usabil-
ity). In addition we ask them the age range and the level of
expertise with the use of computers and Internet (naive to
IT professional user in the range 1-4). As depicted in Fig-
ure 8, more than 60% of the users prefer Interactive com-
pared to other methods, and only 11% of users like to design
ranking functions. With regard to result quality, more than
80% think that Interactive is appropriate for obtaining good
quality results. At the other extreme, the adaptation of Why-
Not algorithms produce good quality results only for 58%
of the workers. With regard to method usefulness, the users
are asked to independently evaluate the usefulness of each

7 1- very dissatisfied, 2 - dissatisfied, 3- satisfied, 4-very satisfied

A Holistic and Principled Approach for the Empty-Answer Problem

19

of the four methods in obtaining fast answers. 88% of the
users prefer Interactive (i.e., give scores of 3 or 4), whereas
76% prefer Multi-Relaxations, 65% top-k, and 58% Why-
Not. Finally, the users are also asked to score Interactive in
terms of overall satisfaction: 91% workers are very satisfied
with Interactive, out of which 49% are naive users (data is
not shown in Figure 8).

Optimization goals comparison. We set up three different
tasks, hire a different set of 100 workers to test different op-
timization functions (without actually knowing them) in our
framework. We propose five empty-answer queries per Hu-
man Intelligence Task (HIT), with 4 — 7 attributes. The study
uses the FastOpt algorithm, and the workers are asked to
evaluate the suggested refinements (Q1), the system guid-
ance (Q2), the time to arrive to the final result (Q3), and
the system overall (Q4), in a scale of 1 (very dissatisfied) to
4 (very satisfied). We compare different optimization func-
tions in terms of number of steps, profit, and answer quality
(we only show results for the number of steps; the others ex-
hibit a behavior similar to the ones described in the previous
section, and are omitted for brevity). The analysis shown in
Figure 11 shows that Dynamic guides users to non-empty
results 2 times faster than the other approaches when the
query size increases. The results (Figure 9) also show that
the users express a favorable opinion towards our system.
As expected, the Static method, being seller-centric, is the
least preferred, yet satisfies 60% of the users on an average.
The Semi-Dynamic approach is the most preferable over-
all, producing higher quality results faster, and highest user
satisfaction (ranging between 72-89%) .

Top-k quality. In this user study we compare the quality
of the FastOpt when the number of relaxations proposed
changes. The user does not provide any yes/no answer if
multiple relaxations are shown, assuming only yes answers
in that case. We ask the users to evaluate 5 different queries
with single or multiple (2,3) relaxations proposed. At the
end we propose to: choose among single and multiple relax-
ations (Preferred), evaluate the overall quality of the answers
for single and multiple (Answer quality) and, evaluate the
easiness of use (Usability) in a scale of 1 to 4. Users found
both techniques useful and appreciated their features, with
a slight preference for Multiple, mainly because of its small
advantage in terms of usability.

7.3 Comparison to Pareto-optimal solutions

A Pareto-optimal solution proposes non-empty relaxed queries

that are maximal, i.e., any super-query of a maximal non-
empty query is empty. This notion has been extensively used
in the query relaxation literature, and forms the basis of
the two other interactive methods in the literature, namely
QueryRef and InteractiveMFS. Figure 15 shows the com-

parison among the FastOpt, FastCDR, QueryRef, and MFS
methods. We also compare with the FastOptMFS method
that combines our FastOpt algorithm with MFS. We note
that while QueryRef only allows the user to choose among
the different proposed relaxations, InteractiveMFS includes
a backtrack strategy, in which the user may refuse a relax-
ation.

Figure 15a shows that our methods relax more than In-
teractiveMFS. This is expected since our Dynamic objec-
tive captures the likelihood that the user accepts a relax-
ation in order to have fewer interactions (as depicted in Fig-
ure 15b). Therefore, with high probability it will relax one
attribute to return non-empty answers. Instead, the random
model implemented in InteractiveMFS does not ensure this
property, leading often times to an empty answer. QueryRef
on the other hand, relaxes between 0.8 (query size 3) to 3.5
(query size 7) attributes more, since it does not incorporate
any preference model and forces the user in selecting any
of the maximal succeeding queries. Furthermore, our model
(including the combined FastOptMFS) requires up to 1.2
less steps than InteractiveMFS and up to 2.3 less steps than
QueryRef to get to an answer. QueryRef exhibits an an-
swer quality close to our method: since it explores the whole
query space, the probability to get high quality results is
high, while our framework proposes one relaxation at a time.

7.4 Preference Computation Comparison

Figure 12 shows how different cost functions behave with
respect to the number of expected steps before we find a
non-empty answer. We notice that the Static approach per-
forms significantly worse than the other two. This is due to
the fact that, in order to find more profitable tuples, the best
option is to relax several constraints, which leads to produc-
ing long optimal paths. On the other hand, Figure 13 shows
that Static achieves considerably better profit results, which
means that the extra cost incurred pays off. Figure 14 mea-
sures the quality of the results, and indicates that the inclu-
sion of the preference function in the probability computa-
tion tends to favor good quality answers. We also observe
that the behavior of Static is very different from that of Dy-
namic and Semi-Dynamic, since it does not depend on the
user preference, while the other two are highly user-centric,
thus leading to (slightly) better answer quality.

7.5 Effectiveness

In the next set of experiments, we evaluate the effectiveness
of the algorithms by measuring the cost of the relaxation for
different query sizes. For brevity, we present only the re-
sults for Dynamic, since there are no significant differences
among those objectives and we compare algorithm based on
the cost function value at the root (see Equation 3). In these

20 Davide Mottin et al.
. B Dynamic M Semi-Dynamic ™ Static B Dynamic M Semi-Dynamic ™ Static B Dynamic M Semi-Dynamic Static
:,.;5 0.6
5 205 -
24 3
5 304 -
33 o
£ §0,3 §
32 a 4
2 <?:0.2
1+ 0.1
0 - 0~
3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

Query Size
Fig. 12: Effort vs Query Size of dif-
ferent preference objective functions

Query Size
Fig. 13: Profit vs query size of different
preference objective functions (Homes

Query Size
Fig. 14: Quality of the results vs query
size for different objective functions

(Homes dataset). dataset). (Homes dataset).
5 mFastOpt — WFastCDR = FastOptMFS S WFastOpt ~ WFastCDR W FastOptMFS 08 ® n
as pA as astop astopt ast astopt ’ M InteractiveMFS © QueryRef
4 ™ InteractiveMFS = QueryRef L 4 M InteractiveMFS QueryRef L 0,7
3] g I £06
%3 s Zs g05
] I t =04
5 1 2 g
8?2 I i 22 z03
E . I g c
<1 =1 | L = 21 - < g’i
0 - 0 - 0
3 4 5 6 7 3 4 5 6 7
Query size Query size Query size

(a) Number of attribute relaxed vs query size
(Homes dataset), Dynamic objective.

(b) Number of steps vs query size (Homes
dataset), Dynamic objective.

(c) Quality of the results vs query size (Homes
dataset), Semi-Dynamic objective.

Fig. 15: Comparison with the interactive Pareto-optimal approaches FastOptMFS, QueryRef and MFS.

experiments, we use queries of size up to 7, because this is
maximum possible size for running FullTree in our experi-
mental setup. Figure 16a depicts the results for the Homes
dataset (normalized by the cost of FullTree for query size
3). The Cars dataset results are similar, and we omit them
for brevity.

The graph confirms the intuition that the Random and
Greedy algorithms are not able to find the optimal solu-
tion (i.e., the solution with the minimum expected number
of relaxations). In addition, their relative performance gets
worse as the size of the query increases, since the likelihood
of making non-optimal choices increases as well. For query
size 7, Random produces a solution that needs 2.5 times
more relaxations than the optimal one and 2.6 for Greedy.
As expected, they also exhibit the largest variance in perfor-
mance.

On the other hand, CDR and FastCDR perform very
close to FullTree, choosing the best path in most of the
cases. The same observation holds for larger queries (upto
10 attributes, refer to Figure 16b), where all values are nor-
malized by the cost of FastOpt for query size 3). Our results
also shows that CDR remains within a factor of 1.08 off
the optimal solution (expressed by FastOpt in the graph)
corroborating its effectiveness to the empty-answer prob-
lem. Interestingly, FastCDR, due to the pruning strategy of

FullTree, guarantees nearly optimal answers even for large
queries. The results demonstrate that CDR and FastCDR
are effective solutions to the empty-answer problem, even
when the query size grows much larger than L (set to 3 for
all the experiments).

7.6 Scalability

Figure 17 illustrates experiments on the scalability proper-
ties of the top performers, FullTree, FastOpt, CDR and
FastCDR, when both the size of the query and the size of
the database increase.

Figure 17a shows the time to propose the next relaxation,
as a function of the query size. We observe that the FastOpt
algorithm performs better than CDR when the query size is
small (i.e., less than 8), but worse than FastCDR that com-
bines the characteristics of both. This behavior is explained
by the fact that CDR is always computing all the nodes
of the relaxation tree up to level L, while FastCDR ap-
plies pruning rules to speed up the computation. In contrast,
FastOpt is able to prune several of these nodes, leading to a
significantly smaller tree. For query sizes larger than 8, CDR
and FastCDR compute more than two order of magnitudes
less relaxation nodes than FastOpt. Moreover, as the query
size increase CDR performs close to FastCDR since the

A Holistic and Principled Approach for the Empty-Answer Problem

21

5 T wFullTree
W FastOpt
4 WFastCDR I—
CDR
3 - M Greedy |
a Rand
S
2
1 -
0 -
3 4 5 6 7
Query size

(a) Proposed algorithms and baselines comparison

4 7 W FastOpt
M FastCDR -l-
3 +—"E€EDbR l
-
e i
Ty -
1 Ilili 7
0 - T r T+ T°T 1
3 4 5 6 7 8 9 10

Query size

(b) FastOpt, (Fast)CDR-3 comparison for big
queries

Fig. 16: Relaxation cost vs query size (Homes dataset).

-A-FullTree
10000 |=#=FullTree 1000
-#-CDR

71000 -@-FastOpt -
E 100 | “*-FastCDR E 100
eEa @
£ 10 E 10
r
. :
<4 = &
0.1

0.01

0.1
3 4 5 6 7 8 9 10

Query size

0 100 200
Number of tuples (k)

(a) Query time (log scale) vs query size

(Homes dataset). 6 (Cars-X datasets).

(b) Query time vs dataset size, for query size

CDR -@-FastOpt -#-FastCDR

15 ‘WFastOpt WFastCDR WCDR

Answer Quality

100 250 500
Number of tuples (k)

300 400 500 25 50 75

(c) Relaxation cost vs query size, for
FastOpt, (Fast)CDR-3 (Homes dataset).

Fig. 17: Results with increasing query size.

time to compute the levels below L dominates the computa-
tion. Finally, FullTree has an acceptable performance only
for small query sizes (in our experimental setting we could
only execute FullTree for query sizes up to 7).

The FastOpt algorithm remains competitive to CDR for
small sized queries, but becomes extremely slow for large
query sizes, requiring almost 10 sec for queries of size 10.
For the same queries, FastCDR executes three orders of
magnitude faster, requiring 8.3 ms to produce the next relax-
ation, and significantly less than 1 ms for smaller queries.

We also experiment with varying dataset sizes between
25K-500K tuples, using the Cars-X datasets, having query
size set to 6. Figure 17b indicates that query time is moder-
ately affected by size of the database, since relaxation tree
becomes smaller with increasing dataset size even though
the database access time increase. This happens because more
tuples in the dataset translate to an increased chance of a spe-
cific relaxation (i.e., node in the query relaxation tree) being
non-empty. Note that, even though CDR involve more nodes
than FastOpt, it performs similarly, since FastOpt has to
build the entire tree before producing the first relaxation,
whereas, CDR chooses the best candidate relaxation after

computing the first L levels of the tree, which translates to
reduced time requirements per iteration.

We also show in Figure 17c the impact to the answer
quality (Semi-Dynamic preference computation) as a func-
tion of database size. As expected, we obtain more qualita-
tive answers with bigger databases, since the likelihood of
having non-empty queries with good results also increase.
As per quality comparison, FastCDR performs as well as
FastOpt with different optimization criteria.

Overall, we observe that FullTree quickly becomes in-
applicable in practice, while FastOpt is useful only for small
query sizes. In contrast, CDR and FastCDR are able to pro-
pose relaxations in less than 10 ms, even for queries with 10
attributes, and always produces a solution that is very close
to optimal.

7.7 Impact of k in the top-k relaxations

In the next set of experiments, we show the impact of the k
in the top-k relaxations, with the No-bias and Skip-above

models. The FastOpt algorithm is compared with the FastCDR

in terms of quality and time.

22

Davide Mottin et al.

FullTree M FastOpt M FastCDR
1 1 1 1

-AFullTree -®FastOpt ~#-FastCDR

1 E400
8 5
3 £ 300
© §
0,5 3200
100
0
0 1 2 3 4 5
1 2 3 5 X

(a) Cost vs number of relaxations,
when algorithms use the No-bias

(b) Time vs number of relaxations,
when algorithms use the No-bias when algorithms use the Skip-
above model

(c) Cost vs number of relaxations,

FullTree ® FastOpt M FastCDR
5

“FullTree -®-FastOpt *-FastCDR

Cost
Query Time (ms)
B o]
o
o

(d) Time vs number of relaxations,
when algorithms use the Skip-
above model

Fig. 18: CDR and FastCDR behavior with increasing number of relaxations proposed at each step.

model model
4 T®EFastOpt 30
M FastCDR I -@-FastOpt -#-CDR -#-FastCDR
3 CDR T 'g 25
:E)’ 20
=15
>
g 10
=
g 5 '
——o—o—o—*
0
5 10 25 50 100 5 10 %S 5 50 100
Cardinality Cardinality

(a) Cost vs cardinality (b) Time vs cardinality
Fig. 19: CDR behavior with increasing cardinality in Homes
dataset.

Figure 18a shows that in terms of quality, FastCDR for
all practical purposes performs as good as optimal (the dif-
ferences in performance are so small that they are not visible
in the graphs), for different values of k.

Figure 18b shows the query time of each method at in-
creasing k varying the number of reformulations and aver-
aging the results obtained with query size 3-7. FastCDR
takes nearly constant time in k£ and returns results one or-
der of magnitude faster than the optimal. On the other hand,
FastOpt query time increases linearly with k performing
worse than FullTree with & = 5. The reason is that the
pruning power of FastOpt is affected by k, since the num-
ber of branches in the relaxation to be constructed is bigger.
Moreover, the overhead induced by the pruning procedure
negatively affects the query time.

Figures 18(c-d) show the results with the Skip-above
model. FastCDR produces slightly worse results in this case,
since the choice of the subtree to expand is made before
knowing which the best choice is (and therefore without
knowing which attribute cannot be relaxed further). Unsur-
prisingly, the presentation bias pruning introduced in FastOpt
positively affects the query time.

7.8 Cardinality Impact

We analyze the impact of cardinality on our different meth-
ods. A high cardinality value tends to produce deeper trees,
affecting time and quality. Figure 19b shows that FastOpt

takes 6 times more when the cardinality moves from 5 to
100. The approximate algorithms CDR and FastCDR are
constant in the cardinality value. Moreover, as depicted in
Figure 19a, the quality of the results produced by FastCDR
is not affected by the cardinality value.

7.9 Calibrating (Fast)CDR

Recall that the (Fast)CDR-L algorithms start by computing
all the nodes of the relaxation tree for the first L levels (see
Section 5), where L is a parameter.

Figures 20a,20b show the impact of L on the cost (the
values have been normalized using as a base the cost of
(Fast)CDR-4 for query size 3). We notice that for L = 2
the CDR behaves reasonably well only for very small query
sizes, while FastCDR produces qualitative relaxations up to
query size 8. This behavior is expected, since for big query
sizes the algorithm is trying to approximate the node cost
distributions and then make decisions based on too little in-
formation. Increasing L always improves cost. L = 3 results
in a considerable improvement in cost, but the results show
that further increases have negligible additional returns. We
also compare the time performance in Figures 20c,20d. The
results show that (Fast)CDR-4 quickly becomes expensive
in terms of time. We conclude that using L = 3, CDR and
FastCDR achieve the desirable trade-off between effective-
ness and efficiency.

We also conduct experiments in Figure 21b with varying
the number of the FastCDR histogram buckets between 5 —
40, which has a negligible impact on time performance. We
experience in Figure 21a that with more than 20 buckets the
effect on the quality is minimal. The algorithm is also stable
with respect to the data used. For the rest of the experimental
evaluation, we use (Fast)CDR with L = 3, and 20 buckets.

8 Related Work

Query Reformulation for Structured Databases. The clos-
est related works are interactive optimisation-based approaches

A Holistic and Principled Approach for the Empty-Answer Problem

23

8 4
H|=20|=30=4 H|=2 W|=3 ¥ [=4
6 3]
- L
34 L 32
o i O 1
2 - T - I - 1 -
0 - 0 -
3456 7 8 910 3456 7 8910
Query Size Query Size

(a) Cost vs query size CDR-L (b) Cost vs query size FastCDR-

D
o

= L=4-+1=3®1=2 20 Talmae=3 0122
E E
40
£ g0
= g
20 220
: g
g . ;Q R
0 % —

3 456 7 8 910
Query Size

3 45 6 7 8 910
Query Size

L (c) Time vs query size CDR-L (d) Time vs query size FastCDR-L

Fig. 20: CDR and FastCDR behavior for different values of L at increasing query size.

Cars M Homes - 60 [®Cars *+Homes
£
@ 40
£
=
20
]
a —o——o———0
0
5 10 20 40 0 20 40
Buckets

Buckets
(a) Cost vs number of buckets ~ (b) Time vs number of buckets
Fig. 21: CDR behavior with increasing number of buckets
in Homes and Cars datasets.

studied for the many-answers problem, most notably [7,30,
32], where given an initial query that returns a large number
of answers, the objective is to design an effective drill-down
strategy to help the user find acceptable results with mini-
mum effort. We solve the complementary problem, where
we have an empty answer and we need to relax the query
condition to get a non-empty one. This fundamental asym-
metry precludes a direct adaptation of one to another. In the
former it is assumed that the user for sure prefers one of the
tuples already in the result set, whereas, in our case the chal-
lenge is that we have no evidence what the user prefers, so
we have to go with a probabilistic framework.

Most of the previous query relaxation solutions proposed
for the empty-answer problem are non-interactive in nature.
One of them proposes query modification based on a notion
of generalisation, and identifies the conditions under which
a generalisation is applicable [13]. Alternatively, machine
learning can be used to identify the reasons, i.e., combina-
tion of conditions, for an empty-answer query and eliminate
those that invalidate as many such combinations as possi-
ble [42,43]. The latter approach is data driven, but a simi-
lar service can be achieved by exploiting schema informa-
tion and in particular integrity constraints, which in turn can
be used to inform the user about the query failing condi-
tions [26]. All these frameworks do not leverage user prefer-
ences in deciding the relaxation. Koudas et al. [31] suggest
alternative queries based on the “minimal” shift from the
original query. In contrast, our method considers additional
goals that could be optimised during the interaction.

“Why Not” queries are studied in [12,51], where, given
a query @ that did not return a set of tuples .S that were ex-
pected to be returned, the goal is to design an alternate query
Q' that (a) is very “similar” to), and (b) returns the miss-
ing tuples .S, and (c) has the rest of the returned tuples not so
different from those returned by (). “Why Not” queries are
non-interactive, and it is non-trivial to extend these meth-
ods for the empty answers problem, because they require the
user to be aware of some desired tuples .S in the database. In
our case though, no such set S is available to the user.

Relaxation strategies for the empty-answer problem have
been proposed as a recommendation service in [27, 28, 29].
Motro [37] proposed that the system may decide to relax
a query if it is suspected to produce an empty answer due
to some misspelled words, some wrong table/attribute se-
lection, or some badly selected condition in the query. With
this assumption, the relaxation is unavoidably based on a
syntactic similarity function on schema elements [38]. This
solution has the advantage that it can be easily explained to
the user [39]. A common characteristic of all the above ap-
proaches is that they are non-interactive.

A main challenge in all the relaxation works is how to se-
lect the best relaxation among all alternatives. Bosc et al. [9]
make use of a parameterized proximity relation, in order to
drive the relaxations. While this is a meaningful framework
for query relaxation, in our work, we additionally take into
account the user’s prior and preference functions, while pro-
viding the ability to use a wide range of objective functions
to quantify relaxations. Furthermore, this approach assumes
empty flexible (fuzzy) queries, while our work focuses on
relaxing empty crisp queries.

A few interactive query relaxation approaches have been
proposed for the empty-answer problem. McSherry [34] pro-
poses an interactive strategy, where attribute are relaxed one-
by-one, based on a deterministic partial/total order over the
attributes. Nevertheless, no optimization criterion is explic-
itly described. A recent paper [35] proposes interactive query
refinement to satisfy certain query cardinality constraints.
The proposed techniques are designed to handle queries hav-
ing range and equality predicates on numerical and categor-
ical attributes. However, the technique is neither designed

24

Davide Mottin et al.

for optimizing some objective, nor does it consider a model
for user preferences. We have provided an empirical study
of this approach in Section 7.1.

An alternative to query reformulation approaches for solv-
ing the empty/many-answers problem is the ranked-retrieval
approach. The task is to develop a ranking function that
scores all items (even those that do not exactly match the
query conditions) in the repository, according to a “degree”
of preference of the user, and return the top-k items. This
approach can be very effective when the user is relatively
sophisticated and knows what she wants, because the rank-
ing function can be directly provided by the user. In the
case of a naive user, who is unable to provide a good rank-
ing function, there have been many efforts to develop suit-
able system-generated ranking functions, both by IR [6] and
database [1, 14, 15] researchers. At the same time, it has
also been recognized [7,25] that the rank-retrieval based ap-
proach has an inherent limitation for naive users: it is not an
interactive process, and if the user does not like the returned
results, it is not easy to determine how the ranking function
should be changed. In this context, interactive approaches
such as query reformulation are popular alternatives.

Our approach can be considered as an instance of as-
sociative query answering [17] that returns data related to,
but not explicitly asked by the query. The relatedness may
be based on external information, e.g., a domain ontology,
while our approach is data- and user-driven. In the same
spirit, taxonomies have been used in deductive databases to
drive the query relaxation process [19], using greedy strate-
gies. At large scale, the system may require techniques for
cooperative query answering that are suited for a distributed
environment [49]. No matter what approach is used for the
query relaxation, performance is always an issue due to the
many alternatives that need to be investigated. Performance
optimization techniques vary depending on the approach.
Examples include those we presented in this paper, efficient
lattice traversal techniques [49], subquery enumerations [23],
or monotone CNF formulas [18], even query caching which
allows a-priori testing for empty-answer situations [33].

Most of the works on query relaxation do not consider
past knowledge. Bosc et al. [10] describe an incremental ap-
proach, yet, based on past failed queries. The past knowl-
edge our approach considers does not only include the pre-
viously failed queries, but also the previous choices of the
user during the interaction phase. Thus, the user preferences
are fully taken into consideration. The work in [50] consults
a database of historical items that match the query, and in
combination with predefined taxonomies, it decides which
relaxation is likely to yield results that align well with the
user’s original intent.

Skyline queries is a popular problem with many varia-
tions in the literature. In principle, the goal is to find a set
of tuples that are not dominated by any other tuple. A tu-

ple ¢t dominates another tuple s if ¢ is strictly better than s
in all attribute values (assuming an ordering on the values).
The complexity of finding dominating tuples is O(n?) in
the worst case; though, in practice they perform better. This
problem has also been studied for subspaces (i.e., subsets of
the database attributes) [16,46]. Highly related are also the
preference queries that try to satisfy conditions and prefer-
ence ordering on sets by selecting a set of items as an an-
swer [53]. However, skyline queries do not deal in principle
with the empty-answer problem, which is tackled instead by
maximal succeeding subqueries methods [27, 35].

Query Reformulation in IR. Automatic query reformula-
tion strategies for keyword queries over text data have been
widely investigated in the IR literature [21,22]. Various strate-
gies have been used, ranging from relevance feedback to an-
alyzing query logs and finding queries that are similar to the
user queries. To find related queries, various strategies have
been proposed, including measures of query similarity [5],
query clustering [52], or exploiting summaries contained in
the query-flow graph [3]. An alternative approach relies on
suggesting keyword relaxations by relaxing the ones which
are least specific based on their idf score [25].

Zero-hit queries & HCI. The empty-answer problem has
also been studied from the HCI point of view, under the
name of zero-hit queries. The main idea is to provide the
user with the visual tools to adjust an empty-answer query
so that it generates data. The Aplhaslider [2] is one such ex-
ample. Using key values sampled from a specific attribute
is providing the user with an overview of the value distribu-
tion, and is allowing her to drill down and adjust the query
conditions in order to reach a non-empty answer query. In-
stead of giving the user a summary of the values, it is pos-
sible to provide some meta-data information [24]. The user
can then perform some selection based on the meta-information
before having the actual data retrieved. The latter approach
works not only for the case of the empty-answer, but also
in the case of the too-many answers [47]. Both approaches
can benefit from our framework, so as to better reason on
the possible relaxations and avoid unsuccessful trials by the
user aiming at achieving a non-empty answer.

9 Conclusions

In this work, we propose a novel and principled interac-
tive approach for queries that return no answers by suggest-
ing relaxations to achieve a variety of optimization goals.
The proposed approach follows a broad, optimization-based
probabilistic framework which takes into consideration user
preferences. This is in contrast to prior query reformula-
tion approaches that are largely non-interactive, and/or do
not support such a broad range of optimization goals. The
holistic framework is adapted to return top-k reformulations

A Holistic and Principled Approach for the Empty-Answer Problem

25

at

each step and to include cardinality constraint. Moreover,

any database can be translated into boolean and the same
techniques applied. We develop optimal and approximate

SO

lutions to the problem, demonstrating how our framework

can be instantiated using different optimization goals. We
have experimentally evaluated their efficiency and effective-
ness, by comparing to several techniques and user studies.

References

13.

14.

15.

16.

17.

20.

21.

22.

23.
24.

. S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated
ranking of database query results. In CIDR, 2003.

. C. Ahlberg and B. Shneiderman. The alphaslider: a compact and
rapid selector. In CHI, page 226, 1994.

. A. Anagnostopoulos, L. Becchetti, C. Castillo, and A. Gionis. An
optimization framework for query recommendation. In WSDM,
pages 161-170, 2010.

. B. Arai, G. Das, D. Gunopulos, and N. Koudas. Anytime mea-
sures for top-k algorithms on exact and fuzzy data sets. VLDB J.,
18(2):407-427, 2009.

. R. A. Baeza-Yates, C. A. Hurtado, and M. Mendoza. Query rec-
ommendation using query logs in search engines. In EDBT Work-
shops, pages 588-596, 2004.

. R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley New York, 2011.

. S. Basu Roy, H. Wang, G. Das, U. Nambiar, and M. Moha-
nia. Minimum-effort driven dynamic faceted search in structured
databases. In CIKM, pages 13-22, 2008.

. Y. M. M. Bishop, S. E. Fienberg, and P. W. Holland. Discr. Multi-
variate Analysis: Theory and Practice. MIT Press, 1975.

. P. Bosc, A. HadjAli, and O. Pivert. Empty versus overabundant
answers to flexible relational queries. Fuzzy Sets and Systems,
159(12):1450-1467, 2008.

. P. Bosc, A. HadjAli, and O. Pivert. Incremental controlled relax-
ation of failing flexible queries. JIIS, 33(3):261-283, 2009.

. Y. Chang, I. Ounis, and M. Kim. Query reformulation using au-
tomatically generated query concepts from a document space. In-
formation processing & management, 42(2), 2006.

. A. Chapman and H. V. Jagadish. Why not? In SIGMOD, pages

523-534, 20009.

S. Chaudhuri. Generalization and a framework for query modifi-

cation. In /ICDE, pages 138-145, 1990.

S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic

ranking of database query results. In VLDB, pages 888-899, 2004.

S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilis-

tic information retrieval approach for ranking of database query

results. TODS, 31(3):1134-1168, 2006.

J. Chomicki, P. Ciaccia, and N. Meneghetti. Skyline queries, front

and back. SIGMOD Record, 42(3):6-18, 2013.

W. W. Chu and Q. Chen. Neighborhood and associative query

answering. J. Intell. Inf. Syst., 1(3/4):355-382, 1992.

. C. Domingo, N. Mishra, and L. Pitt. Efficient read-restricted
monotone CNF/DNF dualization by learning with membership
queries. Machine Learning, 37(1):89-110, 1999.

. T. Gaasterland. Cooperative answering through controlled query

relaxation. IEEE Expert, 12(5):48-59, 1997.

M. R. Garey and D. S. Johnson. Computers and Intractability; A

Guide to the Theory of NP-Completeness. 1990.

S. Gauch and J. Smith. Search improvement via automatic query

reformulation. TOIS, 9(3):249-280, 1991.

S. Gauch and J. B. Smith. An expert system for automatic query

reformulation. JASIS, 44(3):124-136, 1993.

P. Godfrey. Minimization in cooperative response to failing

database queries. Int. J. Cooperative Inf. Syst., 6(2):95-149, 1997.
S. Greene, E. Tanin, C. Plaisant, B. Shneiderman, L. Olsen, G. Ma-

jor, and S. Johns. The end of zero-hit queries: Query previews for
nasa’s global change master directory. Int. J. on Digital Libraries,
2(2-3):79-90, 1999.

25

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

. V. Hristidis, Y. Hu, and P. G. Ipeirotis. Ranked queries over
sources with boolean query interfaces without ranking support. In
ICDE, pages 872-875, 2010.

J. M. Janas. On the feasibility of informative answers. In H. Gal-
laire, J. Minker, and J. Nicolas, editors, Advances in Data Base
Theory, pages 397-414. Springer, 1981.

D. Jannach. Techniques for fast query relaxation in content-based
recommender systems. KI’06: Advances in Al, pages 49-63, 2007.
D. Jannach and J. Liegl. Conflict-directed relaxation of constraints
in content-based recommender systems. Advances in Applied Al,
pages 819-829, 2006.

U. Junker. Quickxplain: Preferred explanations and relaxations for
over-constrained problems. In AAAI volume 4, pages 167-172,
2004.

A. Kashyap, V. Hristidis, and M. Petropoulos. Facetor: cost-driven
exploration of faceted query results. In CIKM, 2010.

N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing join
and selection queries. In VLDB, pages 199-210, 2006.

C. Li, N. Yan, S. B. Roy, L. Lisham, and G. Das. Facetedpe-
dia: dynamic generation of query-dependent faceted interfaces for
wikipedia. In WWW, pages 651-660, 2010.

G. Luo. Efficient detection of empty-result queries. In VLDB,
pages 1015-1025, 2006.

D. McSherry. Incremental relaxation of unsuccessful queries. In
ECCBR, pages 331-345, 2004.

C. Mishra and N. Koudas. Interactive query refinement. In EDBT,
pages 862-873. ACM, 2009.

T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

A. Motro. Seave: A mechanism for verifying user presuppositions
in query systems. TOIS, 4(4):312-330, Dec. 1986.

A. Motro. Vague: A user interface to relational databases that
permits vague queries. TOIS, 6(3):187-214, July 1988.

A. Motro. Flex: a tolerant and cooperative user interface to
databases. TKDE, 2(2):231-246, Jun 1990.

D. Mottin, A. Marascu, S. Basu Roy, G. Das, T. Palpanas, and
Y. Velegrakis. Igr: An interactive query relaxation system for the
empty-answer problem. In SIGMOD, pages 1095-1098, 2014.

D. Mottin, A. Marascu, S. B. Roy, G. Das, T. Palpanas, and
Y. Velegrakis. A probabilistic optimization framework for the
empty-answer problem. PVLDB, 6(14):1762-1773, 2013.

I. Muslea. Machine learning for online query relaxation. In KDD,
pages 246-255, 2004.

I. Muslea and T. J. Lee. Online query relaxation via bayesian
causal structures discovery. In AAAL, pages 831-836, 2005.

T. Palpanas and N. Koudas. Entropy based approximate querying
and exploration of datacubes. In SSDBM, pages 81-90, 2001.

T. Palpanas, N. Koudas, and A. O. Mendelzon. Using datacube ag-
gregates for approximate querying and deviation detection. /EEE
Trans. Knowl. Data Eng., 17(11):1465-1477, 2005.

J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best views of
skyline: A semantic approach based on decisive subspaces. In
VLDB, pages 253-264, 2005.

C. Plaisant, B. Shneiderman, K. Doan, and T. Bruns. Interface
and data architecture for query preview in networked information
systems. ACM Trans. Inf. Syst., 17(3):320-341, 1999.

F. Radlinski and T. Joachims. Query chains: learning to rank from
implicit feedback. In KDD, pages 239-248. ACM, 2005.

Z. W. Ras and A. Dardzinska. Solving failing queries through
cooperation and collaboration. WWW, 9(2):173-186, 2006.

G. Singh, N. Parikh, and N. Sundaresan. Rewriting null e-
commerce queries to recommend products. In WWW, 2012.

Q. T. Tran and C.-Y. Chan. How to conquer why-not questions. In
SIGMOD, pages 15-26, 2010.

J.-R. Wen, J.-Y. Nie, and H. Zhang. Query clustering using user
logs. TOIS, 20(1):59-81, 2002.

X. Zhang and J. Chomicki. Preference queries over sets. In /CDE,
pages 1019-1030, 2011.

	Introduction
	Motivating Example
	Probabilistic Framework
	Exact Algorithms
	Approximate Algorithms
	Extensions
	Experimental Evaluation
	Related Work
	Conclusions

