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Abstract
Modern information systems often store data that has

been transformed and integrated from a variety of sources.
This integration may obscure the original source seman-
tics of data items. For many tasks, it is important to be
able to determine not only where data items originated,
but also why they appear in the integration as they do and
through what transformation they were derived. This prob-
lem is known as data provenance. In this work, we consider
data provenance at the schema and mapping level. In par-
ticular, we consider how to answer questions such as “what
schema elements in the source(s) contributed to this value”,
or “through what transformations or mappings was this
value derived?” Towards this end, we elevate schemas and
mappings to first-class citizens that are stored in a repos-
itory and are associated with the actual data values. An
extended query language, called MXQL, is also developed
that allows meta-data to be queried as regular data and we
describe its implementation. scenario.

1. Introduction
Large amounts of information from many domains of

activity are currently available on the web in a number of
autonomous heterogeneous sources and repositories. Mod-
ern information systems and e-commerce applications use
data integration tools to locate, collect, translate and inte-
grate this information in order to provide the user with a uni-
fied view of the data. This integration is achieved through a
set of transformation queries or views (usually called map-
pings) that map instance data from the sources to instance
data of the integrated schema [16]. Data obtained from well-
known sources such as government organizations, research
institutes or private companies may be well-understood and
accepted. However, data coming from the integration of
independent, physically distributed, heterogeneous sources
are not always well-understood. Some of the original data
semantics may be lost during the integration, and new data
may also be added in the process. Furthermore, as a con-
sequence of the transparent access provided by the integra-
tion, the notion of distinct sources and their structures of-
ten disappears from queries and results. Hence, searching
the integrated information for data that is not only relevant,
but also best suited to a task at hand, is really a challenge.

On the other hand, everyday life includes numerous ap-
plications where users need to know and reason about the
origin of data [5, 8, 13, 24]. One reason may be to evalu-
ate the quality of the retrieved results. Knowing from where
each particular data element was drawn and how it was
computed allows users to apply their own judgment to the
credibility of that information and decide whether some par-
ticular data is a semantically correct answer to their query.
In systems where information from multiple sources is used,
such knowledge may assist in interpreting the data seman-
tics and resolving potential conflicts among data retrieved
from different sources. In several other emerging applica-
tions, the ability to analyze “what-if” scenarios in order to
reason about the impact of the data coming from specific
sources (or parts of them) is of paramount importance.

The problem of determining the origin of a specific data
element in an integrated view is known to the research com-
munity as the problem of data lineage [8] or data prove-
nance [5]. Most of the work on lineage tracing has con-
centrated on instance-level tracing, that is, finding the spe-
cific values in the base tables that justify the appearance of a
data element in a view. One way the problem is approached
is by developing methods to generate the right queries on
the source schema to return the data elements that are “re-
sponsible” for the appearance of a data value in the view.
To generate such a query, the information of the view in-
stance and the view query is required. Computing the in-
verse of the view query may be required [6]. In many cases,
such a costly computation may be avoided if the interest
is not in the originating data values themselves, but in the
schema elements used or the way in which the data was
transformed. This new paradigm suggests a new kind of lin-
eage that is at the schema level and uses schema elements
and mappings instead of specific data values. Such informa-
tion can provide users with a better understanding of the se-
mantics of the data, and can help in resolving semantic con-
flicts that may arise from the integration of data from dis-
parate heterogeneous sources [4]. In large scale integration
systems, where the integrated instance is populated from
many large schemas through numerous complex mappings,
schema level provenance is a required first step to identify
the mappings that generated a specific data value in the in-
tegration and the schema elements to which it was applied.
This information can be provided to the user, or can be used
to compute the data-level provenance if the exact originat-
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ing values need to be identified or can be used to locate a
piece of data according to the mappings applied to them.

To compute schema-level lineage, schemas and map-
pings need to be stored, managed and allowed to be queried
as regular data. Meta-data information has been used in
many applications. Commercial relational database sys-
tems, for instance, store schema information and view def-
initions in specialized tables called system catalogs. In our
work, we are exploring how to make this information avail-
able to a designer in a systematic way by providing facili-
ties for querying not only catalog information, but also very
general mappings used to integrate and transform data. We
also permit the origin of data to be recorded. For example,
if data is integrated using a view that is generated through a
union of multiple queries, we ensure that provenance infor-
mation is not lost when the data is merged, a capability that
is typically not automatically provided by commercial ma-
terialized view facilities. Currently, in order to deal with this
limitation, data administrators usually store, with the inte-
grated data, meta-data information in an ad-hoc way by tag-
ging or annotating specific parts of the data. Our goal here
is to make this process systematic by providing data anno-
tations that have a well-known meaning and are guaranteed
to be reliable. In that way, we offer a more comprehensive
set of meta-data and the functionality of formulating queries
that use meta-data information along with the actual data, in
a transparent and consistent way. The need for this kind of
expressiveness in query languages has already been recog-
nized in the research community [15]. Previous work has
considered only schema information as meta-data, but in
many applications, mapping level information is also im-
portant.

The goal of this work is to go further and provide an in-
tegrated solution and a systematic way for uniformly rep-
resenting and declaratively querying data, its schema-level
provenance, and the mappings through which it has been de-
rived. We address issues such as determining what schema
components and data sources contributed to the generation
of a specific piece of information, through what views or
queries this data was generated, and what transformation
these queries performed. To achieve this, schemas and map-
pings are elevated to first-class citizens in the repository and
the query language. An important component of our work is
the representation of not just the identity of mappings, but
their internal, declarative structure to help designers under-
stand, compare and debug mappings.

Our work is motivated by noumerous application sce-
narios and environments. Scientific data, for example, may
be retrieved by third parties, transformed and stored in lo-
cal databases. For researchers interested in the accuracy and
timeliness of scientific data, for example, it is essential to
know the original location from which a given piece of data
was drawn, and the processing that has been applied to it.
In information portals, knowing the source and the transfor-
mations through which the data was computed is important
in order to assess its quality. In data warehouses, to support

what-if scenarios, queries may be parameterized with con-
ditions on originating schemas and view queries that con-
trol how the warehouse instance has been generated.

In this work, our main contributions are:
1. We describe and implement a representation model for

schemas and transformations.
2. We introduce annotations on data values in order to as-

sociate them with their meta-data information. Anno-
tations are not only super-imposed information but can
be queried along with data.

3. We develop and implement an extended query lan-
guage, called MXQL, for uniformly manipulating data
and meta-data by utilizing the proposed representation
model and data annotations.

4. We show that the semantics of MXQL introduce a new
kind of lineage (or provenance) that uses schema ele-
ments instead of data values.

5. We manage not only the origin of the data but also the
transformations through which it has been derived.

6. We report our experience in using our implementation
in a real world scenario.

The paper is organized as follows. Section 2 motivates
the problem and Section 3 discusses the related work. Sec-
tion 4 introduces and formally defines the data model and
Section 5 presents an extension to this model to support
queries on schemas and transformations. Section 6 inves-
tigates the properties of the proposed query language and
Section 7 shows how it can be implemented. Our experi-
ence with the framework is reported in Section 8.

2. Motivating example
To better understand the problem, consider the case of

a specific portal that integrates information from various
real estate sites from around the world. Figure 1 indicates
a portion of the schema of a European (EUdb) and an Amer-
ican (USdb) data source, as well as a portion of the portal
(Pdb) integrated schema. The dotted arrows between the two
schemas indicate how their elements correspond. The por-
tal is populated with data retrieved from the two sources
through the three mappings m1, m2 and m3 indicated in
Figure 1. Mappings are used to describe data transforma-
tions from one format to another. Mappings will be formally
presented in Section 4.3. For the moment, what is important
to note is that mappings are of the form foreach Qs exists Qt

where Qs is a query on a data source schema describing
what data to retrieve, and Qt is a query on the integrated
schema describing how the retrieved data will be structured
to conform to the integrated schema. The first mapping of
Figure 1 populates the integrated schema with data from
the American site, in particular, house entries and indepen-
dent agents. The second performs a similar task, but consid-
ers firms instead of independent agents. The third populates
Pdb with similar data from the European data source.

Mapping generation requires good knowledge and un-
derstanding of the semantics of the schemas and the lan-
guage in which the mappings are expressed. A number
of tools have recently been developed to assist the user
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in this process by increasing the abstraction level [19],
semi-automatically generating mappings [20] or preserv-
ing the semantics of the transformations while schemas
evolve [23]. However, it is in the nature of the problem that
data mapped from one format to another may lose part of
its semantics. Consider, for example, a user that is inter-
ested in estates valued at more than $500K. The following
query can be executed against the portal data:

select * from Portal.estates where value>500K
The results returned to this query may not be an answer con-
sistent with what the user wanted. It is common for Ameri-
can companies to not include tax in prices while European
companies do. If this is the case in the above scenario, val-
ues in the result set of the query that originate from the Eu-
ropean source will have the tax included while those orig-
inating from the American source may not. Unfortunately,
there is no information in the portal schema to distinguish
the two different kinds of prices. This information has been
lost once the data from the two sources has been merged
in the portal instance. It would be helpful if the user could
specify in the query whether she is interested in data val-
ues originating from one data source or another or if the
query could return, along with every data value in the an-
swer set, the data source from which it originates.

As another example, consider a designer who notices
some anomalous values in the contacts element in the in-
tegrated data. First, she would like to perform a query to
find out from which elements the anomalous values were
derived. In response to such a query, she can learn that
elements from houses and agents were used to compute
the anomalous values. In particular, one mapping may join
houses and agents on aid, while another may join them on
the element owner. She can then decide that the desired con-
tact information in the portal should include the owner, and
may correct or remove the anomalous mapping.

The above examples demonstrate a need for incorporat-
ing into queries predicates regarding how and from where
the data values were derived. If the portal administrator
realizes this need and has the flexibility to alter the por-
tal schema, she can introduce some additional schema el-
ements to keep that information. However, portal schemas
are not always allowed to change, or the administrator may
not be aware of subtle differences in the semantics of the
values, so we may not be able to rely on an administrator to
manually annotate the integrated data with relevant infor-
mation. In this work, we propose an integrated solution to
address this problem by providing a systematic way to store
meta-data without relying on the integrator, and a declara-
tive query language to use that information.

3. Related Work
There are numerous proposals in the literature that ele-

vate various types of meta-data to first-class citizens so that
they can later be queried. The Gaea System [13] is a system
propose a system for modeling data derivation processes,
but the derivations are not associate with the actual data.
Chawathe et al. [7] explicitly represent database changes,
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m1: foreach
select h.hid, h.floors, h.price, n, a.phone
from US.houses h, US.agents a, a.title→name n
where h.aid=a.aid

exists
select e.hid, e.stories, e.value, c.title, c.phone
from Portal.estates e, Portal.contacts c
where e.contact=c.title

m2:foreach
select h.hid, h.floors, h.price, f , a.phone
from US.houses h, US.agents a, a.title→firm f
where h.aid=a.aid

exists
select e.hid, e.stories, e.value, c.title, c.phone
from Portal.estates e, Portal.contacts c
where e.contact=c.title

m3:foreach
select p.hid, p.levels, p.totalVal, a.agentName,

a.agentPhone
from EU.postings p, p.posting.agents a

exists
select e.hid, e.stories, e.value, c.title, c.phone
from Portal.estates e, Portal.contacts c,
where e.contact=c.title

Figure 1. A Schema Mapping Scenario.

thereby, allowing queries to be executed on different ver-
sions of database instances over time. In a similar fashion,
our work explicitly models schemas and mappings permit-
ting queries to trace the origin of the transformations used
to derive the data. Data annotations have also been used by
Wang and Madnick [24] to keep track of all the data sources
from which a specific data value originates, but they con-
sider neither schema element information, nor transforma-
tions. Querying data and schemas has also been proposed
by Lakshmanan et al. [15] who consider schemas as first-
class citizens of a query language. However, the main scope
of this work is to use schema elements in transformation
queries, and naturally, they do not consider using the trans-
formation information in queries.
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Cui and Widom [8] describe data lineage of a specific
value in a view as the tuples in the base tables of the view
that justify its existence. Buneman et al. [5] characterize
this same notion as why-provenance and distinguish it from
where-provenance, which specifies the exact position in the
why-provenance from which a view value was extracted.
Fan and Poulovassilis have also considered data provenance
through schema transformations [11]. In our work, when
we refer to the origin of the data we mean the schema el-
ements and transformations from which they originate and
not the data values that the data provenance considers. In
that sense, our work complements data provenance. Fur-
thermore, we do not consider only the origin of the data,
but also the transformation that has been applied to them.

Currently, there are emerging efforts to build annotation
systems (e.g., Annotea [14]) where data annotations defined
by the users propagate along with the data. This will facil-
itate the use of superimposed information on the data [3].
The problem of propagating annotations from a view back
to the source has been studied by Buneman et al. [6] and
found to be NP-hard. In our case, annotations are queried as
regular data, so the complexity of the problem is not more
than the complexity of evaluating a query over an instance.

Concurrently to our work, Bhagwat et. al [2] are devel-
oping an annotation management system for relational data-
bases. This work is complementary to ours in that it pro-
vides a query language, pSQL, and system for efficiently
propagating annotations as data is transformed. However,
annotations on the queried data are given (not created) and
left uninterpreted. In contrast, in our work, we create an-
notations that record the origin of data and the transfor-
mations applied. Furthermore, our query language (unlike
pSQL) permits users to query the properties of annotations.

Our work can be seen as a contribution to a broader
framework of model management [1] in which meta-data is
managed as first-class citizens [19], meaning it can be gen-
erated [21], composed [9, 18] or updated [23]. In particu-
lar we provide a framework for storing and querying meta-
data. The Rondo model management system [19] provides
a set of conceptual structures for modeling schema struc-
tures, constraints and mappings, but provides no query lan-
guage for querying them and no mechanism to associate in-
stance data values with their meta-data information. Map-
pings are binary relationships that establish n:m correspon-
dences between the conceptual schema structures. This rep-
resentation is limited since it cannot express, for example,
that when an estate entry is generated in the portal of our
motivating example, element contact should reference the
corresponding contact information. We build on this frame-
work by explicitly modeling the semantics of the transla-
tion as nested tuple generated dependencies [10], and allow
mappings and their internal structure to be queried.

4. Data Model
The data model we use, is based on the well studied rela-

tional model extended to support union types, nested struc-

tures and XML-Schema-like constraints, and has succes-
fully been used before [21, 23, 25] as a common model to
deal with the heterogeneity of integrated data.

4.1. Schemas and Instances
The model includes a set of atomic types (e.g., inte-

ger, string, etc.), set and complex types. A complex type
is either a record or a union. A Record type is of the form
Rcd[A1:τ1, . . ., Ak:τk], where the symbols A1, . . . , Ak

are called labels or attributes and each τi represents an
atomic, a set, or a complex type. A record value of type
Rcd[A1:τ1, . . . , Ak:τk] is a tuple of label-value pairs:
[A1:a1, . . . , Ak:ak], where a1, . . . , ak are values of type
τ1, . . . , τk, respectively. A Union (or Choice) type is of the
form Choice[A1:τ1, . . . , Ak:τk], where τi and Ai are as in
record types. A value of type Choice[A1:τ1, . . ., Ak:τk] is
a label-value pair [Ai:ai], where ai is a value of type τi,
with i∈[1, k]. Repeatable elements are modeled through set
types. A set type is of the form Set of τ where τ is a com-
plex type. A value of type Set of τ is represented by a set
ID and an associated set {v1, . . . , vn} of “children” values,
where each vi is of type τ . The types τi and τ in the spec-
ifications above are said to be directly used in the complex
and set type, respectively.

A schema S consists of several label names, each with
an associated type: R1:τ1, R2:τ2, . . . Rn:τn. Each such pair
is referred to as a root element. Any label-type pair that ap-
pears as a root element or within the type of a root element
is referred to as schema element. Types within set types,
e.g., the type Rcd[. . .] in the type Set of Rcd[. . .], are as-
sumed to have the implicit and usually omitted label “*”.

Due to the way types are specified, a schema can be rep-
resented as a set of trees where each node corresponds to
a schema element and the tree roots correspond to schema
roots. Hence, a schema can be modeled as a set of nodes
over which a parent-child relationship is defined. In partic-
ular,

Definition 4.1 A schema S is a pair <E ,f parent> where E
is a set of label-type pairs, referred to as schema elements,
and f parent is a total function f parent:E→E∪{null}, such
that ∀e∈E fparent(e)=e′ if element e is directly used in the
type of e′, or fparent(e)=null in which case element e is a
root element.

Relational schemas can be expressed as nested relational
schemas by representing each table T as a schema root
T :Set of Rcd[A1:τ1, . . ., An:τn] where the attributes in the
record correspond to the attributes of the table. To em-
phasize the relationship with the relational model, every
schema root of type Set of Rcd[...] with atomic type at-
tributes in the record is referred to as relation and every
record value in such a set is referred as tuple. For an XML
schema, each global element is represented as schema root
and each local element as an attribute of a complex type un-
less it is repeated in which case it is represented through a
set [21].
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Figure 2. EUdb and Pdb schema graphs.

Definition 4.2 An instance I is a set of label-value pairs l:v
and conforms to schema S if there is a total injective func-
tion “elementOf” that maps every label-value pair l:v to
a schema element l:τ of S such that value v is of type τ .
Given an instance, the interpretation of a schema element
l:τ , noted as I[l:τ ], is the set of pairs l:v in the instance for
which elementOf(l : v) = l : τ .

For brevity, we will usually refer to a label-value pair in
an instance as a value if there is no risk of confusion. As is
common in the literature, we represent nested instances as
trees. There is exactly one node in the graph for each dis-
tinct value in the instance. Nodes representing attributes of
a complex type value are labeled with the attribute label and
are connected to a node that represents that complex value
through an edge. Similarly, all the nodes representing mem-
bers of a set are labeled with the implicit label “*” and are
connected through an edge to the node representing the set.

Each data source has an instance and a schema to which
it conforms. In order to distinguish between the different
sources (or databases) each has a unique name assigned.

Example 4.3 Figure 2 indicates the graph representations
of the EUdb and Pdb schemas in Figure 2. Figure 3 shows the
graph representation of an instance of the Pdb data source.
The node annotations should be ignored for now.

4.2. Queries
Queries are formed by select-from-where clauses with

path expressions extended with a special selection sym-
bol “→” to mark choice of attribute in a union type. A
path expression (or expression) is a root element or a vari-
able followed by a series of record projections and union
choices. An expression exp is defined by the grammar
exp ::= S|x|exp.l|exp→l where x is a variable, S a root
element, l a label, exp.l a record projection, and exp→l

a union choice. A valuation of an expression over an in-
stance I is the value described by the expression after an
instantiation of the variables of the query to actual values
of the instance such that the structure and the conditions in
the query are satisfied. Each expression refers to a specific
schema element. The type of an expression is the type of the
schema element to which the expression refers. Every val-
uation of an expression is a value from the interpretation of
the schema element to which the expression refers.

Example 4.4 Expression US.agents refers to element
agents in USdb database and is of set type. If variable x
is bound to a record type in that set, x.title refers to
the element title and is of union type. Then, expression
x.title→name refers to element name of that union and is
of string type.

A well-formed query is a query of the form:
select exp0, exp1, ..., expm

from P0 x0, P1 x1, ..., Pn xn,
where c0θ0c

′
0 and c1θ1c

′
1 and ... and ckθkc′k

where each Pi is an expression that either is of type set or is
a union type choice of the form exp→l. Expression P i can
use only variables that have been previously defined, i.e.,
expression Pi can use a variable xj only if j<i. Every ex-
pression ci, c′i, and expi is either an atomic type expression
that uses at most one of the variables x0. . .xn or it is a con-
stant atomic value. Each operator θi is one of <, >, ≤, ≥
or =. If an expression Pi is of type Set, then variable xi

binds to individual elements of the set. If not, then it will
bind to the element to which expression Pi refers. For in-
stance, if Pi is of type Set of τ then the variable xi will bind
to the elements of type τ in that set. If, on the other hand, P i

is of the form exp→l (where exp is an expression of type
Choice[. . . , l:τl, . . .]), then variable xi will bind to the el-
ement of type τl under the choice l. Nesting and grouping
are supported through the capability of the P i expressions
to use previously bound variables, thus, nested conjunctive
queries [21], SQL, and FLWR expressions with no wild-
cards can be expressed. Note that the functionality of wild-
cards is not a real requirement in our queries, since, hav-
ing the schema available, we can always perform explicit
query unfolding and replace them. The query language cov-
ers the core queries that have been considered in the liter-
ature for use in data exchange and data integration map-
ping expressions [22, 16, 21, 10], and can also be extended
to include aggregation functions, negation and order. How-
ever, since our goal is not to provide and study an expres-
sive query language but rather a framework for representing
and querying meta-data (schemas and mappings) and in or-
der to keep the presentation simple, the subsequent sections
will not consider these features.

Queries may also contain function calls. A function call
accepts as arguments one or more values (described as ex-
pressions) and returns a single value or a set of values. Func-
tion calls returning a set can be used in the from clause as one
of the Pi expression.
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Figure 3. An annotated instance of the Pdb data source of Figure 1.

4.3. Mappings
Queries are used to describe mappings. In keeping with

the data integration and data exchange literature [16], we
define a mapping between two schemas Ss and St as an
expression of the form foreach Qs exists Qt where Qs is
a query on the first schema and Qt a query on the sec-
ond. Schemas Ss and St will be referred to as source
and target schema, respectively. Mappings of this form
are referred to as GLAV [12] mappings, and they natu-
rally include the GAV [16] and LAV [17] mappings that
have been used extensively in integration systems. GLAV
mappings have also been considered in model manage-
ment [1], virtual data transformation [25], peer-to-peer sys-
tems [18] and data exchange [10]. Queries Qs and Qt

should have the same number of type compatible expres-
sions in their select clauses. Given a pair of instances Is of
schema Ss and It of schema St, the mapping is satisfied if
∀t∈Qs(Is)⇒t∈Qt(It) where Qs(Is) and Qt(It) represent
the results of executing queries Qs and Qt on instances Is

and It, respectively, and t a tuple of atomic values. A map-
ping can be seen as a form of inter-schema constraint spec-
ifying what data from the first schema corresponds to data
of the second [16]. Given a number of such mappings, there
may be many transformation functions f :I1→I2 satisfying
the mappings. We have already studied how to find these
functions in [21] where it was also shown that although the
data units associated by the mappings are tuples of atomic
values, complex structures can also be exchanged. Further-
more, more than one expression in the select clause can be
combined together through a function to form new com-
plex expressions. This allows mappings that can map more
than one elements of one schema to an element of a sec-
ond schema.

Example 4.5 Mapping m1 of Figure 1 asserts that every
tuple consisting of hid, stories, price, name and phone val-
ues generated by joining on aid the houses and the agents
of the USdb data source must be in the result of the query
that joins estates and contacts of the Pdb data source
on title. The correspondences between the attributes of
the tuples in the two queries is determined by the positions
of the expressions in the select clauses. For example, the
price corresponds to value since expressions h.price and
c.value are both in the third position of the select clauses.

A mapping from a schema <E1,fp
1 > to schema

<E2,fp
2 > can be modeled as a triple <Es,Et,Wc> where

Es⊆E1, Et⊆E2, and Wc is a set of atomic type element pairs
from (Es∪Et)×(Es∪Et). Intuitively, the sets Es and Et con-
sist of all the schema elements that are referred to by the ex-
pressions in the foreach and exists clauses of the mapping,
respectively. The set Wc consists of pairs of elements that
are referred to either by two expressions in a binary predi-
cate in a where clause (in which case both elements are from
the same schema), or by two expressions in the same po-
sition of the two mapping select clauses, e.g., for mapping
m3 of Figure 1, elements totalVal and value. We will use
this representation to model lineage information from map-
pings.

5. Supporting meta-data querying
This section provides the formal basis for realizing

schema mapping scenarios where data, schema elements,
and transformations are available for querying. It builds on
the data model of the previous section by directly extending
it to make schemas and mappings first-class citizens of the
model. It then extends the query language with special op-
erators to utilize this meta-data information. This extended
query language will be referred to as MXQL, that stands for
meta-data extended query language.

Definition 5.1 A mapping setting is a triple <S s,St,M>
where Ss is a set of source schemas, St a target schema
and M a set of mappings, each from a schema S∈S s to St.

Note that the interpretation of an element e of S t for an
instance I of St, i.e., the set I[e], contains values of the
instance I that may have been generated by different map-
pings. We will use the notation I[e]m to refer to the subset of
I[e] that was generated through mapping m. A detailed dis-
cussion of the semantics for I[e]m and an implementation
of one semantics was presented elsewhere [10, 21]. To al-
low schemas and mappings to be considered as data and al-
low them to be queried, we introduce the notion of a tagged
instance.

Definition 5.2 Given a mapping setting <S s,St,M>, an
instance of each schema of S s and an instance It of schema
St satisfying the mappings in M, if Et represents the set of
elements of schema St, a tagged instance IM is a 6-tuple
<It, Ss, St, M, fmp, fel> where fmp and fel are total
functions defined as:
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fel :It → Et s.t. fel(v) = e, where v∈I [e]
fmp :It → M s.t. fmp(v)={m | m∈M ∧ v∈I [fel(v)]m}
Intuitively, function fel associates each value in the tar-

get instance It of the mapping setting with the schema el-
ement in the interpretation to which it belongs. (Recall that
in our model each value is a label-value pair.) This is a func-
tionality that in most database systems is implicit in the
storage mechanism. SchemaSQL [15] is an effort to over-
come this limitation and allow queries on both instance val-
ues and schema elements. We go further, by incorporat-
ing into the model not only the schema elements but also
the mappings that perform the data transformation. This is
achieved through the function fmp, which associates with
each data value in the instance It the mappings that gen-
erated it by explicitly modeling the structure of the trans-
formations. Note that a data value in the instance It may
be generated by multiple mappings, hence, function fmp

returns a set. In the graph representation of an instance,
the information from functions fel and fmp is represented
through annotations on the graph nodes.

Example 5.3 The annotations in Figure 3 are indicated
with dotted lines. Those in angle brackets represent the ele-
ment information (provided by function fel), while those in
curly brackets represent the mapping information (provided
by function fmp). For instance, the annotation of the title
node indicates that it belongs to the interpretation of ele-
ment e39 (Figure 2), and both mappings m2 and m3 have
generated it.

In order to be able to use databases, schema elements and
mappings in queries and be able to return them in results,
we extend our data model with three new atomic types:
Database, Mapping and Element with domains the set of
databases, mappings and elements, respectively. To access
the schema element and mapping information of a value,
two new operators are also introduced: @elem and @map.
The first returns a value of type Element and the second a set
of values of type Mapping. In particular, given an expression
exp referring to an element e of schema St over a tagged in-
stance <It, Ss, St, M, fmp, fel> and a valuation v of exp
over this instance, the interpretation of the two operators is:
I[v@elem]=fel(v) (that is, v@elem is the schema element
to which the value v refers), and I[v@map]=fmp(v) (that
is, v@map is the set of mappings through which the value v
was derived.)

Example 5.4 Assume that a user is interested in retrieving
all the prices of the estates from the portal. To better realize
the meaning of a price, i.e., if it includes tax, if it is in its
original currency or has been converted, etc., the user may
need to know for each price, through what transformation it
was generated. This can be provided by the MXQL query:

select x.estate.hid, x.estate.value, m
from Portal.estates x, x.value@map m

Note that operation @map is used in the from clause as a
variable binding expression, since it returns a set of values.

One of our main goals is to not only query the map-
pings that generated the values in the integrated instance,
but also trace back in order to find the schema elements
of the sources from which these values originate or the
elements on which they depend. For that, we introduce
the mapping predicate, <Ss:es→m→St:et>. This boolean
mapping predicate can be used in the where clauses of the
queries. It specifies certain conditions regarding the origin,
the transformation and the mappings that transform the data.
When these conditions are satisfied, the mapping predicate
evaluates to true. Given a tagged instance <It, Ss, St, M,
fmp, fel>, the interpretation of the mapping predicate is de-
fined by:
I [<Ss:es→m→ST :et>] = ∃m:<E ′

s,E ′
t,Wc>∈M such that

ST :<Et,fp
t >=St ∧ ∃Ss:<Es,fp

s >∈Ss where E ′
s⊆Es ∧

E ′
t⊆Et ∧ ∃es∈E ′

s ∧ ∃et∈E ′
t ∧ (es=et)∈Wc

Intuitively, the predicate evaluates to true if (i) there is a
mapping m that uses in the select clause of its foreach part
an expression that refers to the element es of one of the
schemas in Ss, and (ii) in the select clause of its exists part,
it uses an expression that refers to the element et of the tar-
get schema St, in a way that the values with which the map-
ping populates schema element et are the retrieved values
of element es.

Example 5.5 In the mapping setting of Figure 1, if es is the
price element, Ss is schema USdb, m is mapping m1, St is
schema Pdb, and st is the value element, then the predicate
<Ss:es→m→St:et> evaluates to true since mapping m1

generates values for the value element by retrieving price
values from the USdb database.

The mapping predicate can be combined with the @map
and @elem operators to form interesting queries. Assume,
for example, that a user is interested in finding estates in
the Pdb database originating from the USdb data source, and
specifically, those having a firm as a contact. For each such
estate the user needs to know the transformation (mapping)
that generated its price. Unless the data administrator who
designed the portal schema had taken special care to in-
clude that information in the schema, which is not the case
in our example, this query cannot be answered since firms
and individual agents have been merged under the element
contacts and cannot be distinguished. Using MXQL, this
requirement can be expressed as follows:
select s.hid, m
from Portal.estates s, Portal.contacts c, c.title@map m
where s.contact=c.title and e=c.title @elem

and <′USdb′:′US/agents/title/firm′→m→′Pdb′:e>

The constant values ’USdb’ and ’Pdb’ in the above query
are of type Database, and the value ’US/agents/title/firm’
is a constant of type Element. The @map operator makes
the Mapping type variable m iterate over all the mappings
that generate values for the element title of the portal
schema, and operator @elem makes the Element type vari-
able e be the schema element title. The mapping predi-
cate restricts variable m even further to only mappings that
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use firm values from the USdb to populate the title ele-
ment of the portal. Note that variables used in the mapping
predicate need not be defined in the from clause, e.g., vari-
able e. They are implicitly defined through their position in
the mapping predicate. Executing the above query over the
tagged instance of Figure 3 returns tuple ( ′H522′,′m2

′),
where ′H522′ is a string and ′m2

′ a Mapping type value.

MXQL queries can also be used to form queries on meta-
data exclusively in order to understand the complex struc-
ture of the schemas and the way data is transformed.

Example 5.6 Consider a user who does not completely un-
derstand what the meaning of the element stories is in the
portal schema. In particular, she is wondering whether this
is a comment about the number and type of floors in a prop-
erty, or a comment about the history of the property. In or-
der to find out, she asks the following query to identify from
where its values originate:

select e from
where <db:e→m→′Pdb′:′/Portal/estates/estate/stories′>

The query returns Element type values floors and levels
as an answer, making the user realize that the element
stories describes how many stories the building has. Note
that, in the above query, the from clause is empty, since the
variables used in the query are implicitly defined by their
use in the mapping predicate.

In many cases, for a given value in the integration, users
are interested in knowing not only from where it originates,
but also what other parts of the schema contain values that
affect its appearance in the integration [5]. To be able to an-
swer such queries, we introduce a new form of the mapping
predicate, having similar syntax but using double arrows in-
stead of single. Its interpretation is defined by:
I [<Ss:es⇒m⇒ST :et>] = ∃m:<E ′

s,E ′
t,Wc>∈M such that

ST :<Et,f
p
t >=St ∧ ∃Ss:<Es,fp

s >∈Ss where E ′
s⊆Es ∧

E ′
t⊆Et ∧ ∃es∈E ′

s ∧ ∃e′s∈E ′
s ∧ ∃e′′s∈E ′

s ∧ ∃et∈E ′
t ∧

(es=e′s)∈Wc ∧ (e′′s =et)∈Wc

Intuitively, the predicate evaluates to true if (i) there is a
mapping m that uses in the select clause of its exists part the
element et of the target schema ST , i.e., it generates val-
ues for et, and (2) it uses element es of one of the schemas
Ss∈Ss of the mapping setting in its where clause. This
means that, although the values of es are not populating el-
ement et, they affect its population through their participa-
tion in the where clause conditions.

Example 5.7 In the mapping setting of Figure 1, the values
of the element aid are not used by any of the mappings to
populate an element of the portal, since the portal schema
has no aid element. However, its values play an important
role in the population of the target schema, since they are
used to form the join between the house and agent values.
Thus, element aid will be in the answer set of the query:
select c.title, es

from Portal.estates s, Portal.contacts c, c.title@map m
where s.contact=c.title and e=c.title @elem

and <′USdb′:es⇒m⇒′Pdb′:e>

This information may be useful to a designer wishing to un-
derstand why certain agents appear associated with specific
houses.

6. Characterizing MXQL Queries
This section provides a more specific characterization of

the mapping predicates. It shows that mapping predicates
describe conditions on the schema elements of the data
provenance [8, 5].

Consider two data sources dbs and dbt with schemas Ss

and St, respectively, and a mapping m generating an in-
stance It of St from instance Is of Ss. Let query
qf : select exp1, exp2, ..., expm

from P0 x0, ..., Pn xn where cond1 and ... and condl

be the foreach clause of mapping m and a value v∈I[e t]m.
Since v∈I[et]m, there is an expression expet in the select
clause of qf through which value v was retrieved from the
source instance Is. Let query q′f be one that has the same
from and where clause as qf but a select clause with all the
possible valid expressions that can exist in the query. Ac-
cording to Buneman et al. [5], although they had considered
a different data model, query q ′

f , with the additional condi-
tion expet=v in its where clause, returns the witness basis
Wqf ,Is(v), i.e., the why-provenance of value v.

Query qf with only expression expet in its select clause
and the additional condition expet=v in the where clause
returns the derivation basis Γqf ,Is(v), i.e., the where-
provenance of value v.

We need to note here that the result of a query is not con-
sidered a simple set of values, but a set of facts, i.e., values
of the instance associated with their specific positions.

Assume that the mapping predicate
<dbs:es→m→dbt:et> is satisfied (evaluates to true)
for some elements es and et. This means that, for a value
v∈I[et]m, there is an expression expet in the select clause
of qf that generated value v, and this expression refers to el-
ement es. For the mappings we consider here, query qf

with the additional condition expet=v in its where clause
and only expression expet in its select clause repre-
sents Γqf ,Is(v), which means that Γqf ,Is(v)∈I[es].

Theorem 6.1 Given two data sources dbs and dbt, and a
mapping m, the mapping predicate <dbs:es→m→dbt:et>
is satisfied if and only if there is a value v ′∈I[es] that is in
the where-provenance of a value v∈I[e t]m through m.

Let query qw
f be a query with the same from and where

clause as query qf , but with the select clause containing all
the expressions that appear in the select or the where clause
of query qf . This query defines a new form of provenance
which we refer to as the what-provenance.

Definition 6.2 (What-Provenance) Consider two data
sources schemas Ss and St, a mapping m : Qs ⊆ Qt from
Ss to St, two instances Is and It of schemas Ss and St, re-
spectively, and a value v of It. Assuming that instance
It has been generated through the mapping m from in-
stance Is, if query Qs is the query
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select exp1, exp2, ..., expm

from P0 x0, ..., Pn xn

where cond1 and ... and condl

the what-provenance of the value v is the query
qf : select U

from P0 x0, ..., Pn xn

where cond1 and ... and condl and expet = v

where U is the set of all the expressions in the select clause
and the expressions used in the conditions of the where
clause of query Qs, and expet is the expression in the select
clause of query Qs that generated value v.

The what-provenance is value-based compared to
the complex-structure-based (tuples or proof trees) why-
provenance. It differs from why-provenance in that it does
not consider the parts of the complex structures returned by
the why-provenance that do not justify the appearance of
a value in the generated instance. This difference becomes
clear with the following relational example. Consider the
two source schema relations R(a, b, c) and S(c, d, e) with
contents {(3, 2, 3), (1, 2, 4)} and {(4, 5, 6)}, respectively,
and a target schema relation T (a, b). Assume that the tar-
get schema relation is populated by the mapping

m: foreach
select r.a, t.c from R r, S s where r.c=s.c

exists
select t.a, t.b from T t

As a result of a data exchange with mapping m, the tar-
get schema relation T will be populated with only the tuple:
(1, 2). The where-provenance of value 1 in this tuple is the
value of attribute a of tuple (1, 2, 4) since this is from where
value 1 was derived. The why-provenance of the same value
consists of the values (1, 2, 4, 4, 5, 6) of relations R and S,
respectively, since the join of those two tuples led to tuple
(1, 2). However, note that attributes d and e of relation S,
whatever values they may have, will not affect the result of
the query. Our what-provenance does not include them. At-
tribute c on the other hand is important since the join of R
and S uses c. In the specific example, the what-provenance
will be the tuple (1, 2, 4).

In order to characterize the relationships among the
where, why and what provenance, we introduce the notion
of element inclusion between queries.

Definition 6.3 (Element Inclusion) Let q1, q2 be two
queries. Query q1 is element-included in query q2, noted as
q1	q2, if there is a total injective renaming function h from
the variables of q1 to the variables of q2 such that the from
and where clauses of the queries h(q1) and q2 are the same,
and K1⊆K2 where K1, K2 are the ordered sets of expres-
sions in the select clauses of queries h(q1) and q2, respec-
tively.

Intuitively, the above definition states that if q1	q2, then for
every instance I, q1(I)=πX(q2(I)) where πX means pro-
jection on some set of elements X .

In general, if queries qwhy, qwhere and qwhat represent
the why, where and what-provenance, respectively, it holds
that qwhere	qwhat	qwhy.

Db(name)
Element(eid, name, type, parent, db)
Query(qid)
Binding(bid, qid, eid, prev)
Condition(qid, bid, eid, op, bid2, eid2)
Mapping(mid, forQ, conQ)
Correspondence(mid, forBid, forEid, conBid, conEid)

Figure 4. Meta-data storage schema.

We will show next that the mapping predicate with dou-
ble arrows relates to the what-provenance.

If the mapping predicate <dbs:es⇒m⇒dbt:et> is satis-
fied for some elements es and et, then, for an instance value
v∈I[et]m, there is an expression expj in the select or the
where clause of qf that refers to the schema element es. By
definition, expression expj will be in the what-provenance
select clause, hence, the interpretation of element [es] is in
the what-provenance.

Theorem 6.4 Given two data sources dbs and dbt, and a
mapping m, the mapping predicate <dbs:es⇒m⇒dbt:et>
is satisfied if and only if a value v∈I[es] is in the what-
provenance of a value v ′∈I[et]m through mapping m.

7. Implementing MXQL
This section describes our implementation of the MXQL

query language using existing technology. Schemas and
mappings, in order to be queried and returned in answer
sets as regular data, need to be stored. Although there may
be many different methodologies targeting different appli-
cations with different requirements, we propose one spe-
cific storage schema and we explain how MXQL queries
can be executed by exploiting that storage schema.

7.1. Meta-data Physical Storage Schema
Figure 4 presents a number of Set of Rcd[...] types (rep-

resented as relations for notational simplicity) used to store
meta-data information. Recall that a relation in our model is
a schema root R of type Set of Rcd[a1:τ1, ..., an:τn] where
every type τk is an atomic type.

The Element relation encodes the graph representation
of a schema using the edge approach. Each tuple corre-
sponds to a node, i.e., a member of the set E of schema
<E ,fparent>. Attribute name records its label and type
specifies its type. Function f parent of schema <E ,f parent>
is implemented through the parent attribute that specifies
the parent node. Finally, attribute db refers to the name of
the data source.

Three relations are used to model queries: Query,
Binding and Condition. Each query gets a unique iden-
tifier that is recorded in relation Query. Relation Binding
records the from clause of each query as a list of bindings.
Each tuple represents a binding and has a unique identi-
fier (bid) within a query (qid). For the binding P i xi, vari-
able xi becomes the binding identifier. Expression P i is
represented by two parts: the variable or schema root with
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which it starts and the schema element to which it refers.
The first is encoded in the attribute prev, referencing the
corresponding binding. The second is encoded in the at-
tribute eid, referencing the corresponding element identi-
fier in the Element relation. Since queries have no bind-
ings for schema roots, implicit bindings are introduced for
each schema root used in the query. These bindings have
the prev attribute set to null. The where clause of a query is
modeled in the Condition relation, where each tuple repre-
sents a condition. Conditions are of the form expr1θexpr2.
Each of the expressions expr1 and expr2 is encoded sim-
ilarly to expression Pi, that is, by specifying the variable
or schema root with which it starts and the schema element
to which it refers. Attributes bid and eid encode expression
expr1, and attributes bid2 and eid2 encode expr2. Attribute
op designates the operator θ.

The Mapping relation is used to encode mappings. At-
tribute mid is a unique identifier, while attributes forQ
and conQ specify the queries in the foreach and exists
part respectively. The expressions in the select clause
of the two queries of the mapping are encoded in the
Correspondence relation in a way similar to relation
Conditions, but with the op attribute taken by default
to be “=”. In general, the Correspondence and Condition
relations are used to encode the Wc set of a mapping
<Es,Et,Wc>, while the sets Es and Et are encoded in the
relation Binding in conjunction with the relations Query,
Mapping and Element.

Example 7.1 Figure 5 shows an instance of the meta-data
schema that encodes the Pdb and EUdb data source schemas
and mapping m3 of Figure 1.

Since mappings are expressed as inter-schema con-
straints, one could use the same mapping storage mech-
anism to also store intra-schema constraints, e.g., foreign
keys, and use them in queries.

7.2. Annotating the Instance Data
Annotations are not part of the nested relational model

and are not supported directly by the nested relational
queries. Hence, to use annotations in queries, we implement
functions getElAnnot(v) and getMapAnnot(v), which
return, respectively, the element annotation and the set of
mapping annotations of a value v in the tagged instance.
The advantage of using functions is implementation inde-
pendence. In an XML data repository, for example, annota-
tions may be implemented as attributes on elements, while
in a relational repository as auxiliary tables.

We have already studied and described [21] the pop-
ulation of a schema through a set of GLAV mappings,
but that work did not support annotations. To cope with
this problem, we first rewrite each mapping by enhancing
its select clauses in order to explicitly generate the anno-
tations. In particular, given a mapping m, for every ex-
pression expr referring to element e in the select clause
of the exists part, expressions getElAnnot(expr) and

Element
eid name type parent db
e0 EU Rcd – EUdb
e1 postings Set e0 EUdb
e2 * Rcd e1 EUdb
e3 hid Str e2 EUdb
e4 levels Str e2 EUdb
e5 totalVal Str e2 EUdb
e6 agents Set e2 EUdb
e7 * Rcd e6 EUdb
e8 agentName Str e7 EUdb
e9 agentPhone Str e7 EUdb
e30 Portal Rcd – Pdb
e31 estates Set e30 Pdb
e32 * Rcd e31 Pdb
e33 hid Str e32 Pdb
e34 stories Str e32 Pdb
e35 value Str e32 Pdb
e36 contact Str e32 Pdb
e37 contacts Set e30 Pdb
e38 * Rcd e37 Pdb
e39 title Str e38 Pdb
e40 phone Str e38 Pdb

Query
qid
q0
q1

Mapping
mid forQ conQ
m3 q0 q1

Condition
qid bid eid op bid2 eid2
q1 e e36 = c e39

Correspondence
mid forBid forEid conBid conEid
m3 p e3 e e33
m3 p e4 e e34
m3 p e5 e e35
m3 a e8 c e39
m3 a e9 c e40

Binding
bid qid eid prev
r1 q0 e0 –
p q0 e1 r1
a q0 e6 p
r2 q1 e30 –
e q1 e31 r2
c q1 e37 r2

Figure 5. Meta-data storage implementation.

getMapAnnot(expr) are also appended to this clause and
constants ′e′ and ′m′ are appended to the select clause of
the foreach part query. The rewritten mappings can then be
executed as described in [21] to generate the annotated in-
stance.

Example 7.2 Mapping m2 of Figure 1 is rewritten to:
foreach

select h.hid, h.stories, h.price, f , a.phone,
′/Portal/estates/hid′, ′m′

2,
′/Portal/estates/stories′, ′m′

2, ...
from US.houses h, US.agents a, a.title→firm f
where h.aid=a.aid

exists
select e.hid, e.stories, e.value, c.title, c.phone

getElAnot(e.hid), getMapAnnot(e.hid),
getElAnot(e.stories), getMapAnnot(e.stories), ...

from Portal.estates e, Portal.contacts c
where e.contact=c.title

7.3. Translating MXQL queries
This section describes how an MXQL query is translated

into a query that can be executed over a tagged instance.
The first step is to translate every e@map and e @elem oper-
ation in the query to a function call of getMapAnnot(e)
or getElAnnot(e), respectively. Mapping predicates are
processed next. If a mapping predicate contains constants,
each is replaced by a new variable, and a condition is added
in the where clause requiring that the variable be equal to the
constant value.
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Example 7.3 Applying these steps to query in Example 5.7
gives:

select s.hid, m
from Portal.estates s, Portal.contacts c,

getMapAnnot(c.title) mv

where s.contact=c.title and <db:e→m→db2:e2>
and m=mv and e=′US/agents/title/firm′

and e2=getElAnnot(c.title) and db=′US′

and db2=
′Pdb′

The bindings of the variables in the mapping predi-
cates are generated next. In particular, for the predicate
<db:e→m→db2:e2>, variables e and e2 are bound to re-
lation Element and m to relation Mapping. Existing ref-
erences to these variables in the select and the where clauses
are then replaced by references to the identifier attribute of
the corresponding table. For instance, since variable e is
bound to Element, every expression involving variable e
is replaced by e.eid. Variables db and db2 are finally re-
placed by expression e.db and e2.db, respectively.

Example 7.4 Applying the above steps to the query of Ex-
ample 7.3 results in:

select s.hid, m.mid
from Portal.estates s, Portal.contacts c, Mapping m,

getMapAnnot(c.title) vn, Element e, Element e2

where s.contact=c.title and <e.db:e→m→e2.db:e2>
and mv=m.mid and e.eid=′US/agents/title/firm′

and getElAnnot(c.title)=e2.eid and e.db=′US′

and e2.db=′Pdb′

The last step is to specify how the variables of the map-
ping predicate relate to one another. The relationship be-
tween the element e and the mapping m depends on the
mapping predicate. If it is a single arrow predicate, it means
that the element e is used in the select clause of the foreach
part of the mapping m. This translates to the conditions
e.eid=o.forEid and o.mid=m.mid where o is a new vari-
able that binds to Correspondence. If we have a double-
arrow predicate, then the case is similar, but the require-
ment for e is to be used either in the select clause as before
or in the where clause. In the latter case, this translates to the
existence of a corresponding entry in the Condition rela-
tion. The association between mapping m and element e2 is
analogous. The mapping predicates are finally removed.

Example 7.5 The query of Example 7.4 becomes:
select s.hid, m.mid
from Portal.estates s, Portal.contacts c,

getMapAnnot(c.title) mv , Element e
Mapping m, Element e2, Correspondence o

where s.contact=c.title and mv=m.mid
and getElAnnot(c.title)=e2.eid and e.db=′US′

and e.eid=′US/agents/title/firm′ and o.mid=m.mid
and o.forEid=e.eid and o.conEid=e2.eid and e2.db=′Pdb′

The advantage of using MXQL queries over the rewritten
form we have just described is that the user does not need to
be aware of the details of the meta-data storage schema. In-
stead, she only has to declaratively specify her requirements
in the query. Another advantage is that the storage method
can be modified without altering the application queries.

8. Experience
As an application scenario for our framework, we used

the generation of a real estate portal that integrates and ma-
terializes data from five popular real estate Web sites (Ya-
hoo, NK Realtors, Winderemere, Westfall and Homeseek-
ers) with an average schema size of 55 elements. The in-
formation extracted from the Web sites consists of a total
of 14.3MB of XML data (10,000 real estate listings). This
information was mapped through a number of nested rela-
tional mappings to an integrated schema having 135 ele-
ments. Execution of the mappings generated an integrated
instance of 14.5MB, which is slightly larger than the total
size of the instance data. It is larger because many pieces of
information from the data sources were represented more
than once in the portal instance. For example, the contact
phone number from the Yahoo data source was mapped to
both the business and the home phone in the integrated
schema.

The mappings were given to a pre-processor that rewrote
them in order to generate annotations (as described in Sec-
tion 7.2). The re-written mappings were executed on the
sources and generated the integrated instance. The new an-
notated instance was 3 MB larger than the instance without
the annotations. This was expected since every XML ele-
ment carries its annotations, which are represented as XML
attributes. Exploiting the fact that the generation methodol-
ogy [21] produces a data instance in Partition Normal Form,
we were able to avoid storing mapping annotations on the
children of a complex type value elements since they are
the same as the annotations of their parents. This reduced
the space overhead of the 3MB to only 0.8MB (i.e., 5.5%
of the size of the integrated instance). The schemas and the
mappings were encoded as described in Section 7.1, and
were inserted in the annotated instance, increasing its size
by 0.3MB. We performed a number of experiments with dif-
ferent sizes of source data, and the results showed that the
increase in the space of the integrated instance, due to the
annotations, was approximatelly 5.5% in all the cases. The
increase in space caused by storing schemas and mappings
was approximately 0.3MB. The real estate sites we used had
very little overlap, i.e., few entries appeared in more than
one data sources. We mapped parts of the data of Winder-
mer to Westfall and Homeseekers, and parts of the Yahoo
data to NK Realtors, so that different information about the
same real estate entry would appear in different sources. We
generated the integrated instance as before, and we noticed
that the extra space needed by the annotations went down to
4.9%. This means that the space overhead in the annotated
instance is less if the sources have overlapping information.
Furthermore, we expect that the annotation space overhead
should decrease even further if the number of nested sets in
the integrated schemas increases.

We executed a number of MXQL queries over the
annotated instance, but we noticed no significant execu-
tion time increase. Furthermore, MXQL queries helped
identify the meaning of some elements in the integrated
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schemas in a way similar to the one described in Ex-
ample 5.6. In addition, they helped detect ill-defined
mappings. For example, we noticed that the sub-element
housesInNeighborhood of a house element, in
some cases, contained houses that were from different
states. In investigating the problem, we executed the fol-
lowing MXQL query

select db, e from where <db:e⇒m⇒′Portal′:e> and
e=′/Portal/house/housesInNeighborhood′

For the Homeseekers data source, it returned two ele-
ments only: the hid and the neighborhood. Indeed,
the Homeseekers mapping was computing the neighbor-
ing houses by performing a self-join only on the element
neighborhood. Unfortunately, neighborhoods with the
same name could appear in different states, thus generat-
ing the misleading data. When the mapping was updated to
join on city, state, and neighborhood, the problem was cor-
rected.

In addition, MXQL helped us judge the accuracy of the
mappings. We noticed, for example, that for some houses
the high, middle and elementary school districts were the
same, although for other houses in the same area they were
not. In querying the mappings of the latter values, we no-
ticed that, for the mappings originating from the Realtors
data source, all three elements were retrieving their values
from a single element schoolDistrict, since the Real-
tors source was not separating elementary, middle and high
school districts.

These experiments demonstrate the importance of de-
tecting and managing the schema level origin of the data,
as well as the transformations that have generated this data.

9. Conclusion and Future Work
In this work, we considered the problem of representing

and querying data transformations. To achieve this, we el-
evated schemas and mappings to first-class citizens and we
used annotations to associate the actual data with its meta-
data information. We proposed a language for querying this
information that considers provenance at the schema level
avoiding complexity issues inherent in data-level prove-
nance. To the best of our knowledge, this is the first pro-
posal to consider managing and querying of not only the
origin of the data but also the declarative transformations
through which the data has been derived.

In the current work, we assumed that mappings were
used to materialize an integrated instance. However, that in-
stance may also be virtual. It is a among our next steps to in-
vestigate this issue and study the semantics of query rewrit-
ing and query answering in such a setting.
Acknowledgments: We would like to thank Wang-Chiew
Tan and Phil Bernstein for their useful comments.
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