
Using Queries to Associate Metadata with Data

Divesh Srivastava
AT&T Labs–Research

divesh@research.att.com

Yannis Velegrakis
University of Trento
velgias@dit.unitn.it

Abstract

As relational databases proliferate and become increas-
ingly complex, both in their internal structure and in their
interactions with other databases and applications, thereis
a growing need to associate a variety of metadata with the
underlying data. Even though the need has been apparent,
a simple, elegant approach to uniformly model and query
both data and metadata has been elusive. In this paper, we
argue that the relational model augmented with queries as
data values is a natural way to uniformly model data, arbi-
trary metadata and their association.

1. Motivation
Databases are becoming increasingly complex, both in

their internal structure (e.g., thousands of tables) and intheir
interactions with other databases and applications (e.g.,me-
diators and workflows). In successfully understanding,
maintaining, querying, integrating and evolving these data-
bases, metadata plays an important role. Metadata is data
about data, a secondary piece of information that is separate
in some way from the primary piece of information to which
it refers. Metadata examples include schema, integrity con-
straints, comments about the data, ontologies, quality para-
meters, annotations, provenance information, security poli-
cies, or statistical data characteristics.

Metadata is used in many different fields. In corporate
environments, databases deployed at the core of important
business operations may contain erroneous, inaccurate, out-
of-date, or incomplete data with a significant impact on
query results. In such environments, data is usually tagged
with quality parameters to communicate suitability, accu-
racy, freshness or redundancy, and schema structures can be
annotated with textual description to communicate their se-
mantics. In scientific domains where data may be collected
from various sources, cleansed, integrated and processed
to produce new forms of data enhanced with new analy-
sis results [8], provenance information can be provided as
metadata in the form of annotations [1] or special structures
stored in the database [12], allowing users to apply their

own judgment to assess credibility of query results. In het-
erogeneous environments metadata can be used to resolve
semantic conflicts [9].

Over the years, numerous proposals have been made by
researchers for augmenting the data model and the query
capabilities of a database in order to facilitate metadata
management (e.g., [1, 6, 2]). These proposals are about
metadata of different kinds (semantics), and forms (atomic
values or complex structures), but each such proposal is
tailored to specific kinds of metadata, and is not directly
applicable to other kinds, at least not without some major
modifications. Past attempts at building generic metadata
stores (e.g., [5]) have employed highly expressive modeling
tools to explicitly represent the various artifacts.

In this work, we initiate a study that aims to accommo-
date in one framework the different kinds of metadata, the
different structures, the different ways that metadata is as-
sociated with data and the different ways in which it is used
in queries. We argue that in order to achieve this we need a
framework that is simple and abstracted from the specifics
of each kind of metadata. Having observed that the opera-
tions one needs to perform on metadata are similar to those
people do with data, we propose the use of standard data
management techniques for metadata, so that both data and
metadata can be managed in one single framework. We ad-
vocate that the relational model is adequate for such a pur-
pose. Metadata with complex structures can easily be mod-
eled through relations and attributes. These relations have
no special semantics, thus, the same piece of information
can be viewed either as data or as metadata. It can also
be queried using a relational query language, even indepen-
dently of its association to data.

Instead of using explicit values to form associations be-
tween data and metadata, we propose the use of queries as
data values in the relational tables for this purpose. Us-
ing queries as data values is not entirely new. Relational
DBMSs already store in the catalog tables the definition
queries of the views that have been defined in the data-
base. In this case, however, queries are considered schema
information and despite the fact that they can be queried us-
ing SQL, they are not considered part of the instance data.

Our proposal raises such metadata to the level of data, and
provides a unified mechanism for modeling and querying
across data and metadata. Apart from the system catalog
tables, queries as values have also been proposed in the IN-
GRES system [11], and later similar functionality has been
adopted in Oracle [3]. Queries as values have also been
studied in the context of relational algebra [7]. Here we
study how this idea can be used in the service of metadata
management.

2. Queries as Data Values
Example 2.1 Consider a communications company data-
base with the tableCustomers as shown in Figure 1. The
contents of the table are generated by integrating data from
a number of physically distributed sources. When a mis-
take is detected in the table, it is important to know its ori-
gin in order to correct it. To make this information avail-
able to the user, the data in theCustomers table needs to
be annotated with its provenance information, i.e., the ori-
gin database name, its IP address and the protocol used
to access it. One way to achieve this is to alter the table
Customers by adding three new columns for each of its at-
tributes [1, 4]. Such a solution may affect the way existing
applications use the table, may degrade performance, or
may not even be possible to implement due to lack of au-
thorization for such a change. An alternative solution is
to to store the provenance information in a separate table
(Provenance) as illustrated in Figure 1. ColumnRf1 can
be used to specify the relationship between the specific tu-
ple and the data it annotates. It may containName values
assuming thatName is the key inCustomers. For instance,
tuple[BCT, NJDB, 147.52.7.8, http] in Provenance would in-
dicate that the data tuple for theBCT customer was obtained
from theNJDB source. This modeling approach has two main
drawbacks. First, it results in a lot of information repetition.
Assume that it has been asserted that all the New Jersey
customers originate from the same data source. To record
that, a tuple like the one just mentioned will have to be re-
peated in tableProvenance for every New Jersey customer.
Furthermore, if a new New Jersey customer is inserted, the
respective tuple will have to be created inProvenance for
that customer. The second drawback is that this mechanism
cannot be used to model the fact that aProvenance tuple
may not refer to the wholeCustomers tuple but only to a
subset of its attributes.

What we propose in order to deal with these issues is to
use queries as data values in the table columns in order to
intensionally describe the data to which a metadata infor-
mation tuple is associated. To find whether a particular data
value is associated with a (metadata) tuple, one only needs
to check if the data value is part of the relation described by
the query expression.

Example 2.2 In the example database of Figure 1, column
Rf1 of tableProvenance contains queries instead of atomic
values. The first tuple with queryq1 in columnRf1 inten-
sionally describes that the provenance of all the customers
with location ’NJ’ is theNJDB data source. Furthermore,
through the attributes of itsselect clause, it specifies that
this is true only for attributesName, Type and PhoneLine.
It states nothing about attributesLoc andCircuitID. In a
similar fashion, the second tuple specifies that data source
’3State’ is the origin of theLoc, PhoneLine andCircuitID
values of all the businessCustomers.

Having the provenance information as a separate table
comes with the additional advantage that it can be queried
independently of the data it is associated to. For instance,
in the case where a data administrator needs to know the set
of data sources that have contributed data, independent of
what data that is, she can issue a query on theProvenance

table.

With the proposed mechanism, new metadata can be eas-
ily added on top of other existing metadata by simply creat-
ing a new table and storing the appropriate queries as data
values in one of its columns. This is an important feature
since the same piece of information may be viewed as data
by one application and as metadata by another. Further-
more, the mechanism allows metadata to refer to either a
single attribute or set of attributes, and also to have com-
plex structures, i.e., multiple attributes of different types.

To implement this functionality, we extend the relational
model with a new user defined atomic type, referred to as
q-type, which is used to store queries as values in relational
tables. Such queries are referred to asq-values.

To be able to dynamically executeq-values, we assume
the existence of a functioneval whose role is to evalu-
ate a query expression that is provided to it as argument.
However, in contrast to other approaches that use query ex-
pressions as data values [11, 7], we donot considereval
as part of the relational algebra. Such an extension would
have required the use of a nested relational model, i.e., a
non first normal form model, which may be more powerful
but comes with a significantly higher query evaluation cost.
Furthermore, it would have created results with unspecified
schema, since the evaluation ofq-values with different num-
bers and types of attributes in their select clause would have
resulted in multiple non union-compatible relations.

For storage and retrieval purposesq-type column con-
tents are viewed as atomic types. However, for comparison
purposes, we would like to view them as relations. Since a
q-value is nothing more than an intensional description of
a virtual relation, the functionality needed is the one that
allows one to check whether certain values exist in the rela-
tion described by aq-value. If they do, it is said that theq-
valuereferencesthese values. This relationship can be used
to perform selections and joins that are based onq-values.

Customers
Name Type Loc PhoneLine CircuitID
AFLAC bus NJ 4078417332245-6983
J. Lu res NY 2019394460245-7363
H. Ford res NJ 2159537607245-7564
AMEX bus NY 3178763540343-5002
NJC bus NJ 9730918327981-5002
BCT bus NJ 9734858504273-6019
...

Provenance
Rf1 Source IP Protocol
q1 NJDB 147.52.7.8 http
q2 3State 148.62.1.11ftp
...

q1: select Name,Type,PhoneLine
from Customers where Loc=’NJ’

q2: select Loc,PhoneLine,CircuitID
from Customers where Type=’business’

Permissions
Rf2 Users
q11 Administrators
q12 Guests
... ...

q11: select * from Provenance

where IP LIKE ’147.%’
q12: select Name from Customers

where Loc=’NY’

Figure 1. A database with metadata information stored in regular tables as data.

��������

��������

������������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�����������������

����������������

����������������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

����������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��������������

SR1

...... ...
q
Q

t
R2

R2

A An1

������������

X

Figure 2. q-type reference

The mechanism is graphically explained in Figure 2. To ex-
press this relationship in queries, SQL is extended with a
new operator

.
=. The semantics of that operator are illus-

trated through the following example.

Example 2.3 Assume that a data administrator would
like to know what data sources are related to customer
’AFLAC’. This translates to selecting from theProvenance
table those tuples having aq-value in attributeRf1 that
referencesName and that name is ’AFLAC’. This can be ex-
pressed as:

select distinct p.Source from Provenance p

where p.Rf1[Name]
.
= [′AFLAC′].

As a different example, assume that the data adminis-
trator has discovered that in the database in Figure 1 the
customers with names starting with “A” violate the format
policy and would like to know the source from where they
originate. She knows that the provenance information is
stored in theProvenance table where attributeRf1 specifies
the association between the data and the metadata, so she
issues the following query:

select distinct p.Source from Customers c, Provenance p

where p.Rf1[Name]
.
=[c.Name] and c.Name LIKE ’A%’

What the query does is to select all the customers whose
name starts with letter “A”. For every such tuplec it checks
if there is a tuplep in Provenance with aq-valueq in p.Rf1

such that relationeval(q) has an attributeName and there is
at least one tuple in it with the value in columnName equal
to the value ofc.Name. If yes, then tuplesc andp pair up.
The answer of the above query on the instance of Figure 1
is the tuple[′NJDB′].

Note that the case where all theq-values of aq-type col-
umn are of the form“ select * from R where A=’const’, with
constbeing some constant value, that may be different each
time, is a simulation of the value-based traditional join of
the relational model.

3. Conclusion
There is a clear need to associate a variety of metadata

with the underlying data in order to understand, maintain,
query, integrate and evolve databases. We presented a sim-
ple, elegant approach to uniformly model and query data
and arbitrary metadata, that is based on the use of queries
as data values. The approach has been implemented in the
MMS System [10].

References
[1] D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya. An An-

notation Management System for Relational Databases. InVLDB,
pages 900–911, 2004.

[2] S. Chawathe, S. Abiteboul, and J. Widom. Representing and Query-
ing Changes in Semistructured Data. InICDE, pages 4–19, 1998.

[3] D. Gawlick, D. Lenkov, A. Yalamanchi, and L. Chernobrod.Appli-
cations for Expression Data in Relational Database System.In ICDE,
pages 609–620, 2004.

[4] F. Geerts, A. Kementsietsidis, and D. Milano. MONDRIAN:Anno-
tating and querying databases through colors and blocks. InICDE,
2006.

[5] M. Jarke, R. Gallersdorfer, M. A. Jeusfeld, and M. Staudt. Con-
ceptBase - A Deductive Object Base for Meta Data Management.J.
Intell. Inf. Syst., 4(2):167–192, 1995.

[6] G. Mihaila, L. Raschid, and M-E. Vidal. Querying “Quality of Data”
Metadata. InIn Third IEEE META-DATA Conference, Bethesda,
Maryland, apr 1999.

[7] F. Neven, J. V. Bussche, D. V. Gucht, and G. Vossen. Typed Query
Languages for Databases Containing Queries. InPODS, pages 189–
196, 1998.

[8] R. Rose and J. Frew. Lineage Retrieval for Scientific DataProcess-
ing: A Survey.ACM Comp. Surveys, 37(1):1–28.

[9] M. Siegel and S. E. Madnick. A Metadata Approach to Resolving
Semantic Conflicts. InVLDB, pages 133–145, 1991.

[10] D. Srivastava and Y. Velegrakis. MMS: Using Queries As Data Val-
ues for Metadata Management (Demo Paper). InICDE, 2007.

[11] M. Stonebraker, J. Anton, and E. N. Hanson. Extending a Database
System with Procedures.ACM TODS, 12(3):350–376, 1987.

[12] Y. Velegrakis, R. J. Miller, and J. Mylopoulos. Representing and
Querying Data Transformations. InICDE, pages 81–92, 2005.

